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Abstract

External representations (ERs), such as diagrams, equations, graphs, etc. are central to the

practice and learning of science, mathematics, and engineering, as the phenomena and

entities studied in these domains are often not available for direct perception and action.

The ability to generate and use ERs in a domain in an integrated fashion,  as well  as

perform transformations on the ERs, is termed representational competence (RC). Many

learning difficulties are attributed to difficulties in achieving RC, particularly integration

of ERs. RC thus presents a fundamental cognitive difficulty that  cuts across different

disciplinary domains, making it critical to develop teaching-learning strategies that help

learners develop RC.

Most  accounts  of  RC are  grounded in  the  classical  information  processing  model  of

cognition. In this model, a learner experiences high cognitive load during ER integration,

as she tries to ‘extract’ information from ERs, internalize this information in the mind,

and translate or process it to establish connections between the ERs. This characterization

reduces the content of ERs to information, and treats ERs as ‘vehicles’ of information.

This approach therefore does not seek to provide detailed accounts of the role played by

ERs in cognition, and does not examine the cognitive mechanisms supporting integration

of different ERs. Models based on this framework thus focus on processing cognitive

load, and do not provide specific instructional design principles for effective development

of RC.

Recent theories of cognition have moved away from this type of information processing

models,  to  develop 'field'  theories such as distributed and embodied cognition.  These

accounts suggest that ERs, and a learner’s interaction with them, play a constitutive role

in  her  learning of concepts.  I  extend this  approach in  this  dissertation,  to  develop  a

theoretical model of the cognitive mechanisms underlying ER integration. This model

focuses on how the cognitive system interacts with external representations, and the way

integration abilities develop through this interaction. This mechanism model predicts that

(i) the development of the ER integration ability would result in a reorganization of the

sensorimotor system, and (ii) sensorimotor interaction would support ER integration and

its development. To test these predictions, I developed two empirical studies, one based

xxv



on  ER  categorization  tasks  and  eye  tracking,  and  the  other  based  on  the  design,

development, and testing of an enactive new media intervention. The results from these

studies broadly support the theoretical model. Based on these results, I outline some of

the broader implications of the model and possible learning interventions.

Graphical abstract
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Chapter 1     Introduction

Chapter 1: Introduction

Science often deals with entities and phenomena that cannot be directly observed

and/or perceived, because they are too small  (atoms, DNA, cells  etc.),  too big

(galaxies,  stars,  tectonic  plates  etc.)  happen in time-scales  that  are  difficult  to

perceive (milliseconds, centuries, light years), and complex (feedback loops exist

between levels and time scales). Understanding and analyzing these complex and

imperceptible  entities  and  phenomena  require  imagining  them  in  detail,  and

developing indirect measures and novel representations (symbolic elements that

stand in for the actual entities/phenomena) that help in this imagination.  These

representations  are  arrived  at  through  practice  and  consensus  in  the  scientific

community.  Even  the  perceivable  entities  and  phenomena  are  not  dealt  with

directly, as they need to be represented for various purposes, such as measuring,

recording,  observing,  simultaneously  dealing  with  multiple

variables/factors/components,  data handling,  etc. External  representations (ERs)

are thus embedded in science practice, and they are critical for developing models,

drawing  inferences,  making  predictions,  supporting  claims  and  developing

consensus.  Ideas  and content  are  distributed  across  ERs,  and the learning and

practicing of science are impossible without gaining expertise in interacting with

ERs, thinking and imagining with them, and learning to generate them (Johnstone,

1991;  Lesh,  Post,  &  Behr,  1987;  Tsui  &  Treagust,  2013).  Imagined  mental

models,  and  ERs  of  these  models,  are  developed  over  several  iterations  and

revisions within science practice, where the internal and the external interact and

help change each other (Nersessian, 2010). The final external representations and

related  internal  models,  which  students  are  expected  to  learn  in  an  integrated

fashion, are often dense and opaque end-products, hiding the historical contexts

and the problems through which they evolved.

The ability to generate and use ERs in an integrated fashion, as well as perform

transformations on the ERs, is termed representational competence (abbreviated

as RC, Kozma & Russell, 1997 & 2005). RC presents a fundamental cognitive

1
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difficulty  that  cuts  across  different  domains  such as  science,  mathematics  and

engineering  (Pande  &  Chandrasekharan,  2017),  making  it  critical  to  develop

teaching-learning strategies that help learners in developing RC.

RC comprises of the following non-exclusive interrelated set of skills: 

(a) Integrating internal and external representations, as well as different external

representations 

(b) generating ERs appropriate to the situation or problem

(c) communication using ERs

(d) reasoning using ERs

(e) choosing appropriate ERs based on the need of the situation/problem

(f) understanding and describing the different roles of an external representation in

relation to other ERs

(g) critiquing ERs in terms of their strengths and shortcomings, etc. (Kozma &

Russell, 1997; Kozma & Russell, 2005; Madden et al., 2011).

Figure 1.1 below situates this dissertation in relation to these facets of RC.

2
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Figure 1.1 The abilities that comprise RC. The scope of this thesis is limited to ER integration,
presented  in  the  shaded  area.  Due  to  the  interconnections  between  the  abilities/concepts  (not

3
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indicated in the diagram to avoid complexity), the work developed in this dissertation extends to or
includes concepts such as reasoning around ERs, choice of ERs or the relationships between them,
and ER generation. These implicit relations are highlighted with dotted arrows.

In this dissertation, I focus on the ER integration sub-skill of RC (see box 1 for

definition).

Box 1: Important concepts used in the document

There  is  consensus  in  the  education  literature  that  many  learning  difficulties

students face in these disciplines are attributable to problems in achieving RC,

particularly ER integration (Chi, Feltovich & Glaser, 1981; Johnstone, 1991 &

2000; Johri, Roth & Olds, 2013, Larkin et al., 1980). Expert-novice studies of RC

show significant differences between the two groups, in terms of the ability to

understand individual representations, integrate ERs, and use and generate ERs

for conceptual understanding, discovery and problem solving (Chi, Feltovich &

Glaser, 1981; Larkin et al., 1980; Kohl & Finkelstein, 2008; Kozma & Russell,

1997).  While  students  understand,  and  are  able  to  use  as  well  as  generate,

representations independently (diSessa, Hammer, Sherin & Kolpakowski, 1991;

4
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diSessa  &  Sherin,  2001),  they  have  great  difficulty  integrating  ERs  of  a

phenomenon (Knuth, 2000; Kozma & Russell, 1997; Wu & Shah, 2004).

1.1 The information processing model of RC

Performing  tasks  such  as  a  simultaneous  consideration  of  ERs,  seeing  the

relationships  between  those  ERs,  interpreting  them,  reasoning  about  them  in

relation to the represented phenomena, etc. generate tremendous cognitive load on

students' working memory (Johnstone 1982 & 1991), and one strand of literature

considers this  load to be at  the root of the ER integration problem (Hinton &

Nakhleh, 1999; Kohl & Finkelstein, 2008; Larkin et al., 1980).

Such  cognitive  load-based  accounts  of  ER  integration  difficulties,  which  are

currently  dominant  in  the  education  literature,  are  rooted  in  the  classical

information processing model of cognition. This model is based on an analogy

between computers and the human brain, and assumes that the learner’s mind, on

encounter  with  an  external  representation  (input),  engages  in  information

extraction (figure 1.2). 

Figure 1.2 A classical information processing model of ER integration. In this model, meaning is
‘extracted’ through amodal, syntactic, processing of the information contained in ERs.

Correspondences between ERs are established through a translation process based

on  this  extracted  information.  Such  translation  processes  are  considered  to

establish correspondences between ERs and the phenomena they represent, and

also between the learner’s mental models (or internal representations, IRs) and the

external representation. In this view, ERs act as 'vehicles', tools or transmission
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media,  that  carry  the  information,  which  is  considered  the  key  element  the

cognitive  system  works  with.  This  translation  process  generates  significant

cognitive load,  and learning difficulties  are considered to arise because of this

processing load,  and the limitations  of working memory in handling this  load.

Following from this view, the sole purpose of generating and using ERs during

problem-solving is ‘offloading’ cognitive load. In this model, the extraction and

translation of information are mediated mostly through mental capacities such as

imagery  and  modality-independent  (amodal)  symbolic  processing,  as  well  as

working memory (e.g. Gooding, 2006; Johnstone, 1982; Lesh et al., 1987; Tsui &

Treagust,  2013;  etc.).  The  limited  nature  of  these  processing  resources  are

considered  to  be  the  root  of  problems  in  achieving  ER integration.  A central

problem with  this  computer-inspired  model  is  that  it  advocates  that  the  mind

(passively)  receives  information  inputs  from  the  external  world,  which  it

processes ‘inside’ (the skull) in coordination with capacities such as the working

and long term memory, and produces an output (usually in the form of an) action.

These assumptions, particularly limited working memory capacity as the central

processing bottleneck, have influenced many intervention designs. For instance,

visualization software, interactive computer simulations, and virtual laboratories,

are all designed to address working memory limitations. Ironically, the software

interventions  do  not  seek  to  augment  the  student's  working  memory  and

processing abilities, but only help offload some of the memory and processing

load to the computer screen. Possibly because of this, such interventions have not

been very successful in promoting RC (De Jong & van Joolingen, 1998; Rutten,

van Joolingen & van der Veen,  2012).  Further,  by focusing on the "processor

capacity"  as  well  as  the  inaccessible  nature  of  information  extraction  and

translation  processes,  these  models  and interventions  make the  ER integration

process, and the cognitive mechanisms underlying it, appear mysterious. Further,

these models do not focus on the cognitive as well as practice elements that could

lead to ER integration and its development.
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1.2 The emerging model

The central  assumptions of the information processing approach to cognition –

that all cognitive processing is (or is best) done just by neural processes (inside

the skull), and that external representations only help ‘offload’ information – have

been seriously questioned by recent empirical and theoretical work in cognitive

science, particularly by 'field' theories such as distributed cognition (DC) and em-

bodied cognition (EC).

In the DC view, for instance, Kirsh (2010) outlines seven ways in which the exter-

nal aspect of ERs, and our interactions with external representations, contribute to

cognition: 

(1) ERs change the cost structure of the inferential landscape.

(2) ERs provide a structure that can serve as a shareable object of thought.

(3) ERs create persistent referents.

(4) ERs facilitate re-representation.

(5) ERs are often a more natural representation of structure than mental represen-

tations.

(6) ERs facilitate the computation of more explicit encoding of information.

(7) ERs enable the construction of arbitrarily complex structure; and they lower

the cost of controlling thought – they help coordinate thought.

“Jointly, these functions allow people to think more powerfully with ERs than

without. They allow us to think the previously unthinkable” Kirsh (2010).

This approach mostly focuses on the distributed nature of cognitive processing

and its advantages. However, understanding representational competence requires

moving beyond just the recognition of the cognitive power of external representa-

tions: it needs a model of how new kinds of imagination is made possible by the

coupling  of  ERs  with  the  cognitive  system  (Chandrasekharan  &  Nersessian,
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2015). This coupling is closely related to integration of ERs. Since different ERs

capture different aspects of a phenomenon (Ainsworth, 1999 & 2008), they need

to be integrated by the learner to understand the nature of that phenomenon. Any

account of how ERs are used in learning, thus, needs to account for this integra-

tion process, particularly the role played by interactions with ERs and the cogni-

tive processes involved in this integration.

In a related direction, recent work in embodied cognition by Landy, Allen, and

Zednik (2014) articulates a distinction between syntactic/semantic approaches and

constitutive approaches towards symbolic reasoning. In the first approach, sym-

bols in ERs are considered to be internalized by the cognitive system, and then

processed fully inside, i.e. just using neural processes (essentially the classical in-

formation processing model). In the constitutive account, the external symbols are

part of cognition. Also, the external operations on them, as well as the sensorimo-

tor system-based interaction processes (such as perception, physical manipulation,

etc.) involved in these operations, are part of the cognition process. This constitu-

tive view is supported by the fact that most scientific phenomena deal with entities

not available to perception and action, and therefore the understanding of these

entities is tightly intertwined with the external structures that stand in for these en-

tities. The ERs thus play a twofold constitutive role in congaing these phenomena

(stand-ins for imperceptible entities, structures that help constitute concepts), as

understanding  these  imperceptible  entities  would  be  impossible  without  them.

And since ERs are external structures, operations done on them are a critical com-

ponent of understanding the entities and processes they stand in for. Figure 1.3

presents a graphic illustration of these ideas from the DC and EC theories.

The new 'field theories' of cognition emphasize interaction with external structures

as the central process driving meaning and understanding. Extending this view to

RC, interaction with external representations, particularly based on the sensorimo-

tor system, would be key to ER integration. ER integration and the generation of

concepts are also built on this sensorimotor integration, as interaction with ERs
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are based on the sensorimotor  system, and such interactions  exploit  cognitive/

brain mechanisms similar to those involved in sensorimotor integration (Pande &

Chandrasekharan, 2017).

Figure 1.3 A general field theory model of cognition and ER integration. In this model, meaning is
constituted through (bodily or sensorimotor system-based) interaction with the ERs. The mind is
considered to be 'coupled' with ERs, and internal representations of ERs are considered to encode
the sensorimotor aspects of the interactions.

A good example to illustrate the constitutivity position is provided by Landy and

Goldstone (2007) who demonstrated how visual cues,  such as spacing the ele-

ments in an arithmetic  equation differently,  or adding lines and circles  around

equations, influences problem solvers’ symbolic reasoning abilities, such as fol-

lowing (or not following) the operator-precedence rule in arithmetic  problems.

This influence is a result of perceptual grouping, cued by the structural elements

added to the equation, suggesting that external structures, and the perceptual as

well as sensorimotor mechanisms involved in a problem solver’s experiences with

those external structures, constitute the processing and overall understanding (in-

ternal  representations)  of the symbols (Kirshner & Awtry,  2004;  Landy et  al.,

2014).

Further evidence in support of the position comes from neurological studies inves-

tigating the use of mental abacus. Expert abacus users develop the ability to use an

imagined internal abacus, on which they do visual and motor operations while
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solving complex arithmetic tasks. In contrast, students who are not familiar with

the abacus imagine the standard written arithmetic  algorithms (learned through

paper and pencil operations) while solving the same arithmetic tasks. The interest-

ing finding, however, is that these two operations in imagination (mental abacus,

paper/pencil algorithms), which are constituted through interactions with different

external structures, 'run' in different areas of the brain. f-MRI studies reveal that,

in the case of mental abacus, predominantly visuo-motor areas of the brain are ac-

tivated,  whereas  imagination  of  the  paper/pencil-based  algorithms  mostly  acti-

vates frontal areas of the brain (Chen et al., 2006; Hanakawa et al., 2003).

How can one explain this fMRI result using the classical cognition model? Ac-

cording to the classical  information processing model,  information in both the

abacus as well as paper/pencil-based problem solving cases would be extracted in

a symbolic form, and processed inside the brain amodally.  As there is no visual or

motor  activity  involved  in  processing  the  amodal  symbolic  operations,  there

should be no activation in the visuo-motor areas of the brain in either of the cases.

In contrast, the field theory model, along with the theoretical position I propose

here regarding the relation between sensorimotor integration and ER integration,

suggest that as the mental abacus operations are learned with, and thus rely heav-

ily on, visuo-motor operations, imagination based on stored abacus-based opera-

tions would activate visuo-motor areas of the brain significantly. Similarly,  the

imagined written algorithm operations are based on generating and manipulating

text-based images  in  working memory,  so these operations  would activate  the

frontal areas more. This view accounts well for the fMRI data, and suggests that

internal representations are generated through interaction, and they thus encode

these interactions.  These actions are activated during imagination based on the

stored internal representations, such as the mental abacus. This analysis suggests

that learning based on different external representations lead to different kinds of

stored processes and imagined operations in the brain (figure 1.4).
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Figure 1.4 Development of different internal representations,  based on sensorimotor interaction
with different ERs. Expert abacus users develop an internal abacus learned through sensorimotor
interaction with the physical abacus. This mental abacus is used to solve arithmetic problems men-
tally (in  imagination),  by 'running'  the same sensorimotor interactions internally.  Some of this
covert sensorimotor processes 'leaks' into overt action, leading to gestures similar to the actions on
the abacus (top panel). Problem-solvers not familiar with the abacus imagine written arithmetic al-
gorithms, learned through paper/pencil-based interactions with the symbols and operations. 

Extending this view, different operations in imagination would be made possible

by  different  ERs,  and  integrated  ERs.  The  integration  process  would  also  be

driven by sensorimotor operations, as in the case of the physical abacus.

The constitutive view does not deny symbols or symbolic relations. In the above

example,  bead positions  in  the  abacus are  symbols  that  stand in  for  numbers.

However, focusing on this symbolic nature directs the analysis away from the way

the mental abacus (a thinking process) is generated from the physical abacus (a

doing process), as the symbolic view would consider both as based on symbols.

The constitutive  view helps  focus  on the  processes involved in  this  doing-to-

thinking shift, as well as the cognitive and neural mechanisms involved (Rahaman

et al., 2017), which leads to a richer understanding, and consequently, more de-

tailed design directions. A symbol-based analysis would only provide a surface-
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level view of this change in cognition, and thus design directions based on cogni-

tive load.

Importantly, the constitutive view offers the possibility of providing critical direc-

tion to the design of new computational media for learning, where embodied con-

trollers such as multi-touch devices, Leap Motion, Kinect, Real Sense and Virtual

Reality are used to develop new learning experiences through embodiment (Lind-

gren  & Johnson-Glenberg,  2013),  i.e.  constitute  new ways  of  integrating  ERs

(Abrahamson & Sánchez-García, 2016; Borar et al.,  2017; Dickes et al.,  2016;

Karnam et al., 2016; Ottmar et al., 2015, Sinclair & De Freitas, 2014). The inter-

connections between ERs are considered to be created by actions, and not just by

symbolic relations. ER integration is considered driven by the doing aspect, and

not by the relations between symbols, even though the relations between symbols

contribute to, or even make possible, the doing.

The three aspects of external representations discussed thus far (viz. power of ex-

ternal representations, constitution of concepts, and integration of external repre-

sentations), are explored significantly in cognitive science and studies of scientific

practice (Chandrasekharan & Nersessian, 2015; 2018),  but are not addressed by

current work in ER integration and RC, except in some isolated cases.

1.3 Sensorimotor markers of expertise

It is well  known that expertise is marked by specific  changes in the nature of

cognition and perception,  particularly related to problem-solving (e.g.  response

times, visual attention, etc.; NRC, 2000). These changes have been documented

across  multiple  domains  (e.g.  chess,  science,  mathematics,  social  science,

medicine, etc.;  NRC, 2000). de Groot (1978), for instance, was among the first to

demonstrate how expert chess players could almost instantaneously see problems,

as  well  as  possible  moves  to  address  those  problems,  when  presented  with

different configurations of pieces on a chess board. Not only were experts quick to

respond, they also suggested ‘high quality’ moves, in contrast to less experienced

players. de Groot concluded that training in chess gradually reduced the time and
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efforts required to abstract patterns, and that the patterns were readily and directly

perceived by expert chess players, thus marking the replacement of abstraction by

perception (de Groot, 1978). 

In education, a number of studies have explored how experts differ from novices

in the way they pick up information during a problem situation, based on their

(sensorimotor) experiences with the symbolic structures involved in that problem

(Brathwaite et al., 2016; De Wolf et al.,  2017; Kellman et al.,  2010; Landy &

Goldstone,  2007;  Rivera  & Garrigan,  2016).  Closely  related  is  a  considerable

amount  of  research  on  perceptual  learning  –  a  phenomenon  characterized  by

changes in the process of information extraction, and changes in the perceptual-

cognitive system (as well  as mental  models)  of a learner as a result  of visuo-

spatial routines (perceptual manipulations theory; Landy et al., 2014), training and

experience  (e.  g.  Goldstone,  1998;  Kellman  & Garrigan,  2009).  Kellman  and

colleagues  (2010)  for  instance,  show  how  transforming  the  structure  of  an

algebraic equation affects the difficulty level as well as response times to solve

that equation. They argue that people with different experiences with the different

equation forms find some forms of equation more relevant than others, and that

this  relevance  is  established  almost  instantly  after  perceiving  the  problem,  as

indicated by response times.

There  also  exists  a  relatively  smaller,  yet  significant  chunk  of  studies  in

chemistry,  biology and physics education which investigates differences  in the

perceptual  processes  between experts  and novices  (Pande & Chandrasekharan,

2017).  Several  studies  specific  to  ER integration,  which  establish  strong links

between perceptual and cognitive processes (collectively referred to as perceptual-

cognitive processes), as well as studies of mental models of abstract entities and

phenomena (Landy, Allen & Zednik, 2014; Lowe & Schnotz, 2014; Rau, 2015)

imply that identifying the markers of integration may help in understanding the

nature  of  mental  models.  Eye movements  and fixations  are  popularly  used  in

studies investigating this link, as eye-behavior during a task is mostly implicit,
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(i.e. driven by task demands and not completely in the control of the agent), and

thus is anchored closely to the perceptual-cognitive processes related to the task

(Henderson & Ferreira, 2013; Irwin, 2004). The results from these studies suggest

that training, and restructuring of prior knowledge based on training, reorganizes

experts’  perceptual-cognitive  schemas  (Cook et  al.,  2006;  Kohl  & Finkelstein,

2008). Process-based approaches, such as those focusing on the way participants

navigate ERs, show some evidence in this direction. Using eye-tracking, Stieff,

Hegarty and Deslongchamps (2011) show that students attend more to familiar

visuo-spatial  ERs  during  problem solving  than  the  less  known symbolic  ERs.

Cook et  al.  (2008) captured  the  number  of  transitions  students  made  between

molecular-to-molecular,  macro-to-molecular,  molecular-to-macro  and  macro-to-

macro  representations,  in  order  to  understand  how  students’  prior  knowledge

interacted  with  the  way  they  interpreted  macro  and  molecular  graphics  of

diffusion phenomena. On average, students with low prior knowledge made more

transitions than students with high prior knowledge. Similar patterns of transitions

between ERs are reported by Kohl and Finkelstein (2008) in a study examining

the generation of ERs by three groups of participants – experts, weak novices and

strong novices – while solving different sets of problems on electrostatics. The

authors of these studies argue that, as the students with low-prior knowledge are

less aware of the ‘subtleties of representations and the conventions for interpreting

them’, they made frequent transitions between the ERs in order to better perceive

and map features from one representation to the other (Kohl & Finkelstein, 2008).

However,  not only are the results  of these studies insufficient  to make claims

about the sensorimotor markers of the perceptual-cognitive processes involved in

ER integration, but the theoretical considerations underlying these studies also are

different  from  those  investigating  these  markers,  as  many  of  these  existing

instances  have  been  explained  using  the  outdated  ‘top-down’,  ‘bottom-up’

information  processing  accounts  (Gegenfurtner,  Lehtinen,  &  Säljö,  2011;

Goldstone,  1998;  Kundel,  Nodine,  Conant,  &  Weinstein,  2007;  Lowe,  2015).

Moreover, though it is well known within scientific communities that experts 'act'
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on scientific concepts, procedures and representations in a significantly different

manner than novices, very few intersubjective evidences for such constitutivity

exist, apart from the expert-novice differences in patterns of attention over visual

stimuli.

Such markers of sensorimotor changes based on science training, according to the

view developed in this dissertation, are markers of changes in cognitive mecha-

nisms associated with ER integration. The work outlined here thus brings together

perspectives on ER integration,  perceptual  learning and constitutivity,  and pro-

poses that concepts are constituted through sensorimotor interaction, and this con-

stitutivity  process  leads  to  perceptual  learning,  along  with  other  sensorimotor

changes. 

1.4 Previous related work at HBCSE, TIFR.

Previous studies at HBCSE have examined how students integrate the dynamic

structure-function relationships in scientific phenomena and entities through visu-

alization, as well as the use of gestures and analogies. Subramaniam and Padalkar

(2009), for instance, explored how and which ERs are used by adults to reason

about astronomical phenomena such as an eclipse, involving the sun, earth and

moon. They found that adults heavily rely on gestures to visualize and explain

phenomena dynamics through static diagrams. Importantly, we benefit not only

from the constant dynamic feedback available through gestures, but also from au-

tomatic associations gestures build between ourselves and the phenomena. These

results indicate the close link between embodiment and RC. Mathai and Ramadas

(2009) report similar findings in the context of structure-function relationships in

middle-school biology. Padalkar and Ramadas (2009) designed and tested specific

manipulative actions and pedagogic gestures to help middle-school students de-

velop an integrated understanding of the dynamics of astronomical phenomena

and their static models and diagrams. Building on this work, Srivastava and Ra-

madas (2013) demonstrated how use of gestures, analogies and perspective taking

can together help integration of different external representations (such as 2-di-
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mensional models and diagrams) by inducing mental simulation of 3-dimensional

DNA structures.

The work presented in this dissertation integrates previous work across multiple

studies done at the centre, by 1) focusing on ER integration as a general learning

difficulty cutting across disciplines, and 2) developing a theoretical model of the

cognitive mechanisms underlying ER integration based on new field theories in

cognition. This work thus tightly connects the ER integration problem, and studies

exploring ER integration, with recent cognitive science research. 

1.5. Overview of the thesis

Building  on  the  emerging  models  of  cognition,  and  the  three  aspects  of  ERs

(cognitive  augmentation,  constitutivity,  integration)  as  well  as  the  new

understanding  of  the  markers  of  expertise  based  thereupon,  this  dissertation

develops: 

(i)  a  new  theoretical  model  of  the  cognitive  mechanisms  underlying  ER

integration and its development,

(ii) empirical studies to test this new model, and

(iii) a design that incorporates the model.

I begin with reviewing relevant literature (chapter 2), particularly the theoretical

frameworks of ER integration and RC, and the empirical studies that investigate

the nature of RC and its development in science, mathematics and engineering.

This review brings together all the work done in RC, in many disparate areas, and

identifies  commonalities and differences in the research across several  themes.

The  review  finds  that  most  research  in  this  area,  including  intervention

development, is either explicitly or implicitly based on the classical information

processing model of cognition.
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In chapter 3, I develop a distributed and embodied cognition account of ER inte-

gration, in contrast to the information processing accounts, for the following rea-

sons:

1. One, current models of cognition reject the classical information process-

ing approach; mental processes are now understood as distributed and em-

bodied. Models of ER integration are models of cognition, and thus need

to incorporate this theoretical shift, particularly because ERs are external

(thus distributed), and working with ERs require sensorimotor interaction

(embodied interaction).

2. Second, there is a parallel shift in the design of new computational media,

where embodied controllers such as Leap Motion, Kinect, Real Sense and

Virtual Reality are used to develop new learning experiences (Abrahamson

& Sánchez-García, 2016; Dickes, Sengupta, Farris, & Basu, 2016), partic-

ularly to integrate ERs. These controllers have also been incorporated suc-

cessfully into collaborative learning environments (Danish, Enyedy, Saleh,

Lee  &  Andrade,  2015;  Enyedy,  Danish,  Delacruz  &  Kumar,  2012;

Enyedy, Danish & DeLiema, 2015). This design approach requires under-

standing the role of embodiment in ER integration and RC development.

3. Finally, the practice of science itself is now understood as distributed and

embodied (Chandrasekharan, 2013; Chandrasekharan & Nersessian, 2015;

Nersessian, 2010), and any future model of ER integration and RC devel-

opment need to reflect this shift in our understanding of science practice.

The account  developed  in  this  chapter  illustrates  how ERs are  understood by

learners through an ‘incorporation’ process, where they become part of, and thus

extend, the cognitive system, while also forming and extending the internal model

of the scientific domain. This incorporation process is driven by sensorimotor ac-

tions/manipulations performed on the external representations, as well as through

the exploration of many states of the external representations. Further, sensorimo-

tor interactions with these ERs (overt as well as covert activation of the motor sys-
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tem) facilitate ‘capturing’ and ‘unfolding’ the different states of ERs, and these

operations play a central role in ER integration.

Two interconnected conjectures, with empirical implications, emerge from this ac-

count:

 In this model,  the development of the ER integration ability  (expertise)

would result in a reorganization of the cognitive system, particularly the

sensorimotor system. This suggests that the process by which learners per-

ceptually access ERs would change after significant training in a domain.

 Interaction, particularly based on the sensorimotor system, would support

ER integration and its development.

To test these predictions, and thus also the theoretical model, I conceptualized two

empirical projects.

The first project (chapter 4) sought to identify behavioral markers that could track

sensorimotor changes as a learner interacted with scientific ERs, leading up to the

development of constitutivity and ER integration. In this project, I first established

the ER integration abilities of participants, who had different levels of education

in chemistry. This was done by tracking how they related chemical phenomena

and their dynamics, when presented with different static and dynamic ERs during

a categorization task. I then looked for patterns in their eye gaze behavior, and

correlated  these  patterns  with  participants’  ER integration  abilities,  to  identify

sensorimotor markers of ER integration. This project contributes to the existing

work on the nature of expertise.

The second project (chapter 5) focused on the design, development and testing of

a computer interface with fully manipulable ERs of a physical system.  Besides

being an intervention, the interface was also used as a ‘probe into the cognitive

processes’, to explore how interactivity aids in ER integration.

Chapter 6 summa-rises the dissertation projects,  and presents possible implica-

tions and contributions of this work, particularly in relation to enactive new-media
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designs supporting ER integration and RC development,  as well  as conceptual

learning in science, mathematics and engineering.

The work reported here is among the first to:

(1)  Weave  together  extensive  and  highly  diverse  theoretical  as  well  as

experimental work on ER integration from different disciplines.

(2) Objectively characterize the sensorimotor changes related to ER integration

and RC facilitated by training in a domain.

(3) Design and test  an enactive new-media1 intervention based on DC and EC

perspectives, exclusively targeting ER integration and RC development.

(4) Analyze in detail  the relationship between interactivity,  ER integration and

learning.

(5) Conjecture thatusability and learnability design principles are not enough for

the learning of complex representations  and conceptual content  based on com-

puter and new media technologies.

Figure  1.5  below,  outlines  the  dissertation  and  its  logic,  and  presents  the

relationships between its chapters.

1 The term ‘new media’ broadly refers to different types of interactive (i.e. 
at least two-way) communication platforms (in contrast to mass media which are 
generally regarded as one-way platforms) based on computers (Manovich, 2001). 
Some mutually non-exclusive examples of new media are websites on the 
internet, virtual reality environments, multimedia environments, animations, 
computer games, human computer interfaces and the more advanced brain 
computer interfaces. In this dissertation, however, I am using the term new media 
to specifically refer to modelling interfaces with virtual elements/representations 
of target concepts which a user (or a learner) can interact with or enact through 
multiple modalities (auditory, tactile, visual, etc.) and/or controllers (e.g. mouse, 
gestures-based controllers such as LeapMotion, multi-touch devices, virtual 
reality gears, etc.)
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Figure 1.5 Outline of the thesis (graphical abstract).
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Chapter 2: Bringing together research on ER integration in science,

mathematics and engineering; identifying gaps

This  chapteri presents  a  comprehensive  review  of  existing  work  in  RC,

particularly on ER integration and its development, in science (chemistry, biology

and physics), mathematics and engineering., This review  brings together all the

major (interrelated as well as disparate) theoretical and experimental work in RC,

distributed  across  more  than  170  papers,  published  in  more  than  35  different

venues (in education research, cognitive science,  learning sciences,  educational

technology, etc.) on topics related to chemistry,  biology, physics, mathematics,

and engineering.

In section 2.2, I examine nearly 30 different influential theoretical models of RC,

ER integration, and their development. Section 2.3 more than 70 research papers

reporting empirical investigations, in order to understand the different approaches

to ER integration. A preliminary analysis revealed that a significant set of models

and studies  explicitly  appeal  to  the classical  information  processing  paradigm,

while some other frameworks and studies implicitly assume classical information

processing perspectives,  but do not endorse this view explicitly.  A third set of

models and studies are neutral on the nature of ERs and RC. There is also a group

of models and studies that subscribe to recent field theories of cognition, such as

distributed and/or embodied cognition. This categorization, based on subscription

to  theoretical  models  and empirical  studies  and wider  models  of  cognition,  is

captured in a chart presented towards the end of the chapter.

A different analysis was done to compare these theoretical models and empirical

studies across the different  disciplines mentioned above, in terms of: problems

related to RC, nature of ERs, nature of learning difficulties,  research methods

employed, and the underlying theoretical assumptions. A discipline-based review

captures this analysis for quick review, through boxes for each discipline, and a

set  of  tables  that  brings  together  the  diverse  literature  in  a  discipline-based

categorization. Finally, I discus major findings from the review (Section 2.4).
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2.1 Review methodology

Three  different  modes  were  employed  to  collect  articles  for  this  review:  (a)

keyword search on the ERIC database, (b) keyword search on Google Scholar,

and (c) articles found relevant through cross-referencing. The following is a list of

keywords  used  for  methods  (a)  and (b):  scientific  representations,  learning  –

multiple  representations,  RC,  RC  in  biology,  RC  in  science (then  the  word

‘science’  replaced  with  chemistry,  biology,  physics,  mathematics,  and

engineering),  multiple  external  representations  in  science.  (the  word  ‘science’

then replaced with chemistry,  biology, physics, mathematics,  and engineering),

multiple  representations  in  science (the  word  ‘science’  then  replaced  with

chemistry, biology, physics, mathematics, and engineering). Articles found using

these keywords were filtered based on their  date of publication,  relevance and

major discipline. Only articles published after 1990 were read and analyzed (with

a  few  exceptional  articles  from  before  1990  included  due  to  their  evident

influence as well as frequent citations – e.g. Johnstone, 1982; Lesh et al., 1987,

etc.). Further, only those studies/articles related to cognition research on multiple

representations were included in the review. Articles exploring other dimensions,

such  as  testing  of  a  multi-representational  user  interface,  use  of  multi-modal

representations,  and  social  significance  of  multiple  representations  were  not

included.  Also,  investigations  of  a  single representational  system (for  instance

only  drawing)  were  not  included,  unless  the  studies  had  wider  implication/

significance for the understanding of multiple representations.

2.2 Theoretical accounts of ERs and RC

A wide range of conceptual frameworks have been proposed to capture learning

and cognition using ERs. I examine two kind of such models: (1) Models based

on the  relationship  between the nature  of  a  domain,  ERs in  that  domain,  and

cognition, and (2) Developmental models. Models under the former section are

further categorized into three interrelated but different subsets: one set focuses on

the nature of knowledge in a domain,  particularly pertaining to the space-time
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scales/levels, a second category focuses on reasoning through ERs, and a third set

concerns mechanisms of ER cognition. Developmental models, on the other hand,

focus more on the process of learning using ERs through stages of development,

and are either based on (1) or are independent in a broad theoretical sense. 

2.2.1 Models of ERs and cognition

2.2.1.1  Relationship  between  the  nature  of  domain  and  ERs  in  that  domain.

Different scientific domains (biology, chemistry, physics, etc.) differ from each

other in certain fundamental aspects, such as the nature and scale of problems,

investigation methods, data,  etc. These differences reflect in the nature of ERs

used across these disciplines, and models of RC.

One of the first  models of the relationships  between the nature of a scientific

domain, the ERs that constitute it, and a learner's interaction with those ERs, was

proposed by Johnstone (1982). The model examines the visual-perceptual nature

of  representations  used  in  science,  particularly  in  chemistry.  Chemistry  ERs

include  the  periodic  table,  chemical  equations,  graphs,  molecular  formulas,

diagrams of experimental setups, diagrams depicting molecules, etc. Each of these

conveys different information on chemical entities and phenomena. Johnstone's

model,  known  as  the  model  of  'three  thinking  levels',  describes  the  way  the

discipline of chemistry is conceptually organized around these ERs.

According  to  Johnstone,  knowledge  in  chemistry  is  distributed  along  the

following three levels (figure 2.1):

a.  Descriptive/functional/macro  level,  which  deals  with  handling  of  materials,

descriptions  of  phenomena  and  their  properties,  such  as  color,  flammability,

density, etc.

b.  Representational/symbolic level, which deals with representations of chemical

substances and phenomena using symbols, formulas, equations and conventions.
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c.  Molecular and explanatory/micro/submicro level, which captures the structure

of  chemical  substances  and  phenomena,  mechanisms  of  reactions,  and  the

molecular/atomic interactions and changes that underlie chemical phenomena.

Figure 2.1 Johnstone’s model of three thinking levels

The model considers ERs in chemistry as distributed across the three levels of

thinking.  Learning  as  well  as  doing  chemistry  requires,  in  this  view,

simultaneously  processing  the  information  gathered  from ERs  at  all  the  three

levels. This ability is characteristic of expertise in chemistry.

Supplementing  this  model  of  ‘three thinking levels'  with Baddeley’s  model  of

working  memory,  Johnstone  (1991  & 2000)  attributes  students'  difficulties  in

learning  chemistry  to  the  way  this  schema,  the  conceptual  organization  of

chemistry,  interacts  with  the  limited  capacity  of  the  human  working memory.

According to Johnstone, the three-level schema puts significant load on a student's

working memory as she attempts to understand a chemical reaction in terms of its

equation and/or  a graph (symbolic  level)  as  well  as the molecular  mechanism

(molecular level) of the reaction. As a result of the load, and the limited working

memory  capacity,  students  often  ends  up  ignoring  important  features  of  the

phenomenon, concentrating only on parts of it.

24



Chapter 2     ER Integration: Literature Review

Several  other  models  in  chemistry  education  research  attempt  to  conceptually

organize chemical knowledge. Jensen (1998), for instance, replaces ‘macro’ level

with  ‘molar’  (referring  to  the  perceivable  stoichiometric  ratios  of  chemical

substances  handled  and  used  in  carrying  out  reactions),  retains  the  molecular

level,  and  defines  a  third  level  called  the  electrical  level,  at  which  chemical

phenomena are explained using subatomic particles (such as electrons) and their

dynamics.  Ben-Zvi,  Eylon  &  Silberstein  (1988)  propose  that  single-particle

modeling  is  sufficient  to  describe  chemical  properties  of  substances  (but  not

physical  properties).  They  then  suggest  that  the  sub-micro  level  be  split  into

single-particle  and  multi-particle  sub-micro  levels  of  understanding  chemical

processes. A distinction between symbols used to denote chemical substances, and

the numbers in stoichiometry, kinetics and mechanisms has also been proposed

(Garforth, Johnstone & Lazonby, 1976; Nakhleh & Krajcik, 1994; Savoy, 1988).

Box 2 provides a quick summary of the discussion on the nature of chemistry

ERs, as well as a review of ERs and RC in chemistry education literature.
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Box 2: Nature of chemistry ERs

In biology, Kaptejin (1990) proposed a framework of biology ERs in relation to

(a) the levels of biological organization, as well as (b) observability of the ERs, (i.

e. one's ability to see entities and phenomena). Keptejin's model, similar to the

Johnstone's  model,  has  three  distinct  levels  of  ERs,  viz.  macro  (organismic),

micro  (cellular)  and  molecular  (biochemical).  According  to  this  model,  one's

ability  to  visualize  entities  and  phenomena  at  all  the  three  levels  limits  the

understanding of biological  phenomena.  Box 3 provides a  quick access to  the

nature of biology ERs, as well as a review of ERs and RC in biology education

literature.
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Box 3: Nature of biology ERs

Tsui and Treagust (2013) recently proposed a more comprehensive framework of

the conceptual organization of biology, termed the cube model (figure 2.2), which

implies a three-dimensional knowledge structure. 

Figure 2.2 The cube model
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In  this  model,  knowledge  in  biology  is  spread  across  three  different,  but

interdependent, dimensions, and learning in biology is marked by one's progress

along these dimensions: 

a)  HTM:  Horizontal  Translation  across  Modes  of  representations,  'along  a

continuum of representations with increasing abstraction from real-life objects and

actions to human language'

b) VTL: Vertical Translation across Levels of representations 'from the symbolic

level (explanatory mechanisms), the submicro level (molecules), the micro level

(organelles and cells), and the macro level (tissues, organs, systems, organisms,

populations, and so on)'  

c) HTD: Horizontal Translation across the Domain knowledge of biology, i. e.

across evolution – homeostasis – energy – matter and organization – reproduction

and genetics, etc.

Items from VTL can have one-to-many relationships with items from HTM, but

not  necessarily  the other  way around.  For  example,  I  often associate  the term

'macroscopic' (VTL) with 'observable' (corresponding to worldly objects/actions,

maybe even photographs/animations, essentially items along HTM). Also, graphs,

tables and equations can all be counted under symbolic level or representations.

However,  equations  would  be  strictly  symbolic,  and  cannot  be  under  the

microscopic level. The VTLs are categories of representations similar to the levels

of thinking, whereas HTMs are various modes through which information across

those categories is obtained, presented and communicated. Although it is simple,

comprehensive  and  unified,  the  cube  model  has  limitations  in  capturing

phenomena  occurring  over  large  temporal  scales,  such  as  evolution  (Tsui  &

Treagust, 2013).

In  mathematics,  one  of  the  most  discussed  and  widely  used  conceptual

frameworks is the Lesh Translation Model (figure 2.3), which is a network model

developed  to  investigate  student-generated  representations  and  (information)
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translations between multiple representations. The model proposes that knowledge

in  mathematics  is  structured  across  five  different,  but  interrelated  and

interconnected  modes  of  representations,  viz.  (1)  concrete/manipulable

objects/situations  (e.  g.  physical  manipulatives  such  as  tangram),  (2)  pictorial

representations  such  as  2D/3D  diagrams,  (3)  real-life  contexts  (e.  g.  acts  of

addition, sharing, etc.), (4) language (e. g. usage of mathematical terms such as

'addition'  and  'subtraction'),  and  (5)  written  symbols  (symbols  denoting

mathematical operations). Mathematical understanding is reflected in the ability to

represent mathematical ideas in multiple ways across these five representational

modes, and also in making connections and translations among them (Lesh et al.,

1987). 

Figure 2.3 Lesh translation model

From a  pedagogical  perspective,  the  term 'translation'  emphasizes  interrelating

information extracted from one representation with information from another. An

expert  would  be  fluent  in  translating  between  these  proposed  representational

modes. The Lesh model has driven the conceptualization and development of a set

of  specific  activities  (called  model  eliciting  activities)  in  mathematics  and

engineering pedagogy (Moore et al., 2013).

Due  to  the  intertwined  nature  of  physics  (see  box  4  for  quick  capture  of

commentary on the nature of physics and its ERs, and brief review of models),

mathematics  (box  5)  and  engineering  (box  6),  the  Lesh  translation  model  is

equally applicable to ERs in physics and engineering. Manipulable models and
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prototypes  of  physical  and  engineering  objects,  free  body  diagrams,  acts  of

navigation and motion, use of terms such as 'speed' and 'distance' in language, and

symbols denoting physical properties of objects  and phenomena such as 'force'

and 'energy', are some examples of physics and engineering ERs belonging to the

five modes of representations respectively.

As opposed to Lesh et  al.'s  network model,  Roth and Tobin (1997) suggest a

linear  cascade  model  to  explain  the relationship  between physics  learning and

practice,  and  the  nature  of  physics  ERs.  This  model  emerged  from  an

investigation aimed to understand how teachers use and translate between ERs

while teaching in a physics class, and how this relates to students' difficulties in

understanding the topic being taught – 'motion of a rolling ball  on an inclined

plane'. The authors propose a continuum of abstract and concrete representations,

generalized  from  findings  from  the  nature  of  ERs  used  in  the  classroom,  to

explain how the types of ERs in science, mathematics and engineering relate to

student difficulties in interrelating information embedded in them. The continuum

has more concrete representations (such as photographs and pictures of real-world

objects/phenomena) on one end, more abstract representations (such as equations

representing relationships between those worldly objects and phenomena) on the

other  end,  and  other  representations  placed  in  between,  based  on  their

abstract/concreteness. All these representations are separated by ontological gaps,

and  the  distance  between  any  two  representations  on  the  continuum  is

proportional to the ontological gap between them, which is in turn proportional to

the difficulty to translate between them. In this view, students have conceptual

difficulties because they lack an understanding of the translation process across

items on the cascade (e.g. figure 2.4). 
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Figure 2.4 The representational chain model (adapted from Johri et al., 2013)

Johri, Roth and Olds (2013) refine this cascade model (figure 2.4), in the context

of  engineering  design,  focusing  on  the  relationship  between  the  world  and

language  (and/or  thought),  where  design  moves  through  a  series  of

representational transformations, which bring the world and the word closer. 

The model situates words and abstract symbols on one extreme, while world (as

experienced  by  a  cognitive  agent)  on  the  other  extreme  of  a  continuum  of

representations. Starting with the notion of ontological gaps (Latour, 1993 cited in

Roth & Tobin, 1997) between the worldly phenomena and their representations,

Johri  et  al.  (2013)  argue  that  the  representational  translations  are  crucial  in

bringing the world and the word closer. In the natural sciences, this movement of

the  cognitive  agent  through  a  continuum of  representations  happens  from the

world to  the word; whereas  in  engineering  practice,  it  is  the other  way round

(Johri et al., 2013; McCracken & Newstetter, 2001). In the context of education,

Johri  et  al.  state  that  difficulty  in  transformations  between  the  kinds  of

representations results in difficulties in learning. 
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Box 4: Nature of physics ERs

32



Chapter 2     ER Integration: Literature Review

Box 5: Nature of mathematics ERs
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Box 6: Nature of engineering ERs

2.2.1.2 Reasoning and ERs.  The frameworks discussed under this section model

students'  interpretation  of  ERs  and  their  reasoning  in  relation  to  scientific

concepts.

Different external representations present different aspects of the world, and thus,

serve different functions in cognition, communication and other activities. Sharon

Ainsworth  (1999  &  2008)  presents  three  different  functions  of  multiple

representations  –  (a)  they  are  complimentary  to  each  other  (as  different

representations provide different perspectives about the same phenomenon and/or

entity), (b) one external representation may constrain the process of interpreting

another (as a result of familiarity with it), and (c) multiple representations together

help  conceptual  understanding  (through  representational  integration).  This

proposal can be interpreted as suggesting possible ways in which a learner may
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use multiple  representations to understand scientific  concepts and reason about

them. The model  is  employed by education  researchers  across many scientific

disciplines (e. g. Won, Yoon & Treagust, 2014), for designing interventions as

well as understanding the cognitive underpinnings of processing and integrating

multiple representations.

Students'  ability  to interpret  ERs in biochemistry is  the focus of the model of

Schönborn and Anderson (2009), which has three main intertwined components:

concepts, reasoning and modes of representations (figure 2.5). According to the

authors,  this  description  of  different  abilities  provides  a  framework  for

classification  of  expert  ways  of  reasoning  (i.  e  characterization  of  RC)  and

analyzing  students'  reasoning  difficulties.  For  instance,  experts  are  good  at

integrating any components the model describes, because they have the necessary

conceptual knowledge, reasoning abilities and understanding of ERs to convey

their conceptual knowledge, or reason about phenomena and/or entities. 

Figure 2.5 CRM model

Learning  can  be  understood  as  development  of  connections  between  these

components of the model, and a learner may exhibit the use or combination of any

two or  all  the  three  components  of  the  model  (reasoning  based  on  concepts,

representation  mediated  reasoning,  relationship  between  representations  and

concepts embedded in them). The authors emphasize reasoning using ERs (modes

of representations) in learning, given the central role of representations in science
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cognition. The model suggests various abilities that characterize competence in

science. However, from an assessment perspective, it generates a large number of

possible  abilities,  to  assess  each  of  which  would  be  is  difficult  and  time

consuming.

An alternative view is presented by Pape and Tchoshanov (2001), who explicate

the distinction between internal and external representations, and recommend that

thinking and reasoning through representations, (in the context of mathematics), is

a result of the interaction of (a) internalization of external representations and (b)

externalization  of  internal/mental  images.  In  learning,  the  mental  images  of

primary mathematical concepts (such as addition, say, using base-ten blocks) are

gradually associated with external representations for these concepts (such as '+').

Also,  a  key  aspect  of  RC  in  mathematics  is  the  ability  to  associate  abstract

mathematical  content  with  physical  representations  and  vice  versa.  However,

evidence  of  trade-offs  during  learning,  between  grounded  (non-abstract,  real

world  representations,  such  as  a  word  problem)  and  abstract  mathematical

representations (such as algebraic expressions drawn from word problems), have

been reported in the literature (Koedinger, Alibali & Nathan, 2008). The trade-off

exists because there are cognitive costs to using the two types of representations

(grounded and abstract). For example, as mathematical content to be learned gets

more complicated, thinking in abstract representations becomes necessary, even

though this is difficult.

An  important  contribution  of  this  research  stream  is  the  discussion  of  the

relationship  between  external  and/or  grounded  and  internal  and/or  abstract

representations,  which  is  overlooked  by  previously  discussed  models,  and

education  research  in  general,  despite  being  critical  in  understanding

representational  transformations,  translations,  coordination  and  reasoning

(processes  most  of  the  models  examine,  but  not  from the  perspective  of  the

external-internal interaction).
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The next model, Representational Construction Affordances (RCA) model (Prain

&  Tytler,  2012),  implicitly  assumes  this  internal-external  representation

distinction,  and  focuses  on  the  relationship  between  the  act  of  generating

representations/artifacts of different kinds in scientific reasoning and conceptual

understanding.  RCA model  (figure 2.6) – a Venn diagram of layered ovals of

different  sizes,  with  smaller  oval(s)  nested  into  larger  oval(s)  –  concerns  the

relationships  between  broad and specific  meaning-making  practices  in  science

around  representational  construction.  The  largest  oval/layer  signifies  all  the

general  material  (instruments  and  artifacts)  and  symbolic  tools  (language,

mathematics, gestures) offered by a culture. These general tools embed relatively

specific  representations  (second  oval)  concerning  epistemic  and  pedagogical

practices around different knowledge systems (thought to be built on top of the

general tools). Nested within the first two ovals (representational levels) are even

more  specific  representational  tools  and  practices  concerning  practice  and

pedagogy of science. 

Figure 2.6 RCA model

This  is  a  pan-domain  model,  and  presents  how  representations  ‘productively

constrain meaning-making practices in science and in science education, taking
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into account the interplay of diverse cultural and cognitive resources students use

to achieve this meaning-making.’ Representational fluency or flexibility can be

understood  as  the  ability  to  fluidly  move  between  the  general  and  specific

representational systems as required, to facilitate meaning making. The authors

stress the meaning-making point, and argue that a large fraction of the reasoning

processes around ERs is informal in nature, i. e. not based on formal logic or other

language-based systems (see also Tytler & Prain, 2010). Tytler, Prain, Hubber and

Haslam  (2013)  support  this  argument  further,  by  presenting  case  studies  of

students  challenged to construct  representations  in  order to  solve problems on

structure-function relationships in biology. They show that, during the problem

solving process,  students use visual and other non-formal modes of reasoning,

along with linguistic forms of reasoning. Such informal modes of reasoning may

be at  the heart  of ER integration,  and thus,  as Tytler  et  al  indicate,  may have

significant teaching-learning implications.

In  the  distributed  cognition  view (e.  g.  Kirsh,  2010),  ERs  are  integral  to  the

cognitive processes of an agent, and there is a continuous, dynamic interaction

between  the  agent's  internal  and  external  representations.  The  distributed

cognition  approach  revolves  around  two  core  principles;  first  that  “people

establish and coordinate  different  types  of  structure in  their  environment”  and

“people  offload  their  cognitive  effort  to  the  environment  whenever  practical”

(Aurigemma  et  al.,  2013).  Aurigemma  et  al.  (2013)  extend  these  two  core

principles  to  propose  a  model  of  the  engineering  design  process,  where  the

transformation  process  (between  and  among  multiple  representations)  rely  not

only  on  the  dynamic  interactions  between  the  internal  and  external

representations, but also on the representation building and other actions that the

agent  engages  in.  Building  of  external  representations,  in  this  view,  not  only

offloads cognitive effort, but adds detail and constraints to the mental model and

the reasoning of the agent, which would otherwise (as advocated by the classical

information processing theories), run only in the head, and lack these details.
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2.2.1.3  Mechanism  of  ER  cognition.  The  models  discussed  in  the  above  two

sections focused more on the classification of external representations, and little

on the mechanism of how the different kinds of ERs interact with a learner's mind.

The frameworks reviewed below focus on this aspect.

Wu, Krajcik and Soloway (2001) propose a model of RC, examining the possible

cognitive  connections  a  learner  could  make  between  different  available

information sources, particularly external representations in chemistry. Informed

by the general dual coding theory in cognition by Paivio (1991; elaborations and

other versions by Mayer, 2005; Schnotz, 2002; Sweller & Chandler, 1991), the

model  implicitly  assumes  internal/mental  representations  and  the  external

representations as distinct entities, and suggests that a cognitive system can be

roughly represented into a 2X2 matrix (figure 2.7), made up of four different sub-

systems:  a  conceptual  system which is  represented  either  (a)  externally  or  (b)

internally; and similarly, a visual system represented either (c) externally or (d)

internally.  The authors empirically verify that three specific  kinds of cognitive

connections  are  possible  for  a  learner  between  her  conceptual  system  and

representations.  The  external  and  internal  conceptual  systems  are  connected

(connection  1),  as  are  the external  and internal  visual  systems (connection  2).

Moreover,  the  active  learner  also  makes  a  connection  between  the  internal

conceptual  and  internal  visual  systems  (connection  3).  For  instance,  when  a

learner  encounters  an  external  conceptual  stimulus,  she  actively  interprets  it

(internally represents, connection 1). Similarly, the external visual stimulus is also

interpreted  (internally  represented,  connection  2).  Often  critical  is  the  third

connection,  the  connection  between  the  internally  represented  conceptual  and

visual  systems  (Wu  et  al.,  2001).  Difficulties  or  errors  in  any  of  the  three

connections lead to difficulties in teaching-learning chemistry. This model is best

understood as a model of the interaction between ERs and cognition than a model

of levels. 
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Figure 2.7 Wu et al.’s (2001) mechanism model of learning through ERs

Along similar lines, Schnotz (2002) describes a linear process of how ERs relate

to  cognition.  According  to  his  model,  a  learner  initially  perceives  external

representations  (graphics  or  text)  and  creates  a  surface  feature-based  visual

representation in the mind. This surface-feature based mental representation of an

external  representation  or model  is  then mapped on to  common features  from

other  mental  representations  of  external  representations/models,  which

consolidates into a mental model of the subject matter (Schnotz, 2002). Such a

mental  model  is  more  abstract  than  the  surface-feature  based  visual

representations, and is incomplete, erroneous or absent in novices, as their internal

representation remains at the visual level due to lack of prior knowledge.

Based  on  an  empirical  study,  Briggs  and  Bodner  (2005)  propose  a  model  of

problem solvers' ability to visualize molecules in a mental rotation task performed

on an organic molecule. The results are interpreted in the form of a framework,

which suggests that different components of a mental model are at work while

handling multiple representations in organic chemistry. Four of the mental model

components are: static representations viz. referents (physical objects), relations

(spatial relation between referents; Gilbert, 2005), rules/syntax (order of referents

guided by conceptual knowledge), and results (outcome/product of visualization).

Another  component  is  dynamic,  and is rather an operation (e.  g.  visualization,

rotation) performed on the static representations (Briggs & Bodner, 2005). Expert-

novice  differences  can  be  explained  on  the  basis  of  differences  in  static
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components,  rules/syntax  (conceptual  understanding)  and  working  memory.

Unlike  previous  models,  this  model  assumes the internal  representations  to  be

dynamic. However, the relationship between static and dynamic components is

not  clear.  It  is  also  not  clear  how  the  model  would  accommodate  referents,

relations  and  results  that  are  dynamic  in  nature.  The  notion  of  conceptual

knowledge is vague in the model. Moreover, the nature of conceptual knowledge

could itself be dynamic than static.

2.2.2 Developmental models of RC

The  focus  of  frameworks  presented  in  this  section  is  the  process  of  RC

development.  These developmental  models of RC may be informed by one or

multiple theoretical assumptions discussed in the previous sections, and hence can

be complementary to those models.

Dreyfus  (1991)  provides  a  linear  stage  model  based  on  the  number  and

complexity  of  representations  used  by  a  learner  simultaneously.  The  model

proposes that  ERs mediate  the process of learning,  which passes through four

sequential  stages:  1)  using  single  representation,  2)  using  more  than  one

representation in parallel,  3) making links between the representations  used in

parallel;  and 4) integrating representations  as well  as flexibly moving between

them. The author grants that the processes of representation (act of representing

something)  and  abstraction  as  complementary  processes  moving  in  opposite

directions.  In other words, the act of representation is parallel to externalization,

while abstraction connotes internalization.

A  more  sophisticated  account  of  learning  with  multiple  representations  in

mathematics is provided by Duval (2006). This model maintains that coordination

between at least two representational forms, termed as registers, is necessary for

comprehension of  mathematical  concepts.  There are  four  such representational

forms/registers:  natural  language,  figures  and  diagrams,  notation  systems

(symbols) and graphs. Learning with multiple representations involves students
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gaining more  control  over  these  registers.  A learner  initially  stays  within  one

register (e. g., carrying out calculations in only one notation system), then moves

to conversions, where she changes the register (e. g. using notations/symbols like

'+'  to  represent  'addition',  a  mathematical  relationship  originally  described  in

language/words), and then finally achieves coordination among multiple registers.

Goldin and Kaput (1996) also provide a three-stage process of development of RC

in mathematics. The stages are: (a) Inventive-semiotic stage, where a learner is

introduced  to  new  characters  of  a  representational  system  (for  instance

numbers/counting) that symbolize aspects of familiar systems such as a real-life

situation; (b) the use of this system as a template to learn a more sophisticated

system of rules for the new symbol-configurations (for instance, the concept of a

number) and diversities; and, (c) the new system, once learned and practiced with,

becomes independent and detached from the earlier system of representations (for

instance,  doing  arithmetic/algebraic  exercises).  The  third  stage  indicates

abstraction, and is particularly critical in characterizing RC in mathematics, since

mathematicians often operate in the world of abstract entities.

An influential model of the different abilities of experts and learners working with

ERs is given by Kozma and co-workers, who coined the term ‘representational

competence’,  to  describe  “a  set  of  skills  and practices  that  allow a  person to

reflectively use a variety of representations or visualizations, singly and together,

to  think  about,  communicate,  and  act  on  chemical  phenomena  in  terms  of

underlying, imperceptible physical entities and processes” (Kozma, 2003; Kozma,

Chin, Russell, & Marx, 2000; Kozma & Russell, 1997; Kozma & Russell, 2005;

Madden, Jones & Rahm, 2011).

The authors characterize RC in terms of following specific skills in the context of

chemistry:  (a) using representations to describe chemical phenomena; (b)

generating  and/or selecting and explaining appropriate representations for a

specific purpose; (c) identifying  and analyzing  different features of

representations; (d) comparing and contrasting different representations and their
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information content; (e) making connections across different representations,

mapping features  of one type of representation onto those of another, and

explaining the relationships between them;  (f) understanding that the

representations correspond to phenomena but are distinct  from them; and (g)

using representations in social discourse to support claims, draw inferences, and

make predictions (Kozma & Russell, 2005).

Alternatively, several researchers opine that students' RC is often underestimated,

despite reports suggesting difficulties in generation,  selection,  coordination and

general  handling  of  ERs  among  students  (e.  g.  Izsák,  2011;  Kieran,  1981;

Leinhardt,  Zaslavsky  & Stein,  1990).  Students  exhibit  better  competence  than

previously  thought  (diSessa,  Hammer,  Sherin  & Kolpakowski,  1991;  diSessa,

2004; diSessa & Sherin, 2000). Preliminary research investigating the nature of

untutored  native  competence  among  students  in  terms  of  content  knowledge

(whether inarticulate intuitions or articulable/potential principles), sources of such

knowledge, and the possibilities of refining this knowledge indicate that students'

capabilities  with  representations  were  often  underestimated  by  prior  studies

(diSessa & Sherin, 2000). Students are capable of having deep and rich, although

intuitive, ideas about dealing with and making sense of external representations in

their own ways. This competence is referred to as 'native competence, or meta-

representational  competence'  by  diSessa  &  Sherin  (2000),  and  constitutes  the

following  abilities:  (a)  invent  or  design  new  representations,  (b)  critique  and

compare  ERs,  for  their  appropriateness  and  adequacy,  (c)  understand  various

functions  of  representations  in  context,  and  how  representations  serve  such

functions  in  that  context,  (d)  explaining  representations  and  (e)  learning  new

representations quickly with minimal instructions (diSessa, 2004). The notion of

meta-representational competence is different from RC in the following way: it is

concerned with whatever students know about the act of representation and its

products  (meta-representation);  it  does  not  focus  on  representations  used  for

instruction  in  a  domain,  or  the  standard  school  modes  of  reproduction  and

interpretation (diSessa & Sherin, 2000).
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2.2.3 Summary

In this section I reviewed important theoretical frameworks for RC, categorizing

them under two major emerging themes: models of RC concerning ERs and their

cognition, and the developmental models of RC (figure 2.8). 

Figure 2.8 Broad categories of theoretical frameworks and models that emerged during the review.

Within the former category of models, I saw three different sets of models: one

captures the relationship between nature of a domain, ERs in that domain, and

cognition  (Model  of  three  thinking  levels  and  its  versions,  cube  model,  Lesh

translation model, model of ontological gaps, and representational chain model);

the other captures how students reason about ERs (Ainsworth’s model of function

of representations,  CRM model,  internal-external/abstract-concrete ER trade-off

model, RCA model, and distributed cognition framework); whereas a third set of

theoretical  frameworks  models  the  cognitive  mechanisms  involved  in  the

processing of ERs (Dual coding theory and models informed by this view, and the

model of four cognitive components). Among the RC developmental frameworks,

I reviewed stage models proposed by Dreyfus (1991), Duval (2006) and Goldin
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and Kaput (1998), Kozma and colleagues' RC characterization, and the model of

native and meta-representational competence by diSessa and co-workers.

The section below discusses empirical studies investigating different aspects of

RC, as well as the process of learning through ERs.

2.3 Empirical investigations of learning with ERs and RC

There is a vast literature reporting empirical investigations of RC, examining the

learning and use of scientific and mathematical ERs, the use of ERs in science

practice,  and  the  nature  of  skills  involved  in  RC.  These  studies  are  widely

dispersed, and often published in discipline-specific venues. Only a few studies

explicitly subscribe to one of the specific models discussed in previous sections

(e. g. Aurigemma et al., 2013; Hinton & Nakhleh, 1999; Madden, Jones & Rahm,

2011; Moore et  al.,  2013, etc.).  Most studies  only broadly relate  to the major

theoretical  frameworks  of  RC.  As  a  consequence,  there  is  no  well  articulated

theoretical framework that helps integrate these disparate studies.

In this  section,  I  try to bring together  these disparate  studies along two major

themes based on the RC abilities they focus on: 1) linking ERs and translating

between  them,  and  2)  expert  or  student  generation  of  ERs  and  their  ER

preferences. 

Some  studies  discussed  under  each  theme  explicitly  appeal  to  the  classical

information processing paradigm in order to explain student learning difficulties

and/or  expert-novice  differences  in  relation  to  ERs,  while  some  other  studies

implicitly  assume  classical  information  processing  perspectives,  but  do  not

endorse this view explicitly. These studies focus on one or more of the following

processes, usually identified with the classical information processing paradigm:

working/short-term memory, long term memory, information storage (assumes a

storage  module),  memory  or  information  extraction  (assumes  searching),

translation of information (assumes that information from one code is translated

into other code(s)), and fully internal representations. A third set of studies are
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neutral on the nature of ERs and RC. Finally, some subscribe to recent cognition

theories such as distributed and/or embodied cognition.

2.3.1 Linking ERs, translating and/or transforming between them

Students  find  it  difficult  to  understand  the  interrelations  between different

symbolic representations, which capture different  features or aspects of worldly

phenomena. A wide range of studies have examined this difficulty. For instance,

information about a chemical reaction is embedded in the symbols and numbers in

the chemical equation representing that reaction. Being able to relate symbols and

numbers with the dynamic reaction, by cross-linking the ‘three thinking levels’

(Hinton & Nakhleh,  1999), is one way to make sense of a chemical equation.

Studies show that students lack a clear understanding of basic concepts such as

oxidation numbers, ionic charge, atoms and atomic structure, formal rules for

writing molecular formulas, as well as meaning of subscript letters, numbers and

coefficients (Garforth, Johnstone & Lazonby,  1976; Savoy, 1988). Because of

this, students face difficulties while dealing with chemical equations. In addition,

students fail to associate the ‘symbols and numerical answers with real objects

and phenomena’ when asked to explain different chemical equations (Herron and

Greenbowe,  1986) using particulate drawing (Sanger, 2005). Studies examining

how students balance chemical equations asking them to explain their balancing

protocol reveal that many students balance chemical equations algorithmically i.

e. without actually understanding the meaning of symbols and numbers (Hinton &

Nakhleh, 1999;  Nurrenbern & Pickering,  1987;  Yarroch,  1985). Such  an

algorithmic approach to equations could be linked to the failure in understanding

that  the  coefficient  and  subscript  numerals  are  not  just  some  numbers,  but

represent  and quantify the particulate  nature of  matter.  In other  words,  it  is  a

failure in establishing correspondence between macro-level visible reality and the

periodic  table,  symbols  and  numbers,  chemical  formulas  and  reaction

mechanisms.
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In mathematics,  many studies examining the understanding of length and area

measurement  show that children often struggle to see the relationship between

numbers, units and space; particularly how a numerical value is related to a spatial

area (Battista, 2003; Battista & Clements, 1996; Kamii & Kysh, 2006; Pande &

Ramadas, 2013), even though all these different representational systems model

the  same  concept.  Santos'  (1996)  examination  of  students'  responses  to

contextualized hypothetical questions (such as 'how many tennis balls would it

take to fill a classroom?') reveal that students' use of numbers and algebraic as

well as arithmetic operations is largely algorithmic.

A related  set  of  studies  analyzed  the  connections  students  and  teachers  make

between  ERs  (particularly  graphs,  tables  and  pictorial  representations)  of

mathematical functions (Çelik & Sağlam-Arslan, 2012; Hitt, 1998; Knuth, 2000)

by documenting which ERs were preferred by the participants over others. Knuth

(2000) presented high school students several function problems using algebraic

and graphical representations, and asked them to solve each problem using either

a graph or an equation, and then also produce an alternative solution method using

the other representation. The author found that graphical representation provided

during the study was often considered irrelevant by the students. Most students

prefer  algebraic/symbolic  representations  (Acevedo  Nistal,  van  Dooren,

Clarebout, Elen & Varschaffel, 2010; Acevedo Nistal, van Dooren & Varschaffel,

2012; also shown in probability tasks by Anastasiadou & Chadjipantelis, 2008).

Students  did  not  agree  on  which  representation  would  be  appropriate  for  a

problem, and found it difficult to explicitly reason using chosen representations

(Acevedo Nistal, van Dooren & Varschaffel, 2012). Learners also have a general

difficulty  establishing  links  between  problem  situations  (word  problem

statements), graphs and functions and other symbolic representations (Billings and

Klanderman, 2000).

Elia, Panaoura, Eracleous and Gagatsis (2007) used different tasks that required

students to explicitly talk about their definitions and understanding of the concept
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of functions, identify correct algebraic functions in relation to diagrams of certain

situations, and translate between multiple representations of algebraic functions.

The authors report remarkable inconsistencies among students in relation to: (1)

approaches  to  different  representations  of  functions  across  tasks,  and  (2)

definitions of functions and their ability to recognize the concept of function in

different forms or problem solving tasks. They concluded that students tend to

highly compartmentalize the concepts taught to them, based on differences in the

situations  and the representations  encountered  around those concepts.  Students

were also found to perform badly in  relating  situation diagrams and algebraic

functions.

In chemistry,  Kozma and Russell  (1997) report  an expert  versus novice study,

where they posed two tasks, a categorization task and a transformation task, to

experts (practicing chemists) and novices (undergraduate students), individually.

The  authors  wanted  to  know  if  the  participants  “saw connections  between

different chemical visualizations corresponding to the same phenomena or if they

understood  something  different  for  each  type  of  visualization”.  The  first  task

required participants to group a set of  14 cards, with dynamic and still  images

(corresponding  to  several chemical  reactions),  into  meaningful  groups.  The

representations (dynamic and static images) included videos of the experiments,

animations of the molecular events, graphs, and chemical equations. Observations

revealed that  novices formed their  meaningful  groups from a small number of

cards, often from the same media type (e. g. all graphs as a category, all equations

as another category and so on) while experts made larger groups, composed of

multiple  media  forms.  Experts  gave  largely  conceptual reasons  for  forming

particular groups, while novices’ reasons were often based on surface features. In

the second i. e. transformation task, participants were shown chemical equations,

videos of experiments, dynamic graphs and animations of the molecular events of

an  experiment,  one  at  a  time.  Participants  were  asked to  transform the  given

representation  to  another  form (such as  drawing a graph corresponding to  the

given equation, selecting an animation that best corresponds to an equation, etc.).
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The  authors  found  that  “experts  were  much  better than  novices  at  providing

verbal descriptions, due to their deeper understanding of chemical principles and

concepts”. Also, experts were better than novices when transformations required a

constructed response, such as drawing a graph or writing a chemical equation. 

Similar  findings  are  reported  by  Madden,  Jones  and  Rahm  (2011)  in  their

examination  of  RC  differences  between  first  semester  and  advanced  level

chemistry students, in the context of ideal gas problems. The problems, aimed to

investigate  RC  level  among  students,  required  the  students  to  provide  verbal

descriptions of behavior of an ideal gas (from particulate level sketches, diagram

and graphs),  calculate  (i.  e provide a  mathematical  representation  of)  pressure

exerted  by  a  gas,  and  transform  between  these  generated  calculations,

mathematical and verbal descriptions, graphs and particulate level sketches, etc.

The authors used a modified version of Kozma's (2005) RC framework to analyze

student performance,  and found that students with less prior experience largely

exhibited algorithmic use of the ideal gas law. Their use of equation, variables and

values seemed to be disconnected from other representations, unlike students with

more exposure.

Ben-Zvi, Eylon, & Silberstein (1987 & 1988) found that students' thinking relies

primarily on perceptual/sensory information, and since the pedagogical practices

while  teaching  symbols,  equations,  and  operations  do  not  seek  to  provide

perceptual/sensory assistance, these aspects of science and mathematics are not

understood by students in terms of their macro and micro-level instantiations. As a

result,  learners  tend  to  concentrate  more  on  the  familiar  representation(s)  or

algorithms  in  order  to  counter  the  cognitive  load,  and  end  up  ignoring  the

relationships between concrete and abstract ERs (Johnstone, 1991; van Someren,

Reimann, Boshuizen & de Jong, 1998). 

Ozogul, Johnson, Moreno and Reisslein (2012) also focus on the load on working

memory students experience while learning ERs. They  examined the effects of

various  modes  of  integrating  equations  in  circuit  diagrams  in  the  engineering
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domain, and found that undergrad students often fail in integrating the two kinds

of representations,  because of the increase in cognitive load during instruction.

The ability to establish relevance, given the information depicted through ERs, is

related  to  the amount  of  information  working memory can handle (Chi  et  al.,

1981). Higher prior knowledge facilitates identification of the relevant/necessary

features in representations, and extraction as well as interlinking of information

through these features  (Chi et al., 1981; Cook, Wiebe & Carter 2008; Kozma &

Russell, 1997; Larkin & Simon, 1987). This lowers cognitive load, as participants

with higher prior knowledge can rely on their existing knowledge stored in long-

term memory for information chunking.

The prior knowledge effect was demonstrated using eye-tracking by Cook et al.

(2008) while examining the way students' prior knowledge interacted with how

they  interpreted  macro  and  molecular  graphics  of  diffusion  phenomena.  The

authors captured and observed the number of transitions students made between

molecular-to-molecular,  macro-to-molecular,  molecular-to-macro  and  macro-to-

macro representations,  using eye-tracking.  On average,  students with low prior

knowledge  made  more  transitions  than  students  with  high  prior  knowledge.

Students  with  low  prior  knowledge  focused  more  on  surface  features  of

representations (Kozma & Russell, 1997). Low-prior-knowledge students needed

to make frequent transitions in order to map features from one representation to

the other, trying to link them together. Similar patterns of transitions between ERs

are  reported  by  Kohl  and  Finkelstein  (2008)  in  a  study  aimed  to  understand

patterns  of  ER use  during  problem  solving  in  electrostatics.  Three  groups  of

participants – experts, weak novices and strong novices – individually solved two

different sets of problems. In one set, ERs were given to the participants. In the

second set, word problems on electrostatics were given, and participants had to

generate  representations  based  on  the  textual  description.  Performance  results

showed multiple levels of competences across all the three groups, but experts (as

originally  designated) generally  tended to successfully solve problems, making

less number of to-and-fro transitions (measured as density of transitions between
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representations  per  minute)  than  the  novices.  Surprisingly,  strong  novices

exhibited intermediate performance. Since participants with low prior knowledge

are  less  aware  of  the  'subtleties  of  representations  and  the  conventions  for

interpreting  them',  they  may  have  needed  more  transitions  to  interpret  the

represented information (Cook et al., 2008) and relate it to information in other

representations.  Interestingly,  researchers  have found that  although the domain

knowledge and RC are  interconnected,  RC can be  predicted  from, but  cannot

guarantee,  domain  knowledge  (Nitz,  Nerdel  & Prechtl,  2012;  Nitz  & Tippett,

2012). 

A parallel set of studies argues that visuo-spatial thinking ability is fundamental to

RC, although working memory capacity is the ultimate limiting factor.  Bodner

and Domin (2000) examined transforming of 2D representations into 3D and the

reverse,  and  documented  the  difficulties  students  encounter  with  such

transformations, especially in the context of organic chemistry.  There is a deep

relationship between students' mental rotation ability and their ability to transform

2D representations into mental 3D representations (Shubbar, 1990; Wu & Shah,

2004). Shubbar (1990) attributes students' difficulty in 2D-3D transformation to

problems in either  comprehending depth cues  in 2D diagrams,  or tracking the

depth cues in molecular  diagrams that  depict  chemical  change. These multiple

simultaneous activities put tremendous cognitive load on student, and are critical

to  learning  difficulties  (Wu  &  Shah,  2004).  In  chemistry,  a  learner  needs  to

perform multiple operations at multiple spatial scales: atoms and molecules, their

collective behavior, and properties and reaction mechanisms need to be imagined

simultaneously  in  a  consistent  manner.  Similarly,  understanding  biological

phenomena such as evolution, for instance, requires traversing different levels of

spatial  scales,  right  from  DNA  mutation  to  changes  in  an  organism  across

generations. 

The  empirical  work  discussed  so  far  largely  advocates  vocabulary  and  ideas

usually identified with the classical information processing theories in cognition.
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Building from such studies, there have been a number of attempts since the early

1990s to develop chemical visualization/virtual manipulation software to help

students develop  RC. These  interventions are based on the classical  information

processing approach to cognition, particularly Baddeley's working memory model

(e.  g. SMV Chem, visChem, 4M:Chem, EduChem HS, eChem,  etc.). These

interventions  seek mostly to display multiple representations simultaneously on

screen, to lower the load on students' memory.

There  is  also  a  significant  number  of  studies  in  RC  either  disregarding  the

concepts such as working memory and/or cognitive load, or employing alternative

perspectives to cognition. For instance, Kozma et al., (2000) anchor their work in

the  situated  cognition  perspective,  which  proposes  that  knowledge  of  a

practitioner  (say  a  chemist)  is  inseparable  from  the  natural  context  of  that

practitioner (chemistry laboratory), and is therefore best investigated within the

context  of  that  practice.  The  researchers observed chemists and academicians

practicing  in laboratories,  and  reported that 'materializing'  representations that

could be perceived  and manipulated, (i.  e. creating and/or using ERs) helped

participants operate on the otherwise non-perceptible entities and processes. ERs

also helped chemists discuss problems;  they  used visualizations and structural

diagrams to describe the composition and geometry of the compounds considered

for  synthesis, and used diagrams and equations to think through the possible

reaction mechanisms. Kozma (2003) extended this earlier study with novices

(undergraduate students), and reported lack of such RC in this group.

Shifting the focus from students, Stewart (1982 & 1983) argues that the origin of

student  difficulty  in  interlinking  multiple  representations  lies  in  the  teaching

sequence  of  concepts.  Taking  examples  from  biology,  the  authors  argue  that

teaching  Mendelian  genetics  before  cell  division  could  be  one  reason  why

students  fail  to  understand  the  connection  between  meiosis  (micro  level

explanation) and Mendelian genetics (macro level). Longden (1982), on the other
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hand, situates the root of the problem in the static  nature of diagrams used in

science classrooms.

Schnepp  and  Nemirovsky  (2001)  emphasize  the  role  of  dynamics  in

understanding ERs in the context of physics, and argue that the recognition of

motion in distance-time, velocity-time and other equations and graphs of motion

requires merging perception with imagination. They found, through observing a

calculus course for 12th graders, that students face difficulties in imagining motion

depicted  in  mathematical  representations  of  physical  phenomena.  Sometimes

these depictions refer to physically impossible events. For instance, a distance-

time  graph depicting  a  plane  after  a  slope  refers  to  an  object  instantaneously

stopping  its  motion.  Imagination  is  key  to  recognizing  the  relevance  of  such

representations to physical phenomena (Schnepp & Nemirovsky, 2001), and thus

understanding the conceptual content of ERs. Thompson and Sfard (1994) argue

that mere perception of a function,  for instance,  in its multiple  representations

such as a table and a graph, may not be sufficient for a student to realize the

equivalence between those representations (also suggested by Kaput, 1995). It is

extremely  difficult  to  gauge  if  a  student  understands  the  continuity  of  that

function, distributed across those multiple representations.

Similarly, White and Pea (2011), during observation of students collaboratively

solving  a  set  of  decryption  problems  using  a  dynamically  linked  multiple

representation  environment  (Code  Breaker),  discovered  that  although  students

may  exhibit  competence  relative  to  a  specific  task  during  problem  solving

episodes,  understanding  that  the  concepts  and  mathematical  operations  are

distributed across multiple representations may take numerous episodes of using

multiple representations (Giere & Moffatt, 2003) as well as maneuvering different

representational tools (Hutchins,  1995a; White & Pea, 2011) collaboratively in

different problem situations.

Close to the view I advocate later in next chapter,  a group of researchers argue

that  understanding scientific  phenomena not  only  requires  seeing  the  different
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connections between ERs, but also using those ERs and the connections between

them, to build dynamic  internal (mental) models that simulate the behavior  of

many individual components of real world events (Davidowitz, Chittleborough &

Murray, 2010; Grove, Cooper & Cox, 2012; Levy & Wilensky, 2009) and effects

of various parameters on such events. Difficulty  in building consistent internal

models of phenomena using ERs is a major problem identified among students.

For instance, students are reported to have difficulties in mentally animating as

well  as simulating  physical  systems (such as flush-tank,  gears;  Hegarty,  2004;

Schwartz & Black, 1996a & 1996b). This leads to problems in understanding and

predicting system behavior and/or answering problems.

Unlike the previously discussed computer interventions (based on memory-based

approach  focusing  on  simultaneous  display),  recent  work  informed  by  these

alternative perspectives  focuses on interlinking representations through dynamic

manipulable simulations,  animations,  and  physical  models.  For  instance,  the

manipulability  feature  in  the  Connected  Chemistry  Curriculum,  based  on  the

Netlogo  2D  interface,  may  help  students  transform  better  between  static  and

dynamic representations (such as  equations, graphs and  molecular simulations).

The developers of this curriculum, through control-treatment group experiments

where students’ were asked to draw sub-microscopic pictures for certain chemical

systems/reactions, report that the curriculum improves handling and

understanding of multiple representations in chemistry, when compared to

conventional  text or lecture based curricula (Stieff & McCombs, 2006; Stieff &

Wilensky, 2003).

Kothiyal  et  al.  (2014)  report  in  detail  the  development  and testing  of  a  fully

manipulable  simple pendulum simulation designed to help high school students

integrate ERs around the concept of oscillation. The design principles behind this

simulation are inspired by distributed and embodied cognition perspectives (e. g.

external representations allow processing not possible/difficult to do in the mind,

Kirsh,  2013;  action  patterns  can  activate  concepts,  hence  actions  and
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manipulations  of  the  representations  should  be  related  to  existing  concepts,

O’Malley  &  Soyer,  2012).  Unlike  the  Netlogo  and  PhET  simulations,  this

simulation focuses on the  enactivity/manipulability of abstract ERs, particularly

ERs such as equations/graphs, in order to give the learner maximum control over

the behavior of the system through multiple modes. The authors claim that the

enactivity of equations and abstract ERs is critical for understanding (implicitly as

well as explicitly) the dynamic relationship between those ER, and thus imagine

the represented entity/phenomenon.

Such manipulable interfaces have often been coupled with other scaffolds (such as

exercises, quizzes, activities and teacher guides; Kukkonen, Kärkkäinen, Dillon &

Keinonen, 2013;  Varma  & Linn, 2011) and these  have been effective in

improving students' representations and understanding. In organic chemistry, the

activity  of  matching  physical  models  to  diagrams  has  been shown to  provide

(implicit) feedback to participants, leading to their improved performance during

representational tasks (Padalkar & Hegarty, 2015). Computer interfaces have been

explored from an  assessment viewpoint in order to better  characterize RC and

multiple  representational  transformations  among  learners.  Stieff,  Hegarty  and

Deslongchamps  (2011)  examined  students' use of a multi-representational

molecular mechanics animation using eye-tracking, and observed that students

mainly used graphical and model representations in animations, and often ignored

the equation. Based on an eye-tracking exploration of participants’ chemistry ER

viewing as well categorization processes, Pande and Chandrasekharan (2014), and

Pande,  Shah  and  Chandrasekharan  (2015)  concluded  that  the  richness  of

transitions,  as  well  as  the  nature  of  transitions,  between  different  parts  of  a

representation  (and/or  different  representations)  could  be  considered  a  good

marker of ER integration.

Interestingly,  a  group  of  researchers  went  beyond  the  ‘traditional’  enactive

approaches to incorporate socio-cultural contexts and inter-student collaboration

possibilities  in  the  play-environments  where  a  group of  students  interact  with
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simulations  (mixed-reality  systems)  with  their  full  bodies  by  collectively  and

collaboratively enacting avatars representative of scientific  concepts (Danish et

al., 2015; Enyedy et al., 2012). In what the researchers called the Science through

Technology Enhanced Play or STEP project (e.g. Danish et al., 2015),  students

move around in the classroom space,  play-acting  particulate  matter  (say water

molecules) to arrive at  an understanding of how particles in different  states of

matter (e.g. water, ice, vapour) would behave  in a range of everyday situations

such as a freezing cold day, heating or boiling water, etc.. The students see their

‘enaction’ projected into a computer simulation where an avatar in the form of a

particle is displayed. The authors claim that this type of enaction is useful to direct

students’ attention towards key concepts and help them make their own choices

and  decisions  in  arriving  at  a  proper  understanding  of  these  concepts.  Most

intriguingly, their results show that mere embodiment and enaction may not be

sufficient to bring clarity to nuanced concepts such as energy and its relationships

with states of matter,  as some (groups of) students tended to confuse between

concepts such as energy and matter. However, this confusion was often clarified

when the groups had non-enacting student observers, teachers and/or facilitators

(Danish  et  al.,  2015)  helping  the  students  reflect  on  their  own  actions  and

observed effects of those actions on avatar behaviour.

2.3.2 Generating ERs and representational preferences

Representations generated by students, and their choices of representations (e. g.

which  representation  would  help  better  in  a  given  problem  situation),  are

considered  good  indicators  of  misconceptions  (as  these  reflect  internal

representations, Chi et al., 1981). They also suggest how different representations

aid  student  thinking  (as  they  support  reasoning  during  the  problem  solving

process, Izsák, 2011). Literature in this area documents different representational

preferences among students, and suggests that students find it extremely difficult

to  generate  ERs  and  use  the  generated  ERs  to  reason  about  phenomena  in
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systematic  ways (Diezmann  & English,  2001;  Kamii  et  al.,  2001;  for  detailed

review, see Diezmann & English, 2001).

Many of the classic studies in science,  mathematics and engineering education

focus on the  nature  of  representations  participants  generate  during  problem

solving.  These  generated  ERs are  considered  markers  of  participants'  problem

representations  (or  internal representations/mental constructs  of  problem

situations). Extensive work, particularly in the 1980s, investigated the way experts

and novices approach physics problems, and found certain key qualitative

differences between the two groups, particularly in their problem representations.

Chi et al.'s  (1981) influential study, for instance, found that  experts and novices

categorize  given  physics  problems into  different  groups. The categories and

explanations generated  by experts had  few  features in common with those

provided by novices. Experts sorted problems on the basis of principles, such as

Law of Conservation of Energy, which could be used  to solve the problems.

Novices, on the other hand, exhibited limited capabilities in going beyond surface

features of the problem statements/diagrams (such as literal meanings of words)

while categorizing problems. For instance, they put 'merry go round' and 'rotating

disk' problems in the same category, as both involved rotating things. To explain

these differences, Chi et al. (1981) postulated that differences in prior knowledge

of the experts and novices make their problem schemata different from each other.

The problem features engaged more tacit knowledge in the case of experts (Chi et

al., 1981). 

Interestingly, the authors found that both experts and novices used the same set of

features in problem statement (and/or diagram), but the differences lay in the cues

and interactions those features had with their prior knowledge and subsequent

problem schemata. Participants'  prior  knowledge and their  ability  to  identify

patterns  of  meaningful information  (in and  using  ERs)  were  closely  related.

Experts (generally assumed to possess denser domain knowledge) are more likely

to extract task-relevant knowledge from a given representation or generate one to
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aid  problem solving  (Chi  et  al.,  1981;  Larkin, McDermott, Simon &  Simon,

1980).

In  Hmelo-Silver  and  Pfeffer’s  (2004)  investigation  of  pictorial  representations

(and verbal responses) of models of aquatic  systems generated by experts  and

novices,  the  experts  were  found  to  integrate  structural-functional-behavioral

information  by  dynamically  imagining  the  mechanistic  relationships  between

them; novices relied on the static structural features of the system components.

Several  other  studies  examining  structure-function  relationships  report  similar

findings  (e.  g.  Jacobson,  2001;  Mathai  &  Ramadas,  2007;  Subramaniam  &

Padalkar, 2009). 

A related strand of research looks at how experts and novices differ in the way

they use analogies to understand and explain biological phenomena (Dreyfus &

Jungwirth,  1990).  Student  participants  were  asked  to  explain  the  meaning  of

various statements,  such as – 'the nucleus controls the functioning of the cell'.

Most participants used fallacious analogies, such as – 'just as brain controls the

body',  in  their  responses.  Experts  often  used  analogies  from  systems  they

understood  better,  but  they  also  searched  for  potential  mismatches  in  the

analogies.  The novices were satisfied with the criterion of familiarity  with the

system  while  choosing  an  analogy,  and  never  checked  the  analogies  for

mismatches.  The  authors  suggest  that  mismatches  in  analogies  may  result  in

inconsistencies among internal representations, difficulties in understanding ERs,

and ultimately difficulties in understanding biological phenomena. Analogies are

thus  powerful  yet  risky  tools  in  interlinking  information  at  multiple  levels  of

organization (Dreyfus & Jungwirth, 1990).

Santos  (1996)  examined  students'  responses  to  spatial  problems  that  required

generation and use of multiple representational approaches. When students were

asked to estimate the number of tennis balls needed to fill a classroom, they often

attempted  to  translate  the  word  problem  into  calculations  without  completely

understanding  the  problem.  They  tended  to  use  arithmetic  and/or  algebraic
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approaches  to  solve  such  problems,  and  had  difficulties  in  moving  from  the

arithmetic representation to visual estimations.  Billings and Klanderman (2000),

in the context of problems on motion and related topics in physics, found that

students  (pre-service  teachers),  when  given  graphical  representations  showing

relation  between  speed  and  other  variables  (time-distance  graphs),  excelled  at

generating  symbolic  representations  and  operating  on  them  (e.  g.  calculating

average speed). However, the same students struggled in generating reasonable

graphical representations and interpreting them while designing question sets for

school exams. Further analysis of the assignments and question sets submitted by

the students revealed that students found it difficult to distinguish average speed

from instantaneous speed, and even distance and speed. The slope of the line was

often an area of misinterpretation and confusion.

On the other hand, students are reported to exhibit sophisticated reasoning around

their choice of representations. For instance, fourteen-year olds, when posed with

three kinds of tasks based on the design and working of a physical device (called

winch, figure 2.9)  in  a  study,  generated  many  different  equations,  developed

criteria to evaluate these equations, and finally selected some equations based on

these criteria  (Izsák, 2011). Interestingly,  the participants  developed as well  as

articulated their own criteria, such as 'single equation is better over multiple ones'

and that 'the expression must generate positive values for distance',  during the

selection and evaluation of generated representations. Although students lacked

coordination between their criteria while evaluating ERs generated by them, the

fairly reasonable articulation of criteria hint at some competence among students

in evaluating and integrating ERs.
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Figure 2.9 The winch (adapted from Izsák, 2011). The author posed three problems to the students
based on the design and mechanism of working of this device viz. (a) predict the distance between
the weights after an arbitrary number of cranks/handle rotations; (b) determine whether and, if so,
when one weight will ever be twice as high as the other and  (c) determine whether and, if so, when
the weights will meet at the same height 

Such  seemingly  pragmatic  representational  preference  tendencies  (reasoning)

among  students  are  highly  context-dependent,  and  there  may  be  significant

individual  variations  (Çikla &  Çakiroglu,  2006).  For  instance,  equations  are

preferred  during  mathematical  situations,  whereas  graphs  are  used  with

contextualized  word/mathematics  problems  (Keller  &  Hirsch,  1998;  Scanlon,

1998).  Students  feel  comfortable  in  using  only  symbols  in  fraction  problems,

whereas they encounter difficulties in relating concrete models/visuals of fractions

with  number-line,  verbal  and  symbolic  representations  (Biber,  2014;  Brenner,

Herman, Ho & Zimmer, 1999).

Novices  have  relatively  unstable  internal  representations  of  problem situations

than experts (Anzai, 1991; Anzai & Yokohama).  This possibly arises from the

limited  capacity  of  their  working  memory.  In  a  problem  solving  experiment,

expert and novice participants were asked to predict the behavior of a constrained

system (figure 2.10), a yo-yo made by connecting the centers of two circular disks

with an axle. The system was kept on a table, in such a way that the yo-yo disks

could roll, but not slide (Anzai & Yokohama, 1984; re-described in Anzai, 1991).
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Figure 2.10 Yo-yo on a table problem (adapted from Anzai & Yokohama, 1984). The problem
diagram is on the left, and on the right is its abstract diagram

Participants were asked whether the yo-yo would roll to the left or to the right (left

being the correct answer).  Experts applied the lever-fulcrum principle to answer

this problem correctly, while novices related the problem to real-world situations,

trying to erroneously animate the yo-yo and thus performing poorly. However,

changing the problem representation to abstract diagrams helped some novices to

answer the yo-yo problem correctly (Anzai, 1991), possibly  because  of  the

reduction  in  cognitive load  provided  by  the  more  directed animation of  the

movement of yo-yo. This result supports the suggestion from Larkin (1982, cited

in Anzai, 1991) and Anzai (1991) that experts and novices tend to use

qualitatively different internal spatial representations to solve problems. Experts

could be performing better in this generation task because producing and/or using

diagrams allow computationally more efficient search for stored tacit information,

and inference based on this information, compared to symbols and sentences

(Kozma, 2003; Larkin & Simon, 1987).

A related strand of research examines ways to improve generation and integration

of  ERs  among  students,  using  different  approaches.  Cardella  et  al.  (2006)

investigated the role of sketching and ERs, through a verbal-protocol-case-study

analysis  of  engineering  students'  representations  and  representational  activities

during a design problem solving process. Participants had a general tendency to

use the given ERs, rather  than generate  new ones.  However,  those who could

generate  relevant  ERs,  such as  problem statements,  sketches  and calculations,

exhibited 'information gathering' during the process, to progress through the task.

Based on this result, the authors suggest that generation of ERs compensates for
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the limitations of imagery.  Successful  problem solvers  tend to  construct  more

accurate, complete and abstract representations (numerical/symbolic/mathematical

forms) of the problems, than the unsuccessful ones. Representations generated by

successful problem solvers also evolved over time in terms of their abstractness

(Domin  and  Bodner,  2012;  Sevian  et  al.,  2015),  suggesting  addition  of

information from participants’ prior knowledge.

Reisslein,  Moreno  and  Ozogul  (2010)  distinguish  between  abstract  and

contextualized  engineering  ERs,  and  emphasize  the  use  of  instructions  that

involve both these kinds. The instructions allow students to get more opportunities

to interconnect abstract ERs, such as equations, with real-life situations. The study

assessed learning outcomes and program rating, using a survey based on a post-

test. Three groups of participants received three different types of ER-mediated

instructions: abstract (e. g. equations), contextualized (e. g. only circuit diagrams)

and combined (both equations and circuit  diagrams). Participants who received

the combined contextualized-abstract instruction scored higher on the post-test,

produced better problem representations, and rated the program’s diagrams and

helpfulness higher than their counterparts.

Based on the Lesh translation model (discussed in 2.1), model eliciting activities –

particularly specific and goal-directed activities that involve building a working

model of phenomena using ERs – have been reported to be effective interventions

in  engineering  education  (e.  g.  Diefes-Dux,  Moore,  Zawojewski,  Imbrie  &

Follman, 2004; Lesh & Doerr, 2003 cited in Moore et al., 2013). Moore et al.

(2013)  investigated  how  engineering  students  used  representations  and

representational fluency in modeling heat exchange, and what role representations

and  representational  fluency  played  in  conceptual  development  during  this

activity. The students were expected to develop a model to 'predict the interface

temperature and the sensation felt by human skin when touching a utensil made of

a  specified  material  at  a  given  temperature'.  Student-generated  representations

were grouped under the five categories provided by the Lesh translation model,
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viz., concrete, pictorial, symbolic, language and realistic. Model development was

found to be a function of representational fluency, involving not only generation

and use of ERs, but also translation across the five categories of representations,

and  among  multiple  representations  belonging  to  the  same  category.  Going

through the process of model development also often improved representational

fluency among students (Moore et al., 2013).

Kindfield (1994) demonstrated, through an empirical study, the role of diagram

generation  in  tweaking  the  mechanism  of  working  memory,  by  connecting

external  representations/models,  internal  representations,  and  conceptual

knowledge.  The  study  analyzed  students'  ability  to  generate  diagrams  during

meiosis (cell division) problem solving, and the quality of the generated diagrams

among participants with varying degree of formal training in genetics (meiosis –

cell division). Two criteria were used to distinguish the participants: (a) number of

different representations of chromosomes used to reason about meiosis, and (b)

nature and timing of inclusion of different features of representations. These two

criteria determine a 'knowledge-dependent representational variability' (Kindfield,

1994). Similar to RC, this concept captures the quantity and quality of variations

in the use and generation of ERs. Expert problem solvers exhibited knowledge-

dependent representational variability, fine-tuned their diagrams according to the

nature  of  the  task,  and used  them systematically  during  reasoning.  A cyclical

approach  was  observed  in  experts'  problem  solving  process.  They  first  drew

diagrams  that  offloaded  their  mental  model,  and  then  paused  over  the  drawn

figure,  where  they  offloaded  the  computation  of  chromosomal  configurations

(essential  for correct reasoning), and then drew again to externalize and check

solutions, while also keeping track of the previous steps. Expert problem solvers

thus exhibit better working memory skills mediated by diagrams (as the cyclical

approach  indicates)  than  novices,  and  these  memory  skills  and  conceptual

knowledge co-evolve (Kindfield, 1994).
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Anzai's (1991) suggests repeated generation of ERs as an intervention to improve

RC. In a repeated physics problem solving experiment, where a student solved the

a set of problems many times, and drew diagrams for each problem every time she

solved that problem, new inference strategies were  learned  during  the  many

iterations  over time. The structure and quality of diagrams, and the relevance of

the different components and elements in relation to the solution, increased

dramatically over time, indicating that the student  learned to make better

transformations of the problem statements into sketches, diagrams and finally

abstract free body diagrams (Anzai, 1991).  Izsák (2011)  calls  this  process  of

repeated representation generation and problem solving  adaptive interpretation,

which involves cycles of ER generation and self evaluation. ERs are generated

first to interpret problems, then to solve problems; then ERs are generated again,

and they are evaluated; this process continues until one gets a grip on the problem.

The repeated generation of sketches and ERs is believed to augment thinking and

generation  of ideas relevant to the process  (Purcell  &  Gero,  1998). During

engineering design, ERs such as graphics and sketches actively bring together an

agent's explicit conceptual knowledge, cognitive experiences (Herbert, 1988) as

well as implicit understanding of system behavior. ERs can be easily and flexibly

manipulated according to the needs of the  design problem. Students  who  do

sketching  during  problem  solving  are  more  likely  to  formulate  the  problem

precisely,  meet  relatively  more  problem constraints,  and  also  produce  quality

designs solutions, indicating that sketching helps in the overall design process.

Also, different representations, such as problem statements, diagrams, equations

and verbal descriptions, all serve different purposes to students, depending on the

progress towards the solution (Cardella et al., 2006). The finding about sketching,

particularly  how it  helps  in  meeting  problem constraints,  hints  that  sketching

facilitates  the  dynamics  of  the  design  process,  and  also  understanding  the

dynamics of the product, by providing an external memory while thinking and

designing, and ultimately lowering the cognitive load (Cardella et al.,  2006). 
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Purcell & Gero's (1998) coherent and detailed review of various empirical and

theoretical accounts of sketches in engineering design argues that generation of

representations during the design process facilitates reinterpretation of the design

itself, and this eventually leads to the emergence of new ways of seeing into the

design.  For  instance,  using  a  design  process  analysis  of  participants  from

mechanical,  instructional  and architecture design,  Goel (1995) showed that  the

structure  of  their  sketches  improved  as  the  design  process  progressed.  The

designers  gradually  added precise details  to  an initial  vague sketch.  However,

during  the  process,  the  designers  often  try  out  different  design  ideas  in  the

sketches  (lateral  transformations),  one  (single/set)  of  which  is  then  narrowed

down and fixed as a theme to which details are added (vertical transformation).

These processes of lateral and vertical transformations can be seen as a result of

reinterpretation  (Purcell  &  Gero,  1998;  also  designated  as  'restructuring'  by

Cardella  et  al.,  2006).  Sketching  facilitates  reinterpretation  by  creating  a

perceptual space, and subsequently a conceptual space (Herbert, 1988), of many

relevant ideas. The best ones are then chosen for refining.

Reinterpretation through the generation of ERs is also reported by Aurigemma et

al. (2013), who observed a bioengineering researcher designing a 'Lab-on-a-chip'

(LoC) device in an integrated systems biology lab. The authors, motivated by the

distributed  and situated  cognition  frameworks,  report  that  the design activities

were driven by generation of ERs, going back and forth between the ERs and the

prototypes, and modifying both ERs and the prototype iteratively as a result of

constant reinterpretation,  in order to arrive at a well-functioning version of the

prototype. The participant iteratively went through various drawings of the device,

inscribed  (numerals  and  calculations)  on  the  drawings,  generated  her  own

drawings, imagined the structure-function relationships of the various components

of the device, and tried to map them onto the requirements (often numerical in

nature). She also used modeling and simulation software such as COMSOL and

MATLAB to explore different design possibilities and constraints, and integrated

the  results  with  the  prototype.  The  models  output  numerical  data,  which  the
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student integrated with her drawings, her imagined functioning of the design, and

the actual test results she got from the physical prototype. Much of the cognitive

activity of the student, thus, involved inferring dynamic information (in this case,

the flow of liquid through the LoC device) from multiple representations (such as

test results, drawings, and numerical data) that were all static in nature.

2.3.3 Summary

This  section  reviewed  empirical  studies  that  investigated  the  ways  in  which

students and experts established links between ERs and translated between them,

and the patterns of ER generation as well as preferences of students and experts.

Figure 2.11 below presents a summary.

Figure 2.11 Overview of the empirical studies reviewed.
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I discussed how studies (from science,  mathematics and engineering) reviewed

under  each  theme  assumed  the  classical  information  processing  model,  by

highlighting classical cognition ideas such as working memory load, information

storage, information extraction and translation. I also discussed studies that take a

relatively  neutral  stance on the nature of ERs and RC, as well  as studies that

subscribe  to  recent  cognition  theories  such  as  distributed  and/or  embodied

cognition.

In  the  following  section,  I  bring  together  the  major  themes  revealed  by  the

extensive literature review presented thus far.

2.4 Findings from the review

Below are the four  major  findings  from the  review of  theoretical  models  and

empirical studies of RC.

2.4.1 Ambiguous use of the term ‘representation’

The term 'representation' is used often in science education literature. The review

revealed that it is used in an ambiguous way, referring to internal representations,

external representations, or both. Some notable exceptions include: (a) problem

solving studies in physics education research, where the term ‘problem representa-

tions’ refers to problem solver's internal representations of the problem presented

(e. g. Chi et al., 1981), and (b) several studies explicitly using the term ERs or ex-

ternal representations (e. g. Mammino, 2008; Nakhleh & Postek, 2008), particu-

larly studies employing distributed cognition frameworks (e. g. Pande & Chan-

drasekharan, 2014; Aurigemma et al., 2013). Since the distinction between inter-

nal and external representations is not usually made, the problem of how the ex-

ternal and internal representations interact is rarely examined, particularly how

they interact to raise/lower cognitive load, and support the imagination.

One way to think about representations in science, mathematics and engineering is

to consider equations, graphs, etc. as external manifestations of experts' internal
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models. These external representations augment cognition by offloading memory/

processing as well as providing novel ways of combining elements (Aurigemma et

al., 2013; Kirsh, 2010). Another approach would be to consider these external me-

dia as providing starting points for the learner to develop rich internal representa-

tions and their manipulations. A third approach would be to consider the external

and internal representations as being coupled, and constantly interacting with each

other (Chandrasekharan, 2014). Since the literature does not make the distinction

between internal and external representations, these possibilities are not examined.

2.4.2 Different nature of ERs, and RC across disciplines

Many ERs  share  structural  commonalities  across disciplines  because  of the

intertwined nature of these disciplines. For instance, ERs in mathematics (such as

equations) appear in physics, chemistry, engineering and even biology in various

forms.  However,  there  exist  subtle  discipline-dependent  differences  between

these ERs and their affordances. Tables 1-6 below present a comparison of ERs in

chemistry, biology, physics,  mathematics and engineering across certain

comparison criteria: examples of discipline-specific problems (table 1), nature of

ERsfootnote1 (table 2), general learning difficulties and their nature (table 3), widely

used research methods (table 4), important theoretical frameworks (table 5), and

major interventions (table 6). Each table has disciplines in the first column and

criterion and specific items arranged in the second column. The disciplines (first

column) have been arranged sequentially across  rows  starting with chemistry,

followed by biology, physics,  mathematics and engineering on the basis of

(observed) increasing complexity in the nature of ERs and the RC problem.

Table 2.1 Trends in the literature on examples of problems pertaining to ERs and
RC.
Discipline Examples of problems
Chemistry 1. Balancing chemical equations, 2. Plotting concentration graphs, 

3. Imagining reaction mechanisms, 4. Imagining chemical 
equilibrium, 5. Representing chemical equilibrium
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Biology 1. Understanding biological phenomena at multiple levels of 
organization (molecular, cellular, tissue, organ, organ system, 
organism, community, ecology and evolution), 2. Correspondence 
between levels (e.g. genotype/micro with phenotype/macro)

Physics 1. Producing problem-situation representations, 2. Producing 
mathematical models of physical phenomena/entities*

Mathematic
s

1. Relating concepts of number, mathematical operations, & 
fractions to their ERs (digits, ‘+’, ‘-’ signs, decimals, etc.), 2. 
Implicit understanding of reasoning underlying symbol systems & 
symbolic operations needed for working with the mathematical 
representation

Engineering 1. Problems in designing, building devices, 2. Developing processes
and systems, 3. Creating scale models, endurance-performance 
tests, simulations, 4. Relating engineering practice to ERs

*Mistakes in mathematical representation are not considered, as most of the 
literature focuses on 'physics reasoning', and 'half-way' representations that help 
in the process of formalization. Such representations are needed before the final 
mathematical equations.

Table 2.1 captures how the disciplines differ in the nature of problems they deal

with  in  relation  to  ERs,  although  many  problems  in  a  discipline  may  be

interdependent  and/or tightly  intertwined with those in the other.  For instance,

relating the concept of number, mathematical operations performed on numbers

and fractions to their ERs (problem in mathematics) is fundamentally linked to

balancing chemical equations (chemistry).

Table 2.2 Trends in the examples of ERs and their nature.

Discipline ERs and their nature
Chemistry 1. Periodic table, 2. Chemical equations, 3. Concentration-energy 

graphs, 4. Molecular diagrams, 5. Observable properties, 6. 
Animations & simulations
(Well defined, convention/rule-based, constrained – i.e. not very 
flexible, little scope for generation)

Biology 1. Biochemical pathways, 2. Structures of biomolecules, 3. 
Phylogenetic trees, 4. Computational models of complex systems
(Well defined, rule-based, inclusive of but more diverse than 
chemistry ERs)
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Physics 1. Problem statements, 2. Problem situation, 3. Sketches & 
diagrams, 4. Mathematical equations, 5. Simulations
(Less defined, more customizable & less constrained, provides 
space for free ER generation) 

Mathematic
s

1. Digits, 2. Mathematical operations/procedures, 3. Symbols, 4. 
Equations, 5. Functions, 6. Charts, 7. Diagrams
(Well defined but more complicated ER system; allows 
representing a concept entirely using different representations)

Engineering 1. Text, 2. Materials, 3. Inscriptions, sketches & drawings, 4. 
Mathematical formulae, equations & functions, 5. Prototypes & 
physical models
(highly open ended, more complicated than the previous cases, 
use ERs from multiple disciplines) 

As can be noticed in table 2.2, ERs in chemistry are more defined and constrained

in nature than those in other disciplines. For instance, there are certain

conventions that guide the denoting of chemical elements, compounds and other

substances, writing chemical equations, plotting graphs, and drawing

atomic/molecular diagrams. The periodic table is a well defined, conventionalized

and compact representation of chemical elements, and their properties, and  is

fundamental to chemistry. Given these conventions, one has very little scope to

freely generate ERs and/or alter standard chemical representations while learning/

doing chemistry. There are thus  limitations to the manner  of  using ERs in

chemistry. ERs in biology are more diverse than those in chemistry. Biology

inherits certain representational systems (ERs) from chemistry, for example,

chemical/biochemical equations,  graphs. Phylogenetic trees in biology, like

chemical equations, are ERs that are strictly conventionalized. However, macro-

level biological diagrams and descriptions are quite flexible for customized usage.

ERs in mathematics are highly conventionalized and rule-based. But unlike

chemistry, a single concept in mathematics (such as a ‘number’; figure 2.12) can

be represented in multiple ways. 
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Figure 2.12 Multiple representations in mathematics. (a) Numeral '8' can be represented in various
forms.  For  instance,  '2  +  6'  and  '8'  are  both  in  symbolic  form,  but  are  different  kinds  of
representations for the same concept. (b) Fraction ¼ can be represented in different ways.  This
makes RC in mathematics more complex to define and characterize. Lesh, Post and Behr (1987)
suggest two categories of such representations; opaque and transparent. For instance, in (a), the
representation 'eight'  and 'four black ovals'  convey the exact  amount of information about the
entity they represent (here a number). However, consider the representation '2x4' which leads to
the  number/quantity  '8',  but  in  addition  conveys  that  the  '8'  is  a  multiple  of  2  (or  4).  This
information  is  not  conveyed  by  the  earlier  two  representations.  In  this  case,  the  earlier  two
representations are transparent, whereas the latter is an example of opaque representation (Zazkis
and  Gadowsky,  2001). Students  often  ignore/overlook  the  transparent  or  opaque  nature  of
representations when they are asked questions based on these representations.

This makes usage of ERs in mathematics  more flexible for the learner or doer.

Physicists employ mathematical ERs and representational systems in solving

physics problems. Use of diagrams in physics is conventionalized, but the learner

has enough space to generate diagrams in her  own way; she  can scribble and

represent situations under study in multiple ways and perspectives. Engineering

borrows ERs from many of these disciplines, and from areas other than the core

scientific domains, such as  social sciences, humanities, economics, etc. There is

ample space for engineers to freely  generate and play with ERs, prototypes and

models.

It is extremely difficult to use one kind of external representation to capture every

detail (feature) of the entity or phenomenon it represents. Naturally this means

multiple external representations (ERs) exist  to meet  this difficulty. In addition,

each representation facilitates different perspectives towards entities and phenom-

ena, as well as different affordances or action possibilities (both implicit and ex-
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plicit).  The exposure to multiple points of views and affordances enriches one’s

experiences around what is being represented, ultimately improving  conceptual

understanding. ERs are complementary to each other in terms of the information

they convey (Ainsworth, 1999 & 2008; Kelly & Jones, 2008; Kozma & Russell,

1997; Mayer, 2005; Stieff & McCombs, 2006; Tsui & Treagust, 2003; Wilensky,

1999). On the other hand, the fact that concepts related to  scientific phenomena

and objects can be represented in multiple ways implies that these ideas are dis-

tributed across multiple representations. This means that the aspects of RC, partic-

ularly interconnecting information distributed across ERs, explaining the relation-

ships between them,  and mapping features  of one type of representation onto

those of another are different across disciplines.

2.4.3 Integration of ERs: A general cognitive difficulty

Despite the differences in the nature of ERs between all the above disciplines, it is

evident  from in table  2.3 that  the RC problem is  constituted  by the following

learning difficulties common to all the disciplines: visualization of/through ERs,

generation of ERs to represent entities and phenomena,  visualizing and under-

standing entities and phenomena from ERs, interrelating information from ERs,

and transforming between ERs.

Table 2.3 Similarities and differences between the disciplines in the nature of general learning dif -
ficulties.

Discipline Learning difficulties & their nature
Chemistry 1. Visualization, 2. Interconnection between ERs, 3. 

Representational transformation, 4. Transformation between static-
dynamic ERs, 5. Conceptual integration across ERs, 6. 
Representation abstraction

Biology 1. Understanding levels of organization, 2. Visualization, 3. 
Transition between ERs, 4. Representational transformation, 5. 
Conceptual integration across ERs

Physics 1. Visualization, 2. Transformation between static-dynamic ERs, 3. Generation of
ERs
4. Transformation between mathematical & real world physical ERs, 5. 
Representation abstraction
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Mathematic
s

1. Transformation between spatial (e.g. area/volume) & numerical (e.g. 
units/numbers) ERs, 2. Generating ERs, equations, 3. Thinking in 
equations/functions, 4. Comprehending problem representation-situation, 6. 
Representation abstraction

Engineering 1. Visualization, 2. Transformation between static-dynamic ERs, 3. 
Generation of ERs, 4. Modeling

Thus, difficulty in these operations underlies mastering ERs in a given discipline,

and this difficulty leads to many different learning problems in that discipline.

Supporting this view, in a specific knowledge domain, processing and understand-

ing of ERs, and the ability to fluidly generate and use ERs in an integrated fashion

(for conceptualization, discovery and communication), are indicative of expertise

in that domain. This suggests that integration of ERs (RC) is a general cognitive

difficulty.

2.4.4 Focus on classical information processing model of cognition

Commonalities between the disciplines observed in tables 2.3 through 2.6, as well

as sections 2.1 and 2.2 in the review show that most theoretical accounts of RC, as

well as empirical studies and interventions across the domains, have been either

explicitly  or implicitly  informed by classical information processing models of

cognition (Ainsworth, 1999 & 2008; Johnstone, 1982; Wilensky, 1999). 

Table 2.4 Trends in the nature of widely employed research methods across the disciplines.

Discipline Research methods
Chemistry 1. Problem posing/solving, 2. Microgenetic, 3. Ethnography, 4. 

Expert-novice, 5. Prior knowledge & RC correlation, 6. Interface 
testing, 7. Eye-tracking

Biology 1. Prior knowledge & RC correlation, 2. Expert-novice, 3. Eye-tracking
4. Interface testing

Physics 1. Expert-novice, 2. ER generation & analysis, 3. Problem solving case- studies, 
4. Microgenetic, 5. Design-based research, 6. Interface testing, 7. Eye-tracking

Mathematic
s

1. Prior knowledge & RC correlation 2. Expert-novice, 3. Problem 
posing/solving, 4. ER generation

Engineering 1. Ethnography, 2. Design and problem solving case-studies, 3. 
Design-based research, 4. Interface testing
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Table 2.5 Important theoretical frameworks of RC and learning with ERs across the disciplines.

Discipline Important theoretical frameworks
Chemistry 1. Johnstone's model of three thinking levels and working memory, 

2. Wu et al.’s ER comprehension model, 3.Abstractness of 
representations, 4. Distributed and situated cognition

Biology 1. Multiple levels of organization, 2. Cube model, 3. CRM mode
Physics 1. Expert-novice qualitative differences (information processing model), 2. Meta-

representational/native competence, 3. Abstractness of representations
Mathematic
s

1. Lesh Translation Model, 2. Duval's levels of RC, 3. Abstractness of 
representations

Engineering 1. Representational chain model, 2. Lesh translation model, 3. 
Situated & distributed cognition approaches

Table 2.6   Notable trends in the major interventions across the disciplines to address the problem of  
RC.

Discipline Major interventions
Chemistry 1. Computer visualization tools (visChem, 4M:Chem), 2. Computer 

simulations, 3. Problem-based 
Curricula, 4. Conceptual change model, 5. Laboratory integration, 
6. Sequential ER introduction

Biology 1. Computer visualization tools (evolution animations), 2. Computer
simulations (Netlogo models), 3. Problem-based Curricula, 4. 
Laboratory integration

Physics 1. Computer simulations (PhET, Netlogo), 2. Problem-context-
based learning, 3. Computer visualization, 4. Virtual laboratory

Mathematic
s

1. Computer simulations (GeoGebra, Netlogo), 2. Problem-context-
based learning, 3. Virtual/physical manipulatives

Engineering 1. Computer visualization & simulations, 2. Model eliciting 
activities, 3. Design & technology activities, 4. Problem-based 
teaching-learning, 4. STEM integration

Chart  1  below presents  categories  of  theoretical  models  and empirical  studies

based on their subscription to major theories of cognition.

Three main assumptions can be isolated from the review of such models and theo-

ries. These are usually also identified with the classical information processing ap-

proaches.

(a) the mind extracts information from ERs, which acts as 'vehicles', or transmis-

sion media, for the information, 
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(b) ERs and the concepts they represent are linked through some form of informa-

tion 'translation', and (c) the translation is mediated mostly through mental capaci-

ties such as imagery and/or amodal symbolic forms, as well as working memory

(e. g. Johnstone, 1982; Gooding, 2006; Tsui & Treagust, 2013; etc.) 

These assumptions,  particularly  limited  working memory capacity  as  a  central

processing bottleneck, can be seen as influencing many intervention designs. For

instance, ER visualization software used in chemistry, interactive computer simu-

lations, and virtual laboratories, are designed to address working memory limita-

tions. Ironically, the software interventions do not seek to augment the student's

working memory and processing abilities, but only help offload some of the mem-

ory and processing load to the computer screen. Possibly because of this, such in-

terventions  have  not  been  very  successful  in  promoting  RC (De  Jong  & van

Joolingen, 1998; Rutten, van Joolingen & van der Veen, 2012). Further, by focus-

ing on the "processor capacity", as well as the inaccessible nature of the informa-

tion extraction and translation processes, these models and interventions make RC

appear mysterious. They do not focus on the cognitive as well as practice ele-

ments that could lead to RC development (For instance, how and why are certain

interventions effective in the development of RC? What role does practice play in

the RC development process, apart from enhancing working memory load abili-

ties? What is the nature of interaction between internal and external representa-

tions? What is the role played by interactivity in simulations and other software?).

Different from such load and translation accounts, a third major chunk of models

and studies take a relatively neutral stance on the nature of ERs and RC, but these

approaches do not seek to generalize, and provide detailed accounts of the cogni-

tive processes involved in ER integration. A final set of models and studies sub-

scribes to recent cognition theories such as distributed and/or embodied cogni-

tion.; However, they fail to provide a general framework for ER integration. With-

out such a general account, it is difficult to develop focused (educational) technol-

ogy interventions that support RC, particularly interventions that take into account
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the differences in ERs across different disciplines. I propose such an account in

the next chapter.

Chart 1 Categorization of theoretical models and empirical studies based on their subscription to general

cognitive theories
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Chapter 3: Towards a distributed and embodied cognition account of ER

integration

The  extensive  literature  review presented  in  the  previous  chapter  reveals  that

current work on ER integration and RC across the different disciplines fails to

provide a general framework of ER integration, without which, it is difficult to

develop  focused  educational  technology  interventions  that  support  the

development  of  ER  integration.  Hereii I  propose  a  model  of  the  cognitive

processes involved in a generic ER integration problem, and then outline a generic

account  of  the  cognitive  mechanisms  underlying  these  processes,  using

perspectives from recent cognitive theories, particularly distributed and embodied

cognition.

The model and the account I propose make explicit their departure from classical

cognitivist assumptions identified in the review in following ways:

 Firstly,  I  emphasize  the  distinction  between  internal  and  external

representations,  considering the  two  as  dynamically  coupled,  through

constant interactions between the learner and external representations. My

focus is on how different external representations are integrated. But since

this integration process is closely coupled with the formation of an internal

model  of the domain,  the model  also considers  integration  of ERs and

internal models.

 I focus on the way the cognitive system interacts with ERs, as opposed to

the view: that all ERs embed information; that this abstract information is

isolated  from the  external  structure  and pulled  inside  by  the  cognitive

system (somehow); and that cognition arises from the manipulation of this

information inside the head. Our account is thus inspired by recent ‘field’

theories of cognition, particularly the idea of ‘constitutivity’, which treats

external symbols as part of cognition. The external operations on ERs, and

the  sensorimotor  processes involved  in  these  operations,  are  part  of

cognizing the concepts instantiated by the ER (Landy et al., 2014).
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Since the focus of the new account is to help individual learners integrate ERs, I

will  be  taking  an  individual-focused  approach  to  distributed  cognition,  which

Hutchins  has recently termed 'extended cognition'  (Hutchins,  2014). He distin-

guishes it from traditional DC, which he considers a system-level theory. Simi-

larly, since representation (internal and external) is the focus of the account, I do

not consider radical embodied cognition accounts that reject internal representa-

tion (such as ecological psychology and dynamic systems theory), which consider

sensorimotor interaction with external entities  both necessary and sufficient  for

cognition. I accept the argument that sensorimotor interaction is necessary, and

develop a framework that is based on a coupling between sensorimotor interaction

and representation, using the common coding model, which is a representational-

ist position within embodied cognition (Chandrasekharan & Osbeck, 2010). The

account I develop thus includes the key tenets of DC (cognition as a process dis-

tributed across people and artifacts, interaction between internal and external rep-

resentations), and embodied cognition (enactive and modal internal models, par-

ticipatory relationship with external entities). The following are the central theo-

retical assumptions of the account I propose:

1) Internal representations have a model-like structure (mental models), and they

can  run  independent  of  external  representations,  to  provide  knowledge.  This

process provides capabilities different from the processing of external representa-

tions.

2) Internal models have an enactive/simulative nature (Nersessian, 2010; Chan-

drasekharan, 2009), and they are dynamic, with a neural network like structure.

3) Internal models interact with external ones, and they are built and extended

through this interaction process. This interaction augments cognition, and it pro-

vides capabilities different from the offline processing above.
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4) The enactive nature of internal models is the key feature that enables the pro-

cessing of dynamics, which is the central explanatory process in science and engi-

neering.

5) The integration of ERs is based on dynamics, and the mental simulation of dy-

namics.  The  motor  system  is  the  key  player  in  the  simulation  of  dynamics

(Schubotz, 2007).

6) The motor system is the central mediator in ER integration, as it is the major in-

tegrating system in the body (actions require integrating perception, propriocep-

tion, muscles, balance etc.  in complex ways), and this  integration capability  is

reused in ER integration. This explains why the enaction/interaction features pro-

vided by new-media technologies help in understanding and learning science and

engineering (and make discoveries possible using new interactive simulation sys-

tems such as  FoldIt), and also why integration of ERs based on static media is

harder. This view also explains why activity-based classroom interventions facili-

tate the integration process.

Before discussing how distributed and embodied approaches to cognition could be

extended to develop an account of the ER integration problem, I characterize the

cognitive processes involved in a generic  integration problem by developing a

model. This generic model – termed the TUF model -- can be used to examine the

different cognitive frameworks, to see which provides a better understanding of

this problem.

3.1 The TUF model: capturing the general cognitive processes involved in ER

integration

The generic case of integration of ERs in science and engineering involves the ob-

served (or described) actual dynamic behavior of a physical system (such as a fall-

ing object, a pendulum or a chemical process), an equation capturing the behavior,

and graphs that display the equation's output for some sets of values. The transi-

tion to the equation is often mediated by geometric structures, such as free-body
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diagrams,  and  there  may  be  other  structural  representations  involved,  such  a

molecular models. Broadly though, the learner needs to develop an integrated in-

ternal representation of the three modes – the phenomenon, its equation and the

graphs. If structural representations are present, the integration process has to deal

with one more level of complexity. An indicator of integration is the ability to

transform smoothly between the three modes. This transformation is difficult, be-

cause it requires shifting between spatial and numerical modes (e. g. graph and

equation), as well as dynamic and static modes (e. g. phenomenon and equation).

Even the spatial to numerical transformation requires understanding dynamics, as

the students need to understand how the values in the equation get translated into

a graph, which requires thinking of various values of equations and 'movements'

of the graph based on these values. Thus, to integrate the ERs, the student needs to

"unfreeze"  the  static  representations,  by  generating  their  dynamic  behavior  in

imagination, and then connect these dynamics with the dynamic behavior of the

phenomenon. In the other direction, students also need to be able to "freeze" the

behavior of real-world systems into equations, so that limit cases and other varia-

tions can be explored and combined. I call this model of the cognitive processes

involved in ER integration as the TUF model – transform-unfreeze-freeze model

(figure 3.1).

Figure 3.1: The TUF (transform-unfreeze-freeze) model depicting the processes involved in ER in-
tegration.
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3.2 A DC and EC-based account of the cognitive mechanisms underlying the

TUF model

The generic structure presented in figure 3.1 above suggests that a mechanism ac-

count of the cognitive processes involved in ER integration would need to address

two important questions:

 how external representations connect with imagination

 how dynamic behavior could be imagined from static external representa-

tions

The first question is related to the new view that ERs are thinking and learning de-

vices, that the process of interacting with ERs augments cognition, and that this

interaction is a central  component in forming internal  models of imperceptible

phenomena.  An account  of the interaction  process,  and its  role  in  imagination

(forming internal models), is needed to understand ER integration. 

Next, the central component of models in science and engineering is dynamics,

and the integration of ERs requires (and happens through) understanding of dy-

namics, particularly the way it is captured by ERs. The second question concerns

how this dynamics is processed by the cognitive system, specifically how it is

generated from ERs (which are mostly static), and how interactivity contributes to

the understanding of dynamics.

Once we have an understanding of these processes, we would be able to design in-

terventions, particularly new-media technology interventions that allow learners to

quickly integrate ERs. Answering these two questions is not easy, as it requires

bringing together complex literatures that cut across many areas of cognitive sci-

ence. Answering the first question requires understanding how external represen-

tations are processed by the cognitive system. In our view, this question is best ad-

dressed  within  the  distributed  cognition  (DC)  framework  (Hutchins,  1995a;

Hutchins 1995b), which was developed to study cognitive processes in complex
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(usually  technical  and  scientific)  task  environments,  particularly  environments

where external representations and other cognitive artifacts are used by groups of

people. The DC approach was first outlined by Cole and Engestrom (1993), Pea

(1993), and Salomon (1993), and apart from the currently dominant model pre-

sented by Hutchins (1995a, 1995b), significant contributions to the initial frame-

work were made by Cox (1999), Hollan, Hutchins and Kirsh (2000), and Kirsh

(1996, 2001, 2010). Most work in DC is focused on understanding how internal

and external representations work together to create and help coordinate complex

socio-technical systems. The primary unit of analysis in DC is a distributed socio-

technical system, consisting of people working together (or individually) to ac-

complish a task and the artifacts they use in the process. The people and artifacts

are described, respectively, as agents and nodes. Behavior is considered to result

from the interaction between external and internal representational structures.

The canonical example of external representational structures in DC is the use of

speed bugs in a cockpit (Hutchins, 1995a). Speed bugs are physical tabs that can

be moved over  the airspeed indicator  to  mark  critical  settings  for  a  particular

flight. When landing an aircraft, pilots have to adjust the speed at which they lose

altitude,  based  on the  weight  of  the  aircraft  during  landing for  that  particular

flight. Before the origin of the bugs, this calculation was done by pilots while do-

ing the landing operation,  using a chart  and calculations  in memory.  With the

bugs, once these markers are set between two critical speed values (based on the

weight of the aircraft for a particular flight), instead of doing a numerical compar-

ison of the current airspeed and wing configuration with critical speeds stored in

memory or a chart, pilots simply glance at the dial to see where the speed-indicat-

ing needle is in relation to the bug position (figure 3.2).
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Figure 3.2 The cockpit environment as a DC system (adapted from Chandrasekharan & Tovey,
2012).

This external representation allows pilots to 'read off' the current speed in relation

to permissible speeds using perception. They can then calibrate their actions in re-

sponse to the perceived speed difference.  The speed bugs (an external artifact)

thus lower the pilot's cognitive load at a critical time period (landing), by cutting

down on calculations  and replacing these complex cognitive operations  with a

perceptual operation. The setting of the speed bugs also leads to a public structure,

which is shared by everyone in the cockpit. This results in the coordination of ex-

pectations and actions between the pilots. These two roles of the speed bug (low-

ering cognitive load and promoting coordination between pilots) are difficult to

understand without considering the human and the artifact as forming a distributed

cognitive system.

This  account  focuses  on  memory offloading,  but  it  has  been extended  in  two

ways: 1) to show how processing, particularly mental rotation, is lowered using

external  manipulations  that  serve  as  'epistemic  actions'  (Kirsh,  2010;  Kirsh &

Maglio, 1994) and 2) how imagination is augmented by active manipulation, par-

ticularly in computational models (Chandrasekharan & Nersessian, 2015; Chan-

drasekharan, 2014; Marshal, 2007). These studies, and other similar ones showing
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how external representations are used to generate action patterns (Bodemer et al.,

2004; Martin & Schwartz, 2005) suggest that the brain 'incorporates' the external

representations  (Chandrasekharan,  2014;  Rahaman  et  al.,  2018)  as  part  of  the

imagination system. This incorporation process is considered to be driven by ac-

tions/manipulations  done  on  the  representations,  and  the  exploration  of  many

states of the representations. This incorporation view is different from the classi-

cal information processing view, where the information encoded in the representa-

tion is extracted by the cognitive system, and all cognitive operations are internal

operations done on this extracted information. The new approach suggests that ac-

tions and manipulations on ERs lead to the ERs getting incorporated -- becoming

part of the cognitive system. In this view, it would be possible to improve the

process of integration (of the imagination and the external representation), by re-

structuring the latter to support actions and manipulations, say by using new-me-

dia technology approaches, or classroom interventions based on inquiry and activ-

ities (Lehrer & Schauble, 2006; Tytler, Prain, Hubber & Waldrip, 2013). Such an

approach to developing RC would be quite different from the approach based on

cognitive  load,  as  the  incorporation  approach  tries  to  support  the  integration

process directly using manipulations and feedback, rather than through simultane-

ous presentation of ERs to lower cognitive load.

The above account provides a rudimentary 'incorporation' model of how external

representations connect with imagination (see Chandrasekharan, 2014; 2009; Ra-

haman et al, 2018, for details), and brings us to the second question: How is dy-

namics generated from static representations? Embodied cognition research ar-

gues that the brain and all cognitive processes developed for action, and the body

and the motor system are therefore closely involved in most cognitive operations.

Supporting this theoretical view, there is evidence that the motor system is used

while generating dynamic information from static images (such as system draw-

ings, see Hegarty, 2004) and vice versa. Common instances of this generation in-

clude: judging the sense of speed of a vehicle from its tire-marks (or judging tire-

marks given speed), judging the sense of force from impact marks (or judging im-

84



Chapter 3          A DC & EC Account of ER Integration

pact marks, given force), sense of movement speed from photos of action (say

soccer), sense of movement derived from drawings, cartoons, sculptures, etc. Ex-

perimental evidence for the use of the motor system in this process comes from

the work on the Two-Thirds Power Law for end-point movements such as draw-

ings and writings. The law relates the curvature of a drawing trajectory with the

tangential velocity of the movement that created the drawing/writing. The human

visual system deals more effectively with stimuli that follow this law than with

stimuli  that  do not.  When the curvature-velocity  relationship  does  not  comply

with the power law, participants misjudge the geometric and kinematic properties

of dynamic two-dimensional point-displays (Viviani & Stucchi 1989; 1992). Also,

the accuracy of visuo-manual and oculomotor 2D tracking depends on the extent

to which the target’s movement complies with the power law. This relation allows

humans to judge the speed in which something was drawn, using curvature infor-

mation, and vice versa (judge curvature given speed). This capacity is presumably

what we use when we judge speed from tire marks, and also evaluate drawings

and paintings. Recent experimental evidence shows that observers simulate the

drawing actions of a painter while observing paintings (Taylor, Witt & Grimaldi,

2012). There is also evidence that object-related hand actions are evoked while

processing written text (Bub & Masson, 2012).

Such predictions can also work the other way, where given a dynamic trace, we

can imagine and predict the static sample that comes next. In one experiment, dy-

namic traces of handwriting samples were shown to participants. They were then

shown some samples of written letters (such as l, h etc.), and asked to judge which

letter came next to the shown trace. Participants could identify the letter following

the trace more accurately (Kandel, Orliaguet & Viviani, 2000) when the trace fol-

lowed the Two-Thirds power law, i. e. the angular momentum of writing was re-

lated to curvature in a way laid out by the law. Accuracy went down significantly

for traces that did not follow this relation. Based on this and other experiments,

Viviani (2002) argues that “in formulating velocity judgements, humans have ac-

cess to some implicit knowledge of the motor rule expressed by the Two-thirds
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Power Law”. Much of the experimental evidence in this domain is about the repli-

cation of biological movements from static images, but everyday experience (such

as the tire mark case) suggests that non-biological movements can also be repli-

cated, and it is highly likely that this process also is based on motor system activa-

tion (Chandrasekharan, 2014; Schubotz, 2007). 

Box 7: TUF model summary

This account suggests that the motor system needs to be activated to start the “un-

freezing” of ERs, to generate dynamic content using the static representation. It is

possible that this activation process is difficult  to do for novices,  and enactive

computer interventions that allow manipulations on the ERs could help trigger this

activation, thus setting the unfreezing process in motion. Note that this approach

is different from the designs suggested by the cognitive load account, where ma-

nipulation of ER is not the central feature of the intervention. Also, this approach

is in synergy with the 'incorporation' account provided by recent work in distrib-

uted cognition  (Chandrasekharan,  2014;  Chandrasekharan  & Nersessian,  2015;

Rahaman et al., 2018), as it suggests manipulation of the ERs as a way of promot-

ing incorporation of the external representation with the imagination system. A re-

lated idea is that actions done on ERs with dynamic content would help improve

integration, as the action system is involved in processing dynamics, and it is also

the central integrating system in the body. This view provides an explanation for

why interactivity provided by new-media technologies helps improve understand-

ing and integration, and understanding and integration is limited with static media

(Majumdar et al., 2014).
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The  above  brief  review  of  distributed  cognition  and  embodied  cognition  ap-

proaches, and how they could together provide a general cognitive account of the

ER integration  problem,  presents  just  an  outline  of  the  way  these  theoretical

frameworks could contribute to our understanding of ER integration and RC. As

of now, the two theoretical approaches only provide a way of understanding the

“unfreezing” aspect of ER integration, and how external representations could be

incorporated into imagination. The frameworks do not provide a clear way of un-

derstanding how dynamic processes are “frozen” into equations. Future work in

these areas, particularly in close collaboration with science education research and

(new media-based) educational technology development, may help provide a bet-

ter understanding of this problem, and ER integration and RC in general. Design-

based Research (Cobb, Confrey, diSessa, Lehrer & Schauble, 2003) provides an

ideal way to bring together these disciplines to address the RC problem, as it of-

fers a way of developing interventions that could test hypotheses about RC inte-

gration as well as cognitive processes. The work reported in this thesis is focused

in this direction, focusing on new mediaiii, because, unlike static media, they pro-

vide 1) the possibility of making dynamics embedded in formal notations explicit,

and 2) action-based manipulation of this dynamics. The dynamics and the active

manipulation of the dynamics is considered central to the integration process.

Given the involvement of sensorimotor mechanisms in the incorporation, imagi-

nation and integration processes, as well as the relationships between action-per-

ception-imagination  capacities,  two  interconnected  conjectures,  with  empirical

implications, emerge from this theoretical account:

1. In this model, the development of the ER integration ability would result

in a reorganization of the cognitive system, particularly the sensorimotor

system.  This  suggests  the  way learners  perceptually  access  ERs would

change after significant training in a domain.

2. Interaction, particularly based on the sensorimotor system, would support

ER integration and its development.
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To test these predictions, and therefore our theoretical model, I conceptualized the

following two empirical projects:

The  first  project  is  situated  at  the  interface  between  chemistry  education  and

cognitive science, and sought to identify possible behavioral markers that could

track the sensorimotor changes accompanying the development of constitutivity

and ER integration, through chemistry education. Different groups of participants

with  varying  levels  of  education  in  chemistry  performed  tasks  with  general

chemistry ERs while I captured their gaze behavior. I then searched for patterns of

development  in  ER integration,  by  comparing  the  level  of  education  of  these

participants with their ER integration abilities and patterns of behavior. 

The second project sought to test the second conjecture, by answering the follow-

ing question: how can the DC and EC-based theoretical account be utilized to de-

sign and build  effective  new media-based enactive  learning  environments  that

support ER integration through sensorimotor interaction? It focused on the design,

development and testing of an interactive computer interface with fully manipula-

ble ERs, developed as an intervention to support ER integration at middle-school

level. This interface provides coupled ERs of a phenomenon to a learner, in their

static as well as dynamic states. Testing the interface also contributed to further

understanding of the predictions made by the first conjecture.
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Chapter 4: Does ER integration based on chemistry training change the sen-

sorimotor system?

This project sought to test the first conjecture – whether achieving ER integration

(i.e. expertise) results in changes in the sensorimotor system of a learner. Here, I

bring  together  perspectives  on  ER  integration,  perceptual  learning  and

constitutivity,  and  propose  that  perceptual  learning  could  emerge  with

constitutivity.  Accordingly,  markers of perceptual learning (predominantly eye-

behavior),  based  on  science  training,  are  markers  of  changes  in  cognitive

mechanisms associated with ER integration.

To test the first conjecture, I first identify expertise (ER integration) related to

training. Then markers of sensorimotor behavior, particularly eye-movements, are

identified in relation to the development ER integration, as a learner progressed in

her training.
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To  understand  any  possible  correlation  between  ER  integration  abilities  and

sensorimotor  behavior,  I  executed the following two steps of analysis,  using a

categorization task (step 1), and eye-tracking (step 2):

 Step 1: How do participants with different levels of education in chemistry

differ in ER integration abilities (or expertise)?

 Step  2:  What  are  the  sensorimotor  markers  associated  with  the

development of ER integration in chemistry?

I then considered the alternate explanation that any sensorimotor changes seen are

always present, and they are thus not necessarily markers of expertise. To test this

possibility, I did a further step of analysis, using an equation balancing task that

did not require ER integration, and tracking eye movements during this task.

 Step 3: Are these markers always present, or only triggered while solving

tasks related to ER integration?

I conducted two experiments  to  address  these questions.  In  order  to  obtain as

distinct  a  result  as  possible  in  relation  to  ER  integration  abilities,  the  first

experiment  was  conceptualized  as  an  expert-novice  investigation,  involving

chemistry  professors  (experts)  and  undergraduate  students  (novices).  These

participants (i) viewed and categorized a set of chemistry ERs, while their gaze

behavior was recorded using an eye-tracker, and (ii) balanced a set of unbalanced

chemical equations, while their gaze behavior was recorded using an eye-tracker.

To  understand  how  ER  integration  ability,  constitutivity  and  the  underlying

cognitive mechanisms develop, I replicated the experiment with two more groups

of participants, viz. pre-university students and doctoral students (experiment 2),

thus making the study a cross-sectional investigation.

During both the experiments,  I  used a Tobii  X2-60 eye-tracker  to obtain fine-

grained data on participant's  eye-movement  as they viewed the representations

and also video recorded the experiment  sessions to capture verbal and gesture

data.
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In the next sections, I discuss in detail the two experiments, and show how the

differences between the participants could be accounted for by a fine-tuning of the

sensorimotor system resulting from training in chemistry. While doing the above,

I also demonstrate several novel methods of gaze and behavior data analysis, as

well  as  visualization  and  interpretation,  based  on  the  TUF  model  and  the

theoretical  account  outlined  in  chapter  3.  These  methods  provide  important

insights  about  expert  behavior,  thus  taking  a  step  towards  behavioral

characterization of the cognitive processes involved in ER-based constitution of

concepts and integration, particularly in chemistry.

4.1 Experiment 1

The  first  experiment  sought  to  characterize  differences  in  the  ER  integration

abilities  of  participants  with  different  levels  of  expertise  and  education  in

chemistry (step 1 above). Sensorimotor markers were then identified and related

to those abilities (step 2 above). To ensure that the ER integration abilities (and

hence the sensorimotor markers) between the groups were as distinct as possible,

chemistry experts and novices were studied. Chemistry professors (experts) and

chemistry  undergraduate  students  (novices)  performed  two  tasks;  an  ER

categorization  task  (adapted  from  Kozma  &  Russell,  1997)  and  a  chemical

equation balancing task.

4.1.1 Sample

8 chemistry professors (expert group, code-named FC; 4 female) and 7 chemistry

undergraduate students (novice group, code-named UG; 4 female) from a leading

university  in  mid-western  India  volunteered  to  participate  in  the  study.

Participants  in  the  expert  group  were  involved  in  research  and  teaching  in

chemistry for  at  least  5  years  after  earning their  doctorates  in  their  respective

specializations. All the seven undergraduate students were in the fourth semester

at the time of the study. Informed consent was obtained from all participants.

Each participant individually performed two tasks during the experiment.
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4.1.2 Categorization task

This task is an adapted version of Kozma & Russell’s (1997) ER categorization

task,  which is  an ideal  tool  to  establish  differences  in  ER integration  abilities

between  experts  and  novices  (step  1).  The  task  also  provides  researchers  the

opportunity to observe participants’ interaction with ERs (step 2), as it involves

participants  viewing and categorizing  a  set  of  chemistry  ERs  into  meaningful

categories.  The  adapted  version  assessed  the  RC abilities  of  our  experts  and

novices, and tested how well our sample compared with the existing expert-novice

studies of RC. Once the expert/novice status was established,  behavior and eye-

movement data was analyzed to identify sensorimotor markers of ER integration,

by correlating them with participants’ performance.

Five  general  chemical  reactions  were  chosen  from  undergraduate  general

chemistry textbooks,  used widely in the geographical  area of the study. These

reactions  were fairly  representative  of their  respective  reaction  type,  and were

deemed familiar to undergraduate students in the area. The five reactions were: a

simple  strong acid-strong base  neutralization  reaction,  a  precipitation  reaction,

NO2-N2O4 gas equilibrium reaction, and two complex-ion equilibrium reactions.

The  task  involved  the  following  four  ERs  corresponding  to  each  reaction:  a

chemical  equation,  a  graph  (except  for  the  precipitation  reaction),  a  video  of

laboratory personnel performing the reaction in a laboratory, and a 3D molecular

animation.  Chemical  equations  and approximate graphs for each reaction were

generated using an image processing software. The graphs included: a titration

curve  (representing  the  neutralization  reaction),  a  concentration  vs.  solubility

curve (related to one of the complex-ion equilibrium reaction),  and two curves

depicting  relationships  between  temperature  vs.  concentration  (of  which  one

represented the NO2-N2O4 equilibrium and the other was related to a complex-ion

equilibrium  reaction).  No  graph  representation  was  used  for  the  precipitation

reaction.  Free  and  open  source  demonstration  videos  of  the  five  chemical

reactions were procured from on-line resources. The videos were not annotated (i.

e. they were devoid of any textual information regarding the substances, apparatus

92



Chapter 4       Sensorimotor Markers of ER Integration

or procedure involved in the demonstration). For molecular animations, to control

for  design  variation,  a  professional  3D animator  was recruited  to  develop 3D

molecular  animations  for  the  five  chemical  reactions.  The  animations  were

designed by the first author in consultation with a chemistry expert, and developed

by the 3D animator. Each animation depicted approximate molecular dynamics of

the corresponding reaction  (e.g.  displacement  of molecules  or ions,  particulate

collision,  molecular  aggregation,  etc.),  and  did  not  have  any  other  embedded

representation, such as text, narrative, graphs or equations (see Appendix 1 for a

link to a sample animation). The animations uniformly used space-filling models

of atoms/molecules and followed a CPK coloring scheme consistent with Jmol

(2014).

This  resulted  in  19  representations  (Appendix  1)  corresponding  to  the  five

different chemical reactions. To make these representations more convenient for

handling, an image of each representation was color printed and pasted on a 3×4

inch cardboard.  For animation and demonstration videos,  a static picture of an

important moment captured as a screen-shot was used for printing as a card.

4.1.3 Equation balancing task

This was a confirmation task to test if the sensorimotor markers are specific ER

integration or not (step 3). In this task, each participant was presented with six

unbalanced chemical equations (presented one after the other) of different general

chemical reactions (e.g. Hinton & Nakhleh, 1999; Nurrenbern & Pickering, 1987),

and was asked to  perform a non integration – balancing those equations, while

their eye-movements over the stimuli were captured.

This  task  exploits  an  extremely  well  established  and  popular  experimental

paradigm in  cognitive  psychology  –  interference.  If  sensorimotor  changes  are

task-general  (i.e.  not  specific  to  ER  integration),  the  participants,  particularly

experts, when presented with chemical equations (stimulus similar to one of the

stimuli  in  the  ER  integration  or  categorization  task),  would  exhibit  eye-
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movements (markers of sensorimotor changes) similar to those seen on equations

presented during the categorization task, which required ER integration.

Note that solving this task did not require imagining the dynamics of chemical

phenomena, and hence, ER integration, as balancing equations is mostly based on

algorithms.  This  task  also  intended  to  test  whether  such  a  presentation  of  a

representation (in a problem that does not require ER integration for successful

completion)  automatically  triggers  among  participants,  particularly  experts,  an

imagination of the represented chemical process.

Six chemical  equations  of  different  general  chemical  reactions  were randomly

chosen from an undergraduate textbook for this task. Unbalanced and/or partial

versions of these equations were generated and typed in appropriate font and font-

size in a text-presentation program capable of full-screen slideshow (see appendix

2  for  screenshot  of  each  equation).  Each  slide  presented  one  equation;  the

sequence of the slides/equations was predetermined, and was maintained across

participants.

Two chemistry experts and one cognitive science expert collectively discussed the

usability and validity of the ERs used in both the tasks, for content, conceptual

and  representational  appropriateness.  Their  comments  and  suggestions  were

incorporated in the ER designs before rendering the images, movies and cards for

presentation during the tasks.

4.1.4 Research questions

The  conjecture  from the  theoretical  model  was  operationally  captured  by  the

following specific research questions (RQs):

1. Do groups of participants with different levels of training in chemistry differ in

categorizing  general  chemistry  ERs  and  explaining  the  relationships  between

them? (Categorization task; step 1)

2. Do these participants differ in reasoning about the mapping between dynamic

and static ERs? (Categorization task; step 1)
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3. What eye-movement patterns do participants exhibit while observing the ERs?

What  are  the  between-group  similarities  and  differences  in  eye-movement?

(Categorization task; step 2)

4.  What  eye-movements  do  the  participants  exhibit  while  observing  static

unbalanced chemical equations? How do the groups differ? (Balancing task; step

3)

5. What  do these patterns suggest about ER integration and RC development?

(both tasks)

4.1.5 Experiment protocol

Participants performed the experiments individually. Each participant completed

the balancing task first, followed by the categorization task, to avoid any possible

priming effects (based on the exposure to different ERs of chemical reactions as

well  as  the  act  of  performing ER categorization)  while  perceiving  unbalanced

chemical equations.

Each participant sat in front of a laptop screen at a distance of 50-70 cm. The

laptop was attached with Tobii X2-60 portable eye-tracker (Tobii Technologies,

Sweden, sampling rate of 60Hz). The researcher sat next to the participant, (but

not very close, to ensure that there was no interference in gaze data collection) and

controlled the stimulus presentation using mouse and keyboard. Once both the

participant  and  the  researcher  were  comfortable  in  their  positions,  eye-tracker

calibration  procedure  (5-point  calibration,  Tobii  Technology,  2014)  was

completed before proceeding to the tasks.

4.1.5.1 Balancing task

On successful calibration of the eye tracker, the participant was introduced to the

equation balancing task and was given appropriate instructions (see Appendix 3).

The six unbalanced equations were presented as a slideshow to the participant in a

predetermined randomized sequence.  The participant  was asked to balance the

presented equation mentally, and could take as much time as s/he needed. After
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the participant was ready with an answer, s/he could tell the researcher to edit the

unbalanced equation appropriately using mouse and keyboard (e.g. enter 2 as a

coefficient to the first reactant, add a missing product, etc.) The participant could

skip solving any equation; however, s/he was not allowed to return to the skipped

problem,  to  avoid  complications  in  the  eye-behavior  data  recording  and

processing.

4.1.5.2 Categorization task

Next,  the  researcher  introduced  the  participant  to  the  categorization  task.  See

Appendix  3  for  the  instructions  each  participant  received  from the  researcher

before beginning the task. This task took place in two phases viz., ER observation

phase, and categorization phase.

In  the  ER  observation  phase,  each  participant  viewed  the  19  representations

(images  and  movies)  on  the  laptop  screen,  presented  one  at  a  time  in  a

predetermined randomized sequence. This presentation sequence was maintained

for every participant. While viewing, the participant was handed over a printed

card of the corresponding representation last viewed. There was no time limit for

viewing each representation. The animation and demonstration movies could be

played  as  many  times  as  the  participant  wished.  However,  going  back  to  a

previously  shown  representation  and  shuffling  through  cards  collected  by  the

participant was not allowed, to avoid complications in the eye-movement data.

Once the participant had viewed all the 19 representations as well as had collected

all  the  corresponding  cards  with  her,  s/he  was  asked  to  group  the  cards  into

chemically meaningful  categories.  This marked the beginning of categorization

phase.  The participant  was free to  implement  any grouping criteria,  make any

number of categories, and place any number of cards into a category. There was

no  time  limit  to  this  phase.  After  categorization,  the  participant  showed  the

researcher  the  different  categories  s/he  made,  and  justified  her  categorization

scheme in terms of relationship between the representations. The participant was

then asked to perform a second trial, i.e. one more round of categorization, with a

96



Chapter 4       Sensorimotor Markers of ER Integration

different grouping scheme. The second trial  was to facilitate  the emergence of

non-spontaneous,  well-thought  or  alternative  schemes,  if  any.  It  was  observed

during  a  pilot  study  preceding  this  experiment  that  sometimes  even  expert

participants spontaneously employed conceptually superficial grouping criteria in

the first round. Moreover, some participants had explicitly expressed their wish to

perform a second trial during the pilot.

Each participant took 15 minutes on average to complete the balancing task and

40-60 minutes for the categorization task.

4.1.6 Data Sources

The entire experiment was video recorded using a Sony camcorder (DCR SR40)

mounted on a tripod.  Eye-tracking was used to  obtain  fine-grained data  about

participants’  eye-movement  and  gaze  behavior  as  they  observed  the

representations.

The main sources of data for the experiment were: (a) researcher's documentation

of the participant responses during the balancing task, the categories made by the

participants,  and  their  verbal  justifications  during  the  categorization  task,  (b)

video recordings of the balancing and categorization processes, and (c) dynamic

eye-movement and gaze-behavior data, as well as screen-activity-capture during

the balancing task and the ER viewing phase of the categorization task.

4.1.7 Methods of verbal data analysis (step 1)

4.1.7.1 Categorization task

The video recordings were transcribed and annotated by the author with the help

of the notes collected during the study. Annotated transcripts were then coded by

the author, for analysis of the nature of categories generated during both rounds of

categorization. Based on the transcripts (participant's category justification), each

category of representations generated was assigned to one of the five different

category types using the scheme shown in table 4.1.
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Table 4.1 Category coding scheme (based on Kozma and Russell, 1997).

Nature of 
categories

Criteria Example

Conceptual Chemically meaningful combinations of 
cards, supplemented with correct 
conceptual description of grouping criteria

Associations of cards depicting 
equilibrium reactions, or 
precipitation reaction

Mixed Categories with correct or plausible 
combinations of cards, where some 
associations and/or representations are 
explained using chemical concepts while 
others are explained using visual features

A category made with, say 4 cards 
depicting equilibrium reaction, of 
which two cards are explained 
using the concept of equilibrium, 
while the other two using feature-
similarity such as Δ (heat symbol) 
and a burner

Feature-based Associations of cards explained purely on 
the basis of visual features of the 
representations grouped together

Associating an animation showing 
molecules settling down with a 
laboratory demonstration showing 
precipitation; explained in words 
such as, ‘both settling down’

Media-based Combinations of cards based on the 
medium of representation

All molecular animations as a 
category, all graphs as another, etc.

Inappropriate 
or incorrect

Incorrect or meaningless combinations of 
cards, categories not belonging to any of 
the above category types

An association between equation of
a precipitation reaction and a video 
showing effect of temperature on a 
chemical equilibrium

The  following  data  were  obtained  and  tabulated  for  each  participant  per

categorization  trial,  post-coding:  Total  number  of  cards  used,  total  number  of

categories  generated,  and number  of  categories  of  each  type  (e.  g.  number of

conceptual categories, number of media-based categories,  and so on). For each

participant,  only  the  categorization  trial  in  which  s/he  exhibited  the  highest

performance  (as  indicated  by  the  mean  number  of  conceptual  and  mixed

categories, in contrast to media-based or feature-based categories) was considered

for group level analysis – hereafter referred to as the ‘best of two’. Means and

standard deviations were calculated from these data for each group. A student t-

test was performed to check for significance of between-group differences.

4.1.7.2 Balancing task

This task was conducted to test if the sensorimotor changes are task-general (i.e.

not  specific  to  ER integration),  and if  a  context-independent  presentation  of  a
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representation automatically triggers among participants, particularly experts, an

imagination of the represented chemical process. Given this goal, the accuracy

results of participants were not considered for analysis.  This was a confirmation

task.

4.1.8 Methods of eye-behavior data analysis (steps 2 & 3)

4.1.8.1 Categorization task (step 2)

The unprocessed raw data collected during the viewing phase of this task are in

the form of dynamic screen-activity recordings (video), and time-stamped logs of

eye and mouse activity. For a detailed analysis, these data needed to be filtered

and  refined  using  Tobii  Studio  (gaze-data  analysis  package  from  Tobii

Technology).  Tobii  Studio  version  3.2  (Tobii  Technology,  2014)  was  used  to

analyze the eye-tracking data. In the first step, separate segments of viewing data

per representation (see section 5.4.2 of Tobii Studio User’s Manual Version 3.4.5

for  procedure  details)  were  generated  for  each  participant.  For  a  total  of  19

representations,  the  segmentation  yielded  19  segments  per  participant.  The

segments  from all  the  participants,  for  each  representation,  were  compiled  to

generate  a  scene.  Each  scene  thus  contained  the  viewing  data  for  all  the

participants for the corresponding representation (e.g. Scene-A would have all the

participants’ segments for representation 'A', similarly, scene-B would have all the

participants' viewing data for representation B, and so on). This yielded a total of

19 scenes for the 19 different representations. The following data were generated

per scene (i.e. per representation), for each participant: Total viewing duration in

seconds  (i.e.  time  spent  viewing  that  scene  or  representation),  mean  viewing

duration in seconds, total number of saccades, and mean number of saccades. A

saccade is  defined as a  rapid movement  of  the eyes  between two consecutive

fixations  (Tobii  Technology,  2014;  see  Appendix  4  for  gaze  parameter

definitions).

To obtain specific gaze-data, different non-overlapping Areas of Interest (AOIs)

were defined and generated for each of the 19 scenes. I report data related to a
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total of 9 scenes corresponding to the static representations (i. e. 4 graphs and 5

equations),  as  the  analysis  of  gaze-data  related  to  the  remaining  10  dynamic

scenes (animations and demonstration videos) were not done, as this is beyond the

scope of this dissertation due to the extreme complexity involved. Four AOIs were

created for scenes corresponding to graphs: origin, X-axis, Y-axis, and curve(s)

(see  figure  4.1a).  The  scenes  corresponding  to  chemical  equations  had  the

following AOIs: arrow, reactant-1 (R1), reactant-2 (R2), and so on, and product-1

(P1), product-2 (P2) and so on (figure 4.1b).

Figure  4.1  AOIs  for  (a)  graph  representations,  (b)  chemical  equations.  Each  shaded box is  a
separate AOI. AOI shapes and sizes may differ from scene to scene.

The following data were generated per AOI per scene, for each participant: Total

viewing duration in seconds, fixation index (count), fixation duration in seconds,

saccade index, and AOI hit (shown as either 1 or 0; 1 denotes that activity was

recorded in that AOI, whereas 0 indicates that no activity happened in that AOI).

To compare the two groups of participants, the following metrics were calculated

for each group using these data: mean viewing duration in seconds per scene for

equations,  graphs,  animations  and  demonstration  videos;  mean  number  of

saccades per scene for equations, graphs, animations and demonstration videos;

mean and percent fixation count, mean and percent fixation duration.

Further, I examined the nature of gaze transitions over the static ERs, i.e. graphs

and chemical equations. Gaze transitions may be identified in multiple ways, and

are understood as  systematic  eye-movements  between fixations.  The nature  of

gaze transitions is an important marker of comparison and integration between

two AOIs and/or representations, and the content they embed. For our analysis, a
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transition is an event between any two successive eye-fixations occurring in two

different  AOIs.  Note  that  gaze  transitions  are  not  the  same  as  saccades.  As

discussed  earlier,  saccades  are  the  eye  movements  between  two  consecutive

fixations, irrespective of AOIs. Transitions, however, are those saccades between

consecutive fixations happening between two different AOIs. Consider two AOIs

x and y,  for instance; now suppose if the first few fixations happen in x and the

next  fixation(s)  happen in  y,  our  algorithm would  register  only  one  transition

between x and  y. However, the eye-tracker will register many saccades between

the fixations irrespective of  x and  y. Hence, all transitions are saccades, but all

saccades are  not transitions.  See Appendix 5 for details  of the processing and

analysis steps taken to generate transition data.

For  the  graph  representations,  I  discuss  transitions  with  respect  to  transition

diagrams composed of different boxes and links between them. The boxes refer to

the different AOIs, links between them refer to transitions and the direction of

each link refers to the direction of that transition.

For chemical equations, I split the transitions into two types: long transitions and

short  transitions.  Long transitions are defined as the gaze transitions occurring

within  two  distantly  related  AOIs,  whereas  short  transitions  are  the  gaze

transitions happening over two closely related AOIs. For instance, in figure 4.2

below, any direct transition between the two reactants (R1 and R2) or between the

two products (P1 and P2) would be counted as a short transition or short jump,

while transitions between a reactant (say R2) and a product (say P1) would be

counted as long transitions or long jumps. 

Figure 4.2 Long and short jumps between AOIs of a chemical equation.
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Note that ‘short’ and ‘long’ refer to the conceptual relation between the AOIs and

not  the  spatial  relation  between  the  AOIs  in  the  representation.  Therefore,

transitions between R2 and P1 are treated as long transitions, irrespective of how

closely they are situated in space. This is because they are on two different sides

of  a  balanced  chemical  equation/process.  In  short,  long  transitions  signify

transitions  between  reactants  and  products,  whereas  short  transitions  signify

transitions within either reactants or products.

Two unique overall indicators of the specific gaze activity, inertia and volatility,

were defined and calculated using the transition data as follows:

Inertia =  the number of transitions made to the same AOI/total number of

transitions

Volatility = 1 – inertia

In other words, volatility indicates how flexible a participant is in moving between

new AOIs and exploring novel relationships between AOIs. Inertia is a measure of

how fixated a participant is to one or a limited set of AOIs.

Findings from some of the existing work (e.g. Cook, 2006) suggest that novices

are likely to exhibit either very high or very low inertia values. This is because

they  may  ‘see’  only  limited  relations  between  ERs  or  their  elements  or  are

desperately looking for relations all over the place and are clueless about where to

look for such relations. Experts, on the other hand, are expected to show moderate

inertia/volatility values as they are neither fixated at one AOI nor clueless about

the relations.

4.1.8.2 Balancing task (step 3)

The data analysis protocol was similar to the one followed in analyzing gaze data

obtained while participants viewed chemical equations during the categorization

task. However,  parameters relating to visual attention only,  such as number of

fixations and fixation duration, were ignored, as the attention patterns are likely to

be different in the two tasks, even if the same equation is presented, due to the
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inherent differences in the nature of these tasks. While discussing eye-movement

results in this task, emphasis is, thus, given ton more general parameters related to

the perception  process,  such as the nature of transitions  and volatility,  than to

parameters of attention.

AOIs similar to those depicted in figure 4.1b were used to extract total viewing

duration in seconds, fixation index (count), fixation duration in seconds, saccade

index, and AOI hit. The number of transitions between the AOIs were calculated

using  this  data,  which  were  subjected  to  further  classification  similar  to  that

described in figure 4.2. Inertia and volatility measures were also obtained from the

transition data.

4.1.9 Findings

4.1.9.1. Step 1 (RQs 1 and 2) -- Establishing ER integration differences

Unlike results from previous studies (e.g. Kozma & Russell, 1997), our experts

and novices did not differ in the total number of categories generated (experts =

38, novices = 40), mean number of categories made (experts mean = 4.75, S.D. =

1.66; novices mean = 5.71, S.D. = 1.11), average number of cards used (experts =

17.75, S.D. = 0.89; novices = 18, S.D. = 2.44) and the average number of cards

used in a category (experts  mean = 3.62, S.D. = 0.83; novices = 3.73, S.D. =

0.98). However, experts made significantly more conceptual categories (mean =

1.5, S.D. = 1.19) than novices (mean = 0.28, S.D. = 0.49). They also tended to

make significantly more mixed categories (mean = 1.83, S.D. = 0.65) than novices

(mean = 0.71, S.D. = 0.76) on average (RQ 1). Table 4.2 shows the mean category

distribution for the two participant groups across the above defined five types of

categories (best of two).

Table 4.2 Nature of categories for experts and novices (best of two rounds/trials)

Group/Nature of category Experts (Mean) Novices (Mean)

Conceptual 1.5 (1.19)* 0.28 (0.49)*

Mixed 1.83 (0.65)** 0.71 (0.76)**

Surface feature-based 1.16 (0.83)** 3.29 (1.38)**
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Media-based 0.67 (1.07) 0.57 (0.53)

Inappropriate 0 (0)* 0.85 (1.07)*

*significant at p<.05, **significant at p<.01 between the groups.

The two groups also differed significantly in relying on feature-based criteria for

categorization (mean feature-based categories for experts, mean = 1.16, S.D. =

0.83; for novices, mean = 3.29, S.D. = 1.38). However, the two groups did not

differ in the number of media-based categories (mean for experts = 0.67, S.D. =

1.07;  mean  for  novices  =  0.57,  S.D.  =  0.53).  Every  novice  made  nearly  one

incorrect or inappropriate ER combination per trial on an average (mean = 0.85,

S.D.  1.07),  unlike  experts  who did  not  provide  any inappropriate  or  incorrect

justification.

Participants from both the groups seemed to struggle in interpreting animations

(RQ 2), although only one of them (an expert, FC1) reported this explicitly.

“To be  very  frank..  this  molecule  thing (pointing to  animation  cards)..  I  was  a  little
(unsure – shakes hand). Because…No.. I’m really confused with these ones (pointing to
the three ungrouped animation cards).” (FC1)

A  few  experts  and  one  novice  (UG4)  interpreted  molecular  dynamics  more

accurately than their other group-mates. Though only one novice (UG6) had left

an animation uncategorized, as opposed to three experts (FC1, FC2, and FC6 –

who  left  3,  2  and  2  animations  uncategorized  respectively),  more  animations

ended up under the relatively low rated feature-based, media-based, and incorrect

or inappropriate categories for novices than experts. This is also consistent with

the nature of categories  novices made. Participants  from both the groups were

similar in reporting details of molecular dynamics while explaining animations.

However, experts were slightly better at linking the molecular dynamics depicted

in animations with other ERs, in a chemically appropriate manner, while novices

were often overconfident about their interpretations of animations, among other

ERs. 

Experts' reasoning for the mappings between animations and other ERs often went

beyond the immediate ‘chemical’ inferences drawn from events observable in the
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animations (such as molecular aggregation, breaking or formation of molecules,

etc.) Not only did experts describe the process dynamics of chemical reactions

under  a  set  of  conditions  (RQ  2),  but  they  also  explained  how  the  reaction

dynamics may change if a certain condition during the chemical process is altered.

For instance, an expert – FC5 – provided the following justification on grouping

ERs related to solubility and precipitation phenomena together:

“When you add ammonia.. you are getting silver ammoniate. Now this solubility.. in the
beginning  it  increases  with  the  concentration...  whenever  you  add  the  precipitating
reagent you are getting a precipitate.  When you are adding a different  amount of the
precipitating  reagent,  that  amounts  in  the  complete  precipitate.  But  when  you  add
excess... that results in dissolution. That is what is (also) reflected in this.. suppose if you
add.. PbI2 you are getting a solid. But (if) you add excess of K.. ultimately you are getting
a clear solution.” (FC5)

It is clear from the underlined fragments of FC5’s statement that she imagined

counter-factual situations, or situations that were beyond the currently represented

information  during  the  task,  as  none  of  the  ERs  included  in  this  task  which

represented  precipitation  reaction  between  KI  and  PbI2 had  any  explicit

information about adding excess of K or its effect on the precipitation dynamics.

Next, in relation to the identification of general behavior patterns (RQ 3), two

experts began the categorization phase by first arranging the cards medium-wise,

and then proceeded to relate the ERs (figure 4.3). These initial actions, termed

‘epistemic actions’ (Kirsh & Maglio, 1994), help organize the task space and are

known to reduce cognitive load.
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Figure 4.3 An episode of epistemic actions – in (1), she is seen sorting the cards media-wise and
keeping them on the table  as  four  different  stacks.  With such  an arrangement,  she is  able  to
decrease the chaos and ‘see’ conceptual relationships between the cards. In (2) she picks up two
cards from the stack of chemical equations and compares them, while the other three sets of cards
(animations, video-snapshots and graphs) lie on the table. In (3), the participant has spread all the
equation cards  – another  epistemic action performed to improve perceptual  reach.  She is also
spotted comparing the graph cards (held one in each hand) either with each other or the equation
cards. In (4 and 5), FC2 can be seen comparing different cards and placing them together. (6)
depicts the completion of FC2’s categorization task.

A few other expert participants found it useful to initially spread the cards on the

table in no particular fashion – another instance of epistemic action, performed

possibly to obtain an overview of all the cards together.

4.1.9.2.  Step  2  (RQs  3  and  5;  gaze-behavior  data):  --  Identification  of

sensorimotor markers

Novices spent more time viewing each representation than the experts on average

(table  4.3).  Novices  also  recorded  significantly  more  saccades  per  scene  than

experts (p<.01, table 4.4). These viewing duration as well as saccade results are

consistent with results from Cook et al., (2008) and Kohl and Finkelstein (2008).

Table 4.3 Mean viewing duration in seconds per scene

Group/Nature of 
category

Experts (Mean) Novices (Mean)

Equations 13.65 (8.45) 26.94 (21.84)

Graphs 21.43 (12.44) 35.25 (24.06)

Animations 38.75 (26.34) 69.65 (31.76)

106



Chapter 4       Sensorimotor Markers of ER Integration

Demonstrations 64.98 (38.18) 125.28 (73.11)

Note: Differences not statistically significant.

Table 4.4 Mean saccades per scene across the different representation media

Group/Nature of 
category

Experts (Mean) Novices (Mean)

Equations 66.37 (49.30) 131.68 (108.11)

Graphs 100.22 (73.39) 169.91 (100.59)

Animations 90.22 (56.69) 142.17 (72.64)

Demonstrations 171.9 (109.75) 354.34 (227.91)

Note: All the between group values are significant at p<.01.

Novices  also  spent  more  time,  as  well  as  fixated  more  number  of  times,  on

average, in each AOI across all the equations than experts (figures 4.4 a & b;

difference not significant).

Figure 4.4. (a) Mean fixation duration per AOI, (b) Mean fixation count per AOI, across all the
equations.

Interestingly,  participants  in  both  the  groups  seemed  to  find  more  relevant

information  about  chemical  equations  from  the  reactant-related  AOIs  of  the

equations  than  the  products,  or  the  process  symbol  –  arrow.  Both  the  groups

combined spent 63% of the total  fixation time in the reactant  AOIs across all

equations, against just 34% in the product AOIs (Significant at p<0.0001). Similar

trends were observed for fixation count presented in figure 4.5 below.
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Figure 4.5. Percent fixation duration (blue) and percent fixation count (red) for rounded up AOIs
across all the chemical equations.

Across the graphical representations, novices spent longer in all the AOIs (except

Y-axis), and visited the AOIs more frequently on average than experts (figure 4.6,

difference statistically not significant).

Figure 4.6 (a) Mean fixation duration per AOI, (b) Mean fixation count per AOI, across all the
graphical representations.

From the gaze transition data, I found that experts and novices did not differ in the

number of between-AOI transitions across graphical representations (experts: total

= 662 transitions,  mean = 20.69 per  graph, S.D. = 3.64;  novices:  total  =  541

transitions, mean = 19.32 per graph, S.D. = 7.91). Figure 4.7 shows a normalized

distribution  of  transitions  for  experts  and novices  between  the  different  AOIs

across the graph representations.
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Figure 4.7 Percent transitions between AOIs averaged across all graphical representations. Each 
box represents an AOI. Direction of the arrow indicates direction of the transition. The thickness 
and the numbers on the arrows indicate the relative number of transitions between those two AOIs.
FC = experts, UG = novices.

Experts  transited  more  frequently  between  the  curve  and  Y-axis  AOIs  by  a

considerable margin than between the curve and X-axis AOIs. Novices showed

the  exact  opposite  pattern;  however,  neither  within-group  nor  between-group

differences  were  statistically  significant.  Coincidentally,  X-axis  in  each  graph

showed the independent variable, whereas Y-axis depicted the dependent variable.

The dependent variable indicates properties of a reaction system. Experts appear

to  be  interested  in  deriving  meaning  from  how  the  dependent  variable  is

responding to the independent variable (process dynamics – RQs 2 and 4), while

novices may be trying to figure out what would the response be. However, this

can only be speculated from the gaze patterns, as none of the experts’ transcripts

reveal any corroborative evidence.  Both the groups exhibit  frequent transitions

between the curve of the graph and the axes (close to 80%). Transitions between

the two axes are relatively less frequent, while transitions to and from the origin

are negligible.

For equations, there was no difference in the number of transitions between the

two groups (experts: sum = 323 transitions, mean = 13.46 per equation, and S.D.
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= 5.66; novices: sum = 258 transitions, mean = 12.9 per equation, S.D. = 5.57).

However,  experts  performed significantly  more long transitions  (mean = 6.58,

S.D. = 1.39) than novices (mean = 3.95, S.D. = 1.06) at p = 0.001. Novices tended

to perform significantly more short transitions (mean = 8.95, S.D. = 1.48) than the

experts (mean = 6.75, S.D. = 1.2) at p=.01 (figure 4.8).

Figure 4.8 Box plots depicting (a) mean number of long transitions performed by experts and 
novices, differences significant at p=0.001; and (b) Short transitions for experts (FC) and novices 
(UG), differences significant at p=0.01. 

Experts’ gaze transitions have significantly larger proportion of long transitions

(mean percent = 48.92, S.D. = 4.23) than novices (mean percent = 30.62, S.D. =

2.58). Conversely, they tend to perform significantly fewer short transitions than

the novices (Figure 4.9).

Figure 4.9 Box plots showing percent long transitions made by experts (FC) and novices (UG) 
across all the equations. An inverse would show percent short transitions.

In terms of volatility across all equations– a general measure of how flexible a

participant  is  to explore different  parts  of a  representations  in relation  to each

other, novices show a significantly lower mean volatility index of 0.25 (S.D. =
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0.09) in relation to experts’ mean value of 0.33 (S.D. = 0.05) at p = 0.05 (figure

4.10). In other words, experts are almost 1.5 times more flexible in navigating or

exploring the different AOIs while observing equations.

Figure 4.10 Volatility box-plots for all equations. Experts show a mean volatility index of 0.33 as
opposed to novices whose index 0.25. The difference is significant at p=0.05.

Across  the  graphical  representations,  the  between-group  difference  is  not

significant  (figure  4.11).  However,  novices  show considerably  lower  volatility

values (experts mean = 0.38, S.D. = 0.05; novices mean = 0.33, S.D. = 0.06).

Figure 4.11 Volatility box-plots across all graphical representations. Values are statistically not
significant.

4.1.9.3.  Step  3  (RQ  4,  equation-balancing  task)  --  Confirming  the  relation

between ER integration and sensorimotor markers 

There was no difference between experts and novices in terms of the proportion of

long transitions while viewing the unbalanced chemical equations. On an average,
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26.82 percent transitions of the total transitions experts made were long transitions

(S.D.  =  5.49),  while  the  proportion  of  long  transitions  for  novices  was  26.4

percent (S.D. = 6.64). However, the proportion of long transitions for both the

groups  are  consistently  lower  than  those  each  group  exhibited  during  the

categorization task.

The two groups did not vary in terms of volatility values: For experts, the mean

volatility  index was 0.47 (S.D.  = 0.09);  whereas  novices  recorded a  volatility

index  of  0.41  (S.D.  =  0.05).  However,  unlike  the  long  transition  values,  the

volatility values are consistently higher for both the groups than those observed

for the groups during the categorization task. This between-task difference could

be a result of the inherent differences in the nature of the tasks.

4.1.10 Discussion

Step 1 results show that chemistry professors (experts, FC) were more competent

at  conceptually  relating  and  grouping  ERs  than  novices.  The  statistically

significant differences in the nature of categories between the two groups match

the relative  competence  levels  reported  in  previous  expert-novice studies.  The

categorization schemes also indicate that novices rely more on surface-features of

ERs and find it difficult to infer and imagine chemical reaction dynamics.

Analysis of experts’ verbal responses related to category justification, in terms of

ER relationships, revealed that not only did some experts ‘unfreeze’ successfully

the components of static ERs, into an understanding of their dynamic behavior in

relation  to  other  representations,  but  also  imagined  certain  counterfactual

situations, as well as how the behavior of those components would be affected

under  such  situations.  For  instance,  none  of  the  ERs  related  to  precipitation

reaction between KI and PbI2 included in the categorization task had any explicit

information about adding excess of K or its effect on the precipitation dynamics.

However, FC5 – an expert – imagined beyond the 'given' information in the ERs,

and explained verbally how solubility of the elements and compounds involved in

such reactions is affected in relation to their concentration.  While provision of
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conceptual  explanations  of  this  kind  is  a  commonly  reported  characteristic  of

domain expertise (e. g. Chi, Feltovich & Glaser, 1981), our interpretation focuses

on the ability to imagine counterfactual dynamics related to chemical processes.

Interestingly, in step 2 analysis, some experts were found to use strategies such as

spreading the cards on the table and/or devise preliminary criteria to arrange the

ERs on the table, etc., before proceeding to form finer categories. All these actions

are identified as ‘epistemic actions’, which experts in various domains are known

to perform, in order to change certain structures in their environment to search for

a solution or strategy while performing a task, and/or lower the cognitive load

generated in a situation (Kirsh, 2010), as well as see newer relationships between

the ERs (Aurigemma et al., 2013). Kirsh and Maglio (1994) contrast epistemic

actions  with  pragmatic  actions,  in  that  performing  the  latter  brings  a  person

physically closer to the solution of the problem, while not serving any specific

cognitive role (although they may end up playing such a role). The actions some

of  our  experts  performed,  such  as  those  illustrated  in  figure  5.3,  cannot  be

considered as pragmatic actions given their role in helping the experts gain newer

insights into the relationships between the ERs. It is clear that these relationships,

on whose basis the experts refined their categories, ‘appeared’ to the experts after

they spread the cards on the table or arranged them media-wise initially.  Why

would they otherwise refine their categories? Their epistemic actions helped them

organize the task space and eventually related the ERs in newer ways that were

either partially imagined in the beginning or not imagined at all.

Further support on the distinction between experts and novices from eye-tracking

revealed that the gaze behavior of experts is considerably different from that of

novices.  The  fixation  duration,  fixation  count,  mean  viewing  duration  and

frequency of saccades data, which indicate the time to pickup information from a

location  in  a  representation,  share  similarities  with  the  eye-tracking  results  in

Cook et al. (2008) and Kohl and Finkelstein (2008), and suggest that our novices

took significantly more time as well  as effort  to relate  the different  parts  of a
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representation in comparison to experts, who exhibited relatively stable attention

patterns.

Novices  found  it  difficult  to  bind  their  internal  representations  of  static  and

dynamic ERs into a coherent integrated mental model. This is why we see novices

making significantly fewer specific saccades (transitions), though their frequency

of overall saccades is very high. This also indicates that a high average frequency

of saccades may not necessarily mean that a participant’s search and coordination

between features of the ERs were systematic. Specific saccades are required to

establish  efficient  mappings  between  the  ERs.  Overall,  novices'  attempts  to

integrate different information in a representation, as well as across the ERs, is

haphazard.

Experts, on the other hand, were more balanced than the novices. The frequency

of  transition  between  two  AOIs  is  a  measure  of  the  comparison  made  by  a

participant  between  the  contents  of  the  AOIs  as  well  as  ER  integration

(Holsanova, 2014). Novices' gaze transitions across equations were skewed more

towards ‘within the reactant and product species’, pointing to fewer attempts at

establishing  coordination  between  species  on  the  two sides  of  the  arrow of  a

dynamic  chemical  process.  For  experts,  however,  the  proportion  of  gaze

transitions between reactants and products as well as within reactants and products

is almost evenly distributed. This implies that the experts coordinated equally well

between reactants and products, and between two reactants or two products. This

is  another  evidence  pointing  to  their  relative  stability  in  navigating

representations.

For graphical representations, experts seemed to be coordinating more between

the independent variable (X-axis) and the curve; the shape of the curve ultimately

shows  the  behavior  of  dependent  variable  given  changes  in  the  independent

variable.  This indicates that the experts were interested in deriving the process

dynamics  in  terms  of  how  dependent  variable  responds  to  the  independent

variable  in  a  graph.  This  is  consistent  with  experts’  chemically  meaningful
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explanations  regarding  the  dynamics  of  the  phenomena  inferred  from ERs.  In

contrast,  novices may have tried to deduce the end product of the reaction – a

rather static understanding of the reaction (Talanquer, 2013), and faced difficulties

in  inferring  effects  of  independent  variable(s)  on  the  behavior  of  dependent

variable(s) through the shape of the curve.

Evidences from our pilot experiment in the past have indicated that this between-

group  difference  in  gaze  behavior  is  a  function  of  growing  expertise,  as

undergraduate students who performed the categorization task in ways similar to

experts (Pande & Chandrasekharan, 2014) tended to exhibit similar gaze patterns

across graph representations and equations to those of experts (Figure 4.12).

Figure 4.12 An instance of gaze behavior of an expert-like undergraduate student (Pande & 
Chandrasekharan, 2014). This student makes less fixations and equally frequent short and long 
transitions.

In contrast, the gaze patterns of a relatively novice candidate revealed a relatively 

linear sequential scanning of the equation with long pauses in between (figure 

4.13).

Figure 4.13 An instance of a novice student’s eye-gaze sequence. This student largely follows the
sequence of the equation with long pauses between transitions. He also makes twice as many short
transitions as long transitions.

This novice student did not seem to follow a particular element or molecule for its

changing states. For instance, her first 6 fixations occurred on 2KI, followed by 

another 6 fixations on the next reactant molecule. She returned to Pb(NO3)2 after 

one fixation on the arrow and a few fixations on the first product, but the fixation 
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points (14, 15 and then 16, 17) do not seem to follow any specific element, 

coefficient or subscript. Subsequent fixations (points 18-21 on PbI2 and 22-24 on 

NO3) indicated a similar pattern.

In the balancing task, no differences between the two groups in terms of gaze

behavior were observed. This indicates that ER integration is context specific and

that the presentation of chemical equations in a non-ER integration-related context

does  not  trigger  simulation  and/or  imagination  similar  to  that  involved  in  ER

integration tasks.

Experiment 2 reported in the following sections is a cross-sectional investigation, 

which aimed to explore sensorimotor markers of this ER integration development 

in chemistry, where two more groups of participants performed the categorization 

and balancing tasks.

4.2 Experiment 2 (Cross-sectional investigation of ER integration 

development)

The  first  experiment  successfully  identified  the  sensorimotor  markers  of  the

cognitive  mechanisms  underlying  ER  integration,  primarily  in  terms  of  gaze-

behavior. The second experiment sought to understand how ER integration and

the  underlying  cognitive  mechanisms  develop  during  chemistry  education,  by

studying  cross-sections  of  the  chemistry  education  process.  In  the  first

experiment, two important cross-sectional groups – chemistry professors (FC) and

undergraduate  students  (UG)  –  were  studied.  The  second  experiment

complements findings from the first experiment, by replicating the categorization

and  balancing  tasks  with  two  more  groups  of  participants  viz.,  pre-university

students and chemistry graduate students.

4.2.1 Sample

7 pre-university (i.e.  11th grade) students (code-named PU; 2 female)  pursuing

general science and mathematics courses from a junior college, and 7 chemistry

graduate  students  (GS;  all  male) pursuing  Ph.  D.  in  chemistry  from different
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major  universities  across  Western  India  volunteered  to  participate  in  the

experiment. Informed consent was obtained from all participants.

Each  participant  individually  performed  the  two  tasks  (categorization  and

balancing) during the experiment.

Data from experiment 1 for chemistry professors (FC1-FC8) and undergraduate

students (UG1-UG7) were compared with the participants from this experiment to

identify developmental trends based on education.

4.2.2 Experiment protocol and data analysis

Since  this  is  a  replication  of  experiment  1,  the  tasks,  methodology  and  data

analysis steps taken were exactly similar to experiment 1.

The  categorization  as  well  as  behavior  and  gaze  data  analysis  was  similar  to

experiment  1,  except  that  the  focus  in  this  experiment  was  solely  on  the

interaction process and not on attention. Hence, parameters such as the number of

fixation or fixation duration were ignored.

4.2.3 Findings

4.2.3.1 Step 1 (RQs 1 and 2): Establishing ER integration differences

Table 4.5 below presents the distribution of categories among the four groups of

participants.

Table 4.5 Distribution of categories across the four participant groups.

Group/Nature of
category

FC
Mean (SD)

GS
Mean (SD)

UG
Mean (SD)

PU
Mean (SD)

Conceptual 1.5 (1.19) 0.5 (0.84) 0.28 (0.49) 0.14 (0.38)

Mixed 1.83 (0.65) 1.5 (1.38) 0.71 (0.76) 1.86 (1.35)

Feature-based 1.16 (0.83) 3.0 (2.37) 3.29 (1.38) 1.29 (1.38)

Media-based 0.67 (1.07) 1.33 (2.06) 0.57 (0.53) 2.29 (2.63)

Inappropriate 0 (0) 0.83 (1.17) 0.85 (1.07) 0.86 (1.21)
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As expected, chemistry professors have the highest mean number of conceptual

categories among the four groups, while pre-university students the lowest. There

are no differences between the professors, graduate students and pre-university

students  in  the  average  mixed categories  made,  except  for  novices  who made

nearly half as mixed categories as any other group. Professors and pre-university

students  make  significantly  fewer  feature-based  categories  than  the  other  two

groups, whereas graduate students and pre-university students have slightly higher

average number of media-based categories. Finally, doctoral, undergraduate and

pre-university students were similar  in terms of making erroneous associations

between the ERs.

Figure 4.14 below presents the overall trends in the normalized proportions of the

different kinds of categories each group made in terms of stacked radar charts.

A weak developmental trend among the four cross-sectional groups is visible in

the radar charts. Starting from participants with less experience in chemistry (PU

and UG) to those with more experience (GS and FC), the radar plots show a clear

shift  from a largely  media  and feature-based categorization  scheme to a  more

conceptual one. The doctoral (GS) and undergraduate (UG) students both show

clear tendencies towards feature-based categorization schemes, whereas both the

professors (FC) and pre-university (PU) students tend to be more diverse in their

categorization schemes, although in considerably different ways.
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Figure 4.14 Radar charts showing cumulative proportion trends of category types. Each corner of a
pentagon radar plot represents a kind of ER category as indicated in the top right corner.

4.2.3.2. Step 2 (RQs 3 and 5) -- Identification of sensorimotor markers

The first experiment demonstrated how educational experience in chemistry may

be influencing the way in which participants navigate  ERs. The gaze behavior

patterns  mark  these  differences  in  navigation  and  the  underlying  cognitive

processes.  To  specifically  focus  on  navigation,  I  ignore  markers  of  attention

(parameters such as fixation count, visit duration, etc.), and discuss only dynamic

eye-movement related data from this experiment.

Figure 4.15 plots the average saccade frequency for participants  from the four

groups  while  viewing  the  different  types  of  representations  during  the

categorization task.
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Figure 4.15 Average number of saccades per representation for the four participant groups.

Undergraduates recorded significantly more saccades per representation than the

other three groups (p<.01).

In  terms  of  specific  saccades  (transitions)  across  graphical  representations,

chemistry professors transited more frequently between curve and Y-axis by a

considerable margin than between curve and X-axis (figure 4.16 below), whereas

undergraduates  showed the  exact  opposite  pattern,  as  also noted  previously in

experiment 1 results.
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Figure 4.16 Normalized transitions between AOIs of graph representations for all the groups. Each
box represents an AOI. Direction of the arrow indicates direction of the transition. The thickness
and the numbers on the arrows indicate the relative number of transitions between those two AOIs.
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Different from the professors and undergraduates, both the doctoral students and

pre-university students transited equally often between X-axis and curve, and Y-

axis and curve. The proportion of transitions between the two axes was indifferent

for all the four groups. All the groups also exhibit frequent transitions between the

curve of the graph and the axes (close to 80%) and, as can be observed from

figure 4.16, transitions between the two axes are relatively less frequent, while

transitions to and from the origin are almost negligible.

While  viewing  equations,  chemistry  professors  (mean  =  48.92,  S.D.  =  4.23),

doctoral students (mean = 51.36, S.D. = 4.08) and pre-university students (mean =

53.08, S.D. = 3.83) performed significantly higher proportion of long transitions

than undergraduates (mean = 30.62, S.D. = 1.58),  as evident  from figure 4.17

which depicts interquartile box plots for normalized proportion of long transitions

among the four groups.

Figure 4.17 Percent long transitions between the different AOIs across all equations. The means
and standard deviation values for each group are as follows: FC = 48.92 (4.23), GS = 51.36 (4.08),
UG = 30.62 (1.58) and PU = 53.08 (3.83).

Figure 4.18 below presents box plots for volatility values across all static ERs (all

equations + all graphs). 
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Figure 4.18 Box plots for volatility values across all static ERs combined (all  equations + all
graphs).

Among all  the participants,  undergraduates  were found to be the least  volatile

(mean = 0.28, S.D. = 0.09). They were an extremely inert group in terms of gaze

transitions, indicating that they hesitated in mapping between different parts of a

representation.  Although  these  differences  are  not  statistically  significant.

Chemistry professors (mean = 0.36, S.D. = 0.05) and doctoral students (mean =

0.37,  S.D.  =  0.1)  were  moderately  volatile,  while  the  pre-university  students

reported the highest volatility (mean = 0.39, S.D. = 0.07), though the differences

between the groups are only indicative and not significant. 

4.2.3.3  Step  3  (RQ  4):  Confirming  the  relation  between  ER  integration  and

sensorimotor markers

While the percent long transitions have decreased during balancing as compared

to  the  categorization  task  for  all  the  participants  on  an  average,  there  are  no

differences between the groups (figure 4.19). Mean and standard deviation values:

FC = 0.27 (0.05), GS = 0.28 (0.03), UG = 0.26 (0.07), PU = 0.31 (0.06).
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Figure 4.19 Mean percent long transitions across AOIs for all equations in the balancing task.

The four groups did not differ in terms of volatility measures while viewing the

different components of unbalanced equations presented during the balancing task

(figure 4.20). Mean and standard deviation values: FC = 0.47 (0.09), GS = 0.44

(0.10), UG = 0.41 (0.05), PU = 0.49 (0.10). 

Figure 4.20 Mean volatility values for all equations in the balancing task.

4.3 General discussion

The step 1 (categorization) results indicate a clear developmental pattern in the

ER integration abilities across the four cross-sectional groups. Professors exhibit

the  highest  ER  integration  abilities,  followed  by  graduate  students,  and  then

undergraduate  students.  The  pre-university  students  exhibit  the  lowest  ER

integration abilities.
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Step 2 analysis (eye-tracking) revealed only indicative patterns of development.

The  pre-university  students  often  exhibited  gaze  behavior  similar  to  those  of

professors;  whereas  the  graduate  students  exhibited  moderate  values  across

parameters,  although it  was expected from the results  of experiment  1 and the

categorization  trends  among  the  four  groups  in  experiment  2,  that  the  pre-

university students would exhibit significantly different gaze parameter values in

comparison to the professors. Regardless, the professors, graduate students and

pre-university students seem to conform to a weak developmental  trend across

several gaze behavior parameters. In terms of the nature of gaze transitions, for

instance,  across graphical  representations,  professors appear to be interested in

deriving meaning from how the dependent variable (curve shape) is responding to

the independent  variable  (Y-axis;  process dynamics  – RQs 2 and 4) while  the

doctoral and pre-university students seem to exhibit intermediate behavior, as it is

not clear if they are deriving or predicting the behavior of the curve by treating

values on the Y-axis independent of those on the X-axis. It could also be that they

are  corresponding  between  specific  features  of  the  curve  shape  with  specific

values  on  the  X-axis.  Similar  behavioral  trends  are  observed  in  the  volatility

values, which indicate that the pre-university students  are haphazard in terms of

their gaze behavior, perhaps as a result of confusion over mapping the different

aspects of a representation onto each other. The extremely high volatility values,

i.e. high between-AOI activity for graduate and pre-university students indicate

their instability in navigating the graphical representation. This could be possibly

be a result of confusion over mapping. The professors, who exhibited moderate

volatility values, were a relatively stable group.

This  developmental  pattern,  however,  is  disrupted when gaze-behavior  data  of

undergraduates  is  considered.  Undergraduates  always  exhibited  significantly

different gaze behavior in comparison to the other three groups, and were at one

extreme of the continuum. The distribution of their gaze-transitions between the

different AOIs of graphical representations, for instance, is exactly opposite to the

professors’ gaze-transition patterns, and qualitatively different from the graduate
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and pre-university students. Undergraduates reported the lowest volatility values –

they were  relatively  inactive  between-AOIs,  though they report  a  high overall

saccade frequency. Majority of saccades for undergraduates thus must be within-

AOI eye-movements, indicating that they were either confused or over-confident

in  integrating  the  different  AOIs  in  graphical  representations.  This  possible

confusion among undergraduates, however, is likely to be different from that of

the graduate and pre-university students.

How can such unexpected patterns be explained? The pre-university group had

just studied general chemistry, so it was fresh in their minds. While in the case of

undergraduates and graduate students, the ER integration system appears unstable

and undergoing disruptions because of exposure to a lot of new representations

and conceptual knowledge. In the case of professors, experiences with chemical

ERs have settled into relatively stable internal models. This is perhaps one reason

why pre-university  and professors exhibit  most  stable  and less skewed/diverse

categorization trends, while pre-university and graduate students are somewhere

in between and show strikingly skewed categorization, indicating sharp tendencies

towards  certain  grouping  schemes.  The  development  of  expertise  and  ER

integration seem to follow a pattern similar to the ‘development  as a complex

dynamic system’ model (Smith & Thelen, 2003), which shows that well-learned

sensorimotor skills can deteriorate when further skills are learned.

The eye-tracking results as well as the instances of epistemic actions (observed

only in the case of experts as reported in experiment 1) suggest that expertise is

accompanied by a fine-tuned sensorimotor system, which is: (i) oriented towards

picking  up  maximum  information  from  an  external  representation,  and  (ii)

involved in the task-specific reorganization of information to facilitate problem

solving.  Conjecture  1 –  stating  that  the  way learners  perceptually  access  ERs

would  change  after  significant  training  in  a  domain  –  can  thus  be  said  to  be

broadly supported by the evidence. Once fine-tuned through ER-based training,

the  sensorimotor  system  is  activated  or  simulated  on  encounter  with  ERs,

resulting in distinct sensori-motor behavior (Barsalou et al., 1999), in this case the
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gaze. This claim is supported by findings from the balancing task, which indicate

that the revised sensorimotor pattern is not activated outside the ER integration

context – thus refuting the alternative explanation of changes in the sensorimotor

system as a general phenomenon.

This indicative evidence in favor of conjecture 1 can be further supported by the

general observation that expert chemists make instantaneous decisions and actions

while  working on chemical  processes (such as synthesis) in laboratories.  Most

such instances are reported as anecdotes of ‘intuition’ (Kutchukian et al., 2012)

and ‘tacit knowledge’. Our study is among the first to objectively characterize the

sensorimotor changes during training, which eventually support this intuition and

tacit knowledge. This approach provides a new perspective while understanding

RC and expertise.

4.4 Limitations

Although the study involves collection and analysis  of a huge amount of eye-

movement data, the sizes of the participating groups are small, so the results are

not confirmative from the point of view of statistical testing. The results are thus

only indicative.

Another major methodological issue is that the eye-movement data in relation to

dynamic ERs (animations,  laboratory videos) were not considered for analysis.

This  is  because  the  generation  of  eye-movement  data,  as  well  as  processing

algorithms, are notoriously unreliable when dealing with dynamic stimuli (ERs),

and have recently been shown to perform barely above chance (Andersson et al.,

2016).  Moreover,  analysing  this  type  of  data  is  extremely  time,  effort  and

computation intensive.

The  project  attempted  to  identify  sensorimotor  markers  of  the  ER integration

ability and its development. Similar to most previous experiments, including those

replicated in this project, this project does not investigate the influences of (or

interferences caused by) conceptual knowledge on ER integration. It is not clear
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how conceptual knowledge and ER integration are related, and this problem is out

of the scope of the aims of this project.
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Chapter 5: Can manipulation of enactive ERs lead to integration?: exploring

the relationships between interactivity and ER integration using a design-

based research model

This  chapter  discusses  a  project  to  test  the  second  conjecture  –  sensorimotor

interaction  would  support  ER  integration  and  its  development.  The  project

involved the design, development and testing of an interactive computer interface,

with  fully  manipulable  ERs  of  a  physical  system,  as  an  intervention  to  help

learners achieve ER integration. The system allowed learners to interact with and

control  coupled  ERs  of  a  phenomenon  (oscillation)  in  their  static  as  well  as

dynamic states.

The study initially sought to build on the first project, using ERs in chemistry.

However, interaction with chemical ERs is complex and counterintuitive, at least

for a novice learner  (e.g.  interaction with real chemicals  is often not possible,

direct  interaction  with  molecules  is  impossible;  chemical  ERs  are  relatively

abstract, and ‘acting’ on them is a conceptual process). It thus seems difficult to
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dissociate conceptual understanding and ER integration in the case of chemical

representations.  Also,  it  is  nearly  impossible  to  find  naive  subjects  who  can

process representations in chemistry without understanding any of the chemical

concepts.

For  these  reasons,  I  chose  to  explore  a  simple  physical  system  and  its

representations, where learning the relationship between ERs can happen without

requiring conceptual  understanding.  Oscillation  and the ERs related to  it  were

found to be ideal, as one could interact with the ERs physically or virtually at a

more everyday world level, in contrast to, say, interacting with molecules. The

pendulum is also a physical system with simple dynamics and a trigonometric

equation that  is  relatively easy to understand.  The primary motivation  for this

multi-representational  interactive  simulation  interface  is  achieving  RC  or  ER

integration,  and not  conceptual  understanding,  although the possibilities  of  the

latter are not denied.

As  also  discussed  during  the  review in  chapter  2,  computer-based  interactive

learning  environments  are  not  new  to  science,  mathematics  and  engineering

education. There exist a vast number of animation and visualization tools, as well

as interactive simulations (de Jong & van Joolingen, 1998; Rutten, van Joolingen

& van der Veen, 2012) designed and developed primarily to improve conceptual,

phenomenon and procedural understanding among students in these fields (e.g.

Danish et  al.,  2015).  Many of these interfaces  support learners in relating and

transforming across  ERs using  three major  types  of  features:  (i)  an integrated

presentation of ERs on the same screen in order to reduce the split-attention effect

(Bodemer et al., 2004), (ii) or in a predetermined sequence to make salient the

relation between them (Boucheix et al., 2013;  Lowe & Boucheix, 2008), and (ii)

dynamic linking of ERs (Stieff & Wilensky, 2003; van der Meij & de Jong, 2006)

that  automates  the  task  of  translation  between  representations,  thus  reducing

cognitive load. Although these interventions differ significantly from each other in

the degree as well  as nature of interactivity  they support,  they can be broadly

grouped into two types: 1) Visualizations with no interactivity, or visualizations
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with minimal interactivity, where operations such as play/pause/rotate/zoom are

made possible,  and 2) variable  manipulation simulations or visualizations with

dynamically  linked  ERs  which  allow  the  user  to  make  changes  in  the  given

representations. In many systems, these changes are dynamically reflected in the

other representations.

The former category of interfaces typically present or display learners with pre-

simulated  and/or  animated  ERs  of  a  phenomenon  (often  not-to-scale)

simultaneously  or  in  a  sequence,  where  the  learner  has  either  no  or  minimal

control (such as play/pause, zooming in and out of a 2D/3D structure, audio/mute

mode, etc.) over the interface. Some examples of such interfaces are 4M:Chem,

SMV Chem (Russell &Kozma, 1994; Russell, Kozma, Becker, & Susskind, 2000)

and  VisChem  (Tasker  et  al.,  1996)  which  are  visualization  software  that

simultaneously  present  on the  screen  chemical  equations,  concentration  and/or

energy  graphs,  molecular-level  animations  and  laboratory  experiment  video.

However,  the  design  of  such  interfaces  is  currently  based  on the  information

processing theories of cognition; the central role of the interface is to reduce the

learners’  cognitive  load  (specifically  working  memory  load).  Ironically,  these

software interventions, as a result of their visually complex design and minimal

interactivity, do not seem to help the learner offload memory and processing to

the computer screen.

A second set of computer  tools such as PhET (Perkins et  al.,  2006), NetLogo

(Wilensky, 1999), Molecular Workbench (Concord Consortium, 2010), SimQuest

(van Joolingen & de Jong, 2003) are remarkably interactive and include features

such as integrated and dynamically linked ERs. (i) PhET simulations (Perkins et

al.,  2006) offer a suite of variable manipulation simulations for various topics,

with integrated and dynamically linked multiple representations of a concept, such

that  changing  parameters  of  the  physical  phenomenon  changes  its  associated

graph. (ii) NetLogo (Wilensky, 1999) is an agent-based modeling language that

allows students to create an agent-based model of complex systems and shows the

linked behavioral graph. (iii) SimQuest (van Joolingen, Wouter, de Jong, 2003) is
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an authoring system to generate  learning  environments  that  include  embedded

simulations  and adaptive  instructions  that  supports  learning through discovery.

(iv) GeoGebra, which seeks to connect geometry and algebra, which is a different

objective from PhET/Netlogo, which seeks to support the learning of individual

concepts.  GeoGebra  is  thus  closer  to  supporting  RC,  rather  than  individual

concepts  (geogebra.org).  GeoGebra is  an interactive  and dynamic  mathematics

software that allows students to construct geometrical objects with points, vectors,

segments, lines, polygons, inequalities, polynomials and functions, thus allowing

students  to  dynamically  link  diagrams  (geometry)  and  graphs  and  equations

(algebra).  These interfaces  provide the learner  with varying degrees of control

over different parameters in one or more representations, where manipulations in

that representation may reflect in other representations (such as graph, simulated

physical object/system) in real time. For instance, PhET and NetLogo simulations

provide varying degrees of control over variable (such as temperature, pressure,

speed, etc.) values, where changes in the values reflect in other representations.

Geogebra  allows  dynamic  control  over  geometrical  shapes  that  reflect  in  the

equations. Changes in the equation(s), however, have to be made through an input

(code) language.  SimQuest learning environments are very flexible in terms of

dynamic control over representations,  the degree of which may vary from one

module to the other. The structural, quantitative as well as dynamic relationships

between ERs in these and other such interfaces are, however, often implicit, as the

code is designed to simulate representations.

The learning effects of the different types of ER-based computer interfaces (for

detailed  reviews see Mayer,  2004; McElhaney et  al.,  2014) have been studied

extensively.  For  instance,  interfaces  with  dynamically  linked  multiple

representations  have  been  found  to  be  not  universally  useful  for  learning

(McElhaney et al., 2014), although learning is found to improve when students

actively  manipulate  the  ERs  to  produce  an  integrated  format,  rather  than

observing an already integrated representation (McElhaney et al., 2014). Recent

reports  also suggest that  learner  interaction and engagement  with the interface
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alone may not be sufficient for conceptual learning and may need further explicit

support from the teacher  and/or peers (e.g.  Danish et  al.,  2015; Enyedy et  al.,

2012). In summary, reports on the effectiveness of the current computer interfaces

have been mixed, and there is consensus that the expected learning benefits from

such computer interfaces have not been fully derived (de Jong & van Joolingen,

1998; Rutten, van Joolingen & van der veen, 2012).

We hypothesize that the mixed results on the effectiveness can be attributed to the

following  issues  related  to  the  current  interface  designs.  Firstly,  the  existing

computer interfaces mostly focus on improving concept learning rather than RC,

and  research  has  typically  measured  conceptual  understanding.  Intervention

designs under such a  paradigm often undermine  the roles of multiple  external

representations,  treating them merely as ‘tools to learn the concept’,  than as a

critical  component of the target concept itself (the idea of constitutivity).  As a

result, the effectiveness of such interventions for improving RC and conceptual

understanding is not clear. Interfaces specifically targeting the development of RC

(e. g. Johri & Lohani, 2011; Stieff, Hegarty & Deslongchamps, 2011; Wilder &

Brinkerhoff,  2007)  among  learners  are  few  and  far  apart  (Pande  &

Chandrasekharan,  2017).  Secondly,  as  has  been  found  through  the  theoretical

investigation in chapters 2 and 3, most interface designs are broadly based on

information processing theories of cognition, and place the emphasis on cognitive

load  and  working  memory  capacity,  rather  than  the  cognitive  mechanisms

involved  in  processing  and  integrating  ERs.  Thirdly,  the  designs  of  these

interfaces are largely influenced by the general usability principles from human-

computer  interaction  design  (Hutchins,  Hollan  &  Norman,  1985),  which  are

directly applied to the learning problem, without an understanding of how these

interactivity  principles  translate  to  the  learning  scenario  (Hutchins,  Hollan  &

Norman, 1985).

Our interface design focuses exclusively on helping students with ER integration

and  RC development,  based  on  the  conjecture  that  ER  integration  builds  on

(biological)  sensori-motor  integration.  We  consider  conceptualization  (used
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synonymously with conceptual integration in this dissertation) is a more complex

process (figure 5.1).

Figure  5.1 Conceptual  hierarchy  of  cognitive processes  involved  in  learning.  There  may be  a
continuum of processes with feedback loops in between them. 

Based on the conjecture relating the three integration processes with each other,

we  designed  an  interface  specifically  for  ER  integration,  and  not  conceptual

understanding, although conceptual learning may happen as a side effect. Further,

our interface design is rooted in the TUF model, as it interconnects the dynamics

embedded  in  the  three  ERs  of  a  simple  pendulum system:  a  dynamic  simple

pendulum,  its  trigonometric  equation,  and  a  frequency  graph. Thus,  unlike

simulation  models  with  similar  elements  such  as  Net  logo  (Wilensky,  1999),

PhET (Perkins et al., 2006) and SimQuest (van Joolingen & de Jong, 2003), our

design is derived from basic research, particularly education research examining

ER  integration,  and  our  own  theoretical  account  based  on  recent  models  of

cognition  from the  distributed  and embodied  cognition  perspectives  (Pande &

Chandrasekharan,  2017). According  to  the  TUF  model,  ERs  of  scientific

phenomena and entities typically involve a physical system (such as a pendulum

or a moving object)  or its  description,  an equation capturing its  behavior,  and

graphs  that  display  the  equations’  output  for  different  sets  of  values.  ER

integration requires the learner to develop an integrated internal representation of

the three ERs – the phenomenon, its equation and the graphs. In order to do this,

the learner needs to understand each representation separately, i.e., the dynamic

and  spatial  nature  of  the  phenomenon,  the  static  and  numerical  nature  of  the

equation, and the static and spatial nature of the graph. Next, the learner needs to

relate  the representations  in  pairs  (revisit  figure 3.1).  For instance,  the learner

must understand that the equation acts as a controller setting the behavior of the

phenomenon, that is, as the variables take on different values, each set of values

causes  the  physical  system to behave  in  a  particular  way.  This  understanding
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requires the student to “unfreeze” the static elements in the equation into dynamic

behavior  of  the  physical  system.  Conversely,  s/he  must  understand  that  the

dynamic and spatial phenomenon has been “frozen” to a different mode, namely

the  static  and  numerical  equation.  Further  s/he  must  understand  how  this

“freezing” has been done by capturing static states of dynamic ERs into symbolic

elements.

In order to start the “unfreezing” of ERs and to generate dynamics from statics,

the motor  system in the brain would need to  be (covertly)  activated to run in

simulation  mode,  as  this  neural  system  offers  the  closest  approximation  for

generating movements in imagination. It is plausible that this activation process is

difficult  for  novices  to  do  and  (new  media-based)  educational  technology

interventions  that  allow  manipulations  on  the  ERs  could  help  trigger  this

activation and thus begin the “unfreezing” process. This is the key theoretical idea

behind the design of our computer interface. I highlight that this approach differs

from the designs suggested by the cognitive load account, where manipulation of

ERs  is  not  the  central  feature  of  the  intervention.  Our  approach  is  also  in

agreement  with  the  ER  “incorporation”  idea,  developed  in  recent  work  in

distributed  cognition  (Chandrasekharan,  2014;  Chandrasekharan  & Nersessian,

2015), as it suggests that manipulation of the ERs could be a way of promoting

the “incorporation” of ERs by the imagination system, thus forming a smooth

coupling  between  internal  and  external  representational  components,  where

changes in one are integrated directly into the other. Moreover, actions done on

dynamic ERs would help students understand “freezing” the different ER states

and hence improve integration. The central idea is that actions and manipulation

require integrating multiple cognitive,  perceptual and proprioceptive inputs and

feedback  loops,  and  so  actions  and  manipulations  performed  on  ERs  in  an

interface would also trigger the neural networks involved in integration and help

in  integrating  the  ERs.  This  view  goes  beyond  the  standard  principle  that

interaction is good, by providing a mechanism explanation for why interactivity

provided  by  new-media  technologies  might  help  improve  understanding  and
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integration of ERs, and why understanding and integration is limited with static

media (Majumdar et al., 2014).

One central  feature of the system that is derived from this reasoning based on

basic cognition principles and research is the full manipulability of all the ERs in

the interface, including equations. This is a design requirement emerging from the

theoretical  model,  as  the  model  suggests  full  manipulabiliy  would  promote

integration of ERs. This design principle is derived from an embodied cognition

idea – that  actions  and manipulation,  and feedback based on these,  i.e.  motor

control, requires integrating multiple cognitive and perceptual inputs as well as

feedback loops, suggesting that actions and manipulations performed on ERs in an

interface  would  trigger/prime  the  neural  processes  involved  in  integration  of

inputs,  which  would  in  turn  help  in  integrating  the  ERs  as  well.  Apart  from

making  the  equation  components  manipulable.  This  theoretical  approach  also

introduces  in  the  system  the  controller  role  of  the  equation,  where  the  full

manipulable equation acts as a controller for the states of the other ERs, a feature

not seen in standard simulation models mentioned above, which do not present the

equation as a manipulable entity fully connected to other manipulable ERs. In this

design, students control and 'enact' the equation, and integration is hypothesized to

result from this control feature. Testing the development of ER integration based

on this design thus also involves testing these hypotheses, and by extension, the

cognitive theory that underlies it.

The learning objective of this interface was to support students in developing:

 An enactive understanding of each representation (enaction).

 A dynamic understanding of equations and graphs (‘unfreezing’ static

ERs – imagination).

 An ability to capture in imagination static states of dynamic ERs at will

(‘freezing’)

 An understanding of equations as controllers.
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 An integrated internal representation, consisting of the physical system,

equation and graph.

This study employed a design-based research (DBR) approach, involving iterative

cycles of design, development, deployment/testing, analysis and redesign (Cobb et

al., 2003; Wang & Hannafin, 2005). It emphasizes an iterative research process,

where the theories, design principles and (technological) solutions systematically

evolve  across  iterations,  ‘leading  to  a  better  understanding  of  the  process  of

intervention’ (Amiel & Reeves, 2008). The main research goal of this work was to

test whether a naïve student can understand the relationships between dynamically

linked  ERs  and  integrate  them through  embodied  interactions.  Another  major

objective of this project was methodological, particularly developing an effective

strategy (or set of strategies) to analyze student interaction with such an interface,

to unearth patterns of behavior, primarily related to gaze and mouse-control, that

could be possibly linked to ER integration/RC. This aspect of the project thus

seeks to extend the results and methods from the chemistry education project. The

DBR project involved two design-testing iterations, where findings, specifically

related to interactivity-related design features, from the first testing phase were

used to revise the design in second iteration.

The following are specific research questions this project sought to answer.

 After  interacting  with  the  interface,  can  naive  learners  imagine  and

describe  the  dynamic  relationship  between  the  following  ERs  of  an

oscillation system: 

◦ simulation of a physical system and its graph, 

◦ simulation of a physical system and its equation, and 

◦ equation and graph?

 What patterns of interaction are related to successful ER integration? How

are interactivity and ER integration related?
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 What kind of interactivity is desirable for ER integration?

This study involved two design-testing iterations.

5.1 Evolution of the simulation design: Iteration One

The  first  design  iteration  of  the  interactive  computer  simulation  interface

consisted of three versions (1.0, 1.1 and 1.2). The main design principles were:

complete manipulability of all the ERs on the interface, and a sense of control

over the ERs and their behavior experienced by the learner (Kirsh, 2010; Kirsh &

Maglio,  1994;  Chandrasekharan,  2009).  Version  1.0  of  the  interface  included

simple  2-dimensional  representations  of  a  pendulum,  a  general  form  of  the

differential  for the motion of a simple pendulum followed by its specific form

where the initial angle and length are manipulable (-45 to +45 degrees for angle;

0.1m to 1.5 m for length), and a sine-curve. Each representation was presented in

separate panels as shown in figure 5.2.  The programming tool Processing was

used to develop this version.

Figure  5.2:  Version  1.0  of  the  interface  design.  The three  components  (pendulum,  graph and
equation) are presented in separate panels on the computer screen. Each of them is manipulable,
and the instructions for manipulation are presented inside the respective panel, near the respective
representation.  To  manipulate:  (a)  the  pendulum,  click  and  drag  the  bob  to  change  the
length/angle; (b) the graph, click and drag the orange dot on the curve to change the amplitude; (c)
the equation, scrub the numbers highlighted in red to change the values.
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In this version, the focus was on the following action sequence a learner could

perform in  order  for  the  integration  of  the  ERs and embodiment  to  occur:  1)

Manipulate the pendulum to a particular length and release the pendulum at an

initial  angle to begin the simulation.  The equation of oscillation along with its

graph  is  displayed  simultaneously.  2)  Change  the  period  in  the  equation  of

oscillation. The pendulum’s length changes and it oscillates at this new period.

The  graph  is  updated  accordingly.  3)  Manipulate  the  graph  to  change  the

frequency of the sinusoid. The change in frequency is translated to a change in

length  of  the  pendulum  by  the  simulation  which  updates  the  equation  and

pendulum accordingly. 4) Repeat the same manipulations for initial angle. Table

5.1  outlines  the  design  principles  and  their  operationalization  into  respective

interface design features implemented (Majumdar et al., 2014).

Table 5.1: Design principles and their operationalization into design features.

Principle Operationalization

Multiple  representations  provide
different  perspectives  about  the
same  phenomenon  they  represent
and  are  complementary  to  each
other (Ainsworth, 1999 & 2008).

The  interface  has  three  representations  of  the  oscillation
phenomenon – a simple pendulum, an equation and a graph.

External  representations  allow
processing not possible/ difficult to
do in the mind (Kirsh, 2010).

The interface three external representations. The simulation
plots the graph of the equation/motion of the pendulum for
various  lengths  and initial  angles  of  the pendulum in real
time,  thus  simulating  the  corresponding  states  of  a
representation into others.

Cognition  emerges  from  ongoing
interaction with the world (Brooks,
1991).

The  interface  is  fully  manipulable,  i.e.,  the  learner  can
control the pendulum, equation and graph, to see how change
in each affects the other elements.

Action  patterns  can  activate
concepts,  hence  actions  and
manipulations  of  the
representations  should  be  related
to existing concepts (O’Malley &
Soyer, 2012).

The learner can interact with the pendulum by changing its
length and initial angle by clicking and dragging the mouse.
The parameters in the equation can be changed by scrubbing
the numbers highlighted in red.
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In the next version, version 1.1, emphasis was given to improving the nature of

interactions:  To  do  this,  the  previous  version  1.0  was  examined  against  the

existing  literature,  and  the  action  sequence  was  modified,  in  order  to  (a)

incorporate structured feedback to the learner during manipulation, as feedback is

necessary to complete any action, and (b) ensure too much is not happening at the

same time (reduce split  attention).  A separate  panel  for displaying instructions

was  added  to  the  top  right  corner  of  the  screen.  The  presentation  of

representations is now distributed across three screens unfolding serially as the

student advances through the different screens. A next/back button was added to

facilitate  navigation  between  the  three  screens.  The  student  interacts  with  the

pendulum in the first screen. Then the equation is added to the (second) screen;

the  student  can  manipulate  the  equation  and  pendulum  to  see  how  they  are

connected.  This helps the student understand the relation between the physical

system and its  equation.  Finally  the  graph for  the motion  of  the pendulum is

introduced in the third screen. The manipulations of changing the frequency and

initial angle from the graph were removed to reduce the complexity of interaction,

rendering the graph non-manipulable. The graph design was simplified; numerical

details  were  reduced  to  make  it  more  presentable  to  grade  VII  students.  A

play/pause button was introduced just below the pendulum panel on every screen

to control the simulation at will (e.g. pause the simulation at anytime, change the

desired  parameter  and  resume/play  the  simulation  to  observe  changes  in  the

representations). The amplitude was restricted to a maximum of 45 degrees, the

length could vary between 0.1m to 1.5m, and the simulation would stop at 15

seconds. Another important variation was the introduction of a separate panel for

displaying  the  instructions  and  information  about  the  ERs.  The  panels  were

rearranged to achieve enough and uniform separation between the representations

while  also  keeping in  mind that  the  panels  fill  the  screen well.  The  modified

interface version 1.1 is shown in figure 5.3.
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Figure 5.3 Screen 3 of version 1.1 of the first interface design iteration. Incremental introduction
of the ERs across three screens;  pendulum is introduced in the first  screen,  the second screen
includes  pendulum and equation,  followed by  introduction  of  the  graph.  Only  pendulum and
equation are manipulable. To manipulate: (a) the pendulum, click and drag the bob to change the
length/angle;  and (b) the equation, scrub the numbers highlighted in red to change the values.
Separate panel  added for text  instructions.  A play/pause button was introduced just  below the
pendulum panel  on  every  screen  to  control  the  simulation.  A next/back  button  was  added to
facilitate navigation between the three screens. The amplitude was restricted at 45 degrees, while
the length could vary between 0.1m to 1.5m. The simulation would stop at 15 seconds.

Finally,  in  version  1.2,  the  focus  was  on  extrinsic  motivation  to  ensure  rich

interaction,  and  making  the  interaction  even  more  intuitive  and  aesthetic.  To

ensure that the students actively interact with all the three representations and to

facilitate  a comprehensive exploration and ER integration,  three learning tasks

were introduced. Figure 5.4 shows a screenshot of this new interface version.
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Figure 5.4 Screen 4 of version 1.2 of the computer interface with all the representations and task 1.
From screens 1-3, respective instructions would appear in the place of tasks. Note the addition of:
(a) vertical  sliders below the equation, (b) Initial angle and length values below the pendulum
panel, and (c) learning tasks – here in screen 4, task 1 is displayed. The colors of the values in the
equation match the colors of sliders to maintain uniformity of meaning.

The interface now has six screens. Screen 1 displayed the manipulable pendulum.

Screen 2 showed the manipulable pendulum and equation/sliders,  and screen 3

had the manipulable pendulum, equation/sliders and graph. The remaining three

screens – 4, 5 and 6 had learning tasks (Appendix 6). In each learning task screen,

the instruction panel was replaced by a task panel that displayed a screenshot of a

pre-simulated curve (corresponding to different settings or combinations of the

length  and  initial  angle  of  the  pendulum),  and  learners  were  required  to

manipulate  the equation and/or pendulum to generate  a curve that matches  the

given curve by playing/pausing the simulation as required. The complexity of the

curve to be reproduced increased sequentially across the three tasks. For instance,

task 1 would require setting the initial angle and length (say at Ɵ=30 degrees and

l=0.7m) only  once  in  the  beginning (i.e.  at  t=0) and press  the  play  button  to

generate the curve; for tasks 2 and 3, one had to change the parameters more than

once – first in the beginning (at t = 0), and then again after the simulation had run

for a certain time (say at t = x, where x could be anything between 2-14 seconds).
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To change the parameter the second time, one would have to run the simulation

with the initial settings, pause it after a while (at t = x seconds, depending on the

target curve), change the parameters as required, and then resume the simulation

to complete the curve. A mechanical error of +/- 1 seconds in playing/pausing the

simulation was allowed in the simulation code. As a result, the student had a 2

second window to press pause to change a parameter in order to achieve the target

curve.

Screens  1-3  were  the  ‘free-exploration’  phase,  as  the  learner  is  exploring  the

interface with no specific goal. Screens 4-6 marked the task-specific exploration

phase, where the learner explored the interface as s/he solved the learning tasks

requiring specific manipulation.

These learning tasks were designed to encourage both actions (manipulating the

pendulum and the equation) and imagination or (mental) simulation (anticipating

the structure of the curve given a set of states of the pendulum and the equation)

in the learner, and to achieve the learning outcomes of RC, which included an

understanding of equations as dynamic entities and controllers and an integrated

internal representation, consisting of the physical system, equation and graph.

Another major change in this version was that the equation scrubbers (where left

and right “scrubbing” actions were required to change the equation parameters)

were replaced by vertical sliders. This important change in the design was inspired

by  a  recent  finding  in  numerical  cognition,  that  numbers  are  grounded  by

associating  small  magnitudes  with  ‘lower’  space  and  larger  magnitudes  with

‘upper’  space  (Fischer,  2012).  These  interactions,  particularly  with  equations,

distinguish our interface from other variable manipulation simulations (e.g. PhET;

Perkins  et  al.,  2006)  where  the  manner  in  which  values  are  changed  is  not

relevant,  whether  by  slider,  input  box  or  multiple  options.  In  fact,  a  PhET

pendulum simulation (Perkins et al, 2006) does not have the equation and graph,

and there is only one interaction on the pendulum, while  the other variable  is

manipulated  via  horizontal  sliders.  By  contrast,  our  interface  is  specifically
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designed to make the learners do certain actions which mimic the behavior of the

system so that the system can be 'enacted'  -- the learning is through a form of

participation with the system.

Table  5.2  summarizes  the  new  design  principles  and  corresponding  design

features introduced in version 1.2; table 5.3 lists some of the design features that

were revised in this version and their corresponding design principles. Table 5.4

presents  the  highlights  of  the  design  feature  comparison  between  the  three

versions.

Table 5.2 New design principles and respective features introduced in version 1.2

Principle Operationalization

Features  of  the  world  are
used directly for cognitive
operations.  Hence  the
interface  features  should
support integration directly
(Landy et al., 2014).

The interface has the physical  system, equation and graph,  along
with different  numerical  values.  The dynamic nature of elements,
and their interconnections are made transparent, so that learners can
integrate across spatial-numerical and dynamic-static modes.

The  active  self  is  critical
for  integration  of  features
(Reed, 1988).

The interface is introduced with a task-specific exploration phase in
which  the  learner  must  perform a  set  of  tasks  requiring  specific
manipulation of the interface. It was hypothesized that these tasks
were sufficiently complex in order for the learner to actively engage
in the problem solving, resulting in comprehensive exploration and
manipulation  of  the  interface  by  the  student,  so  that  the  three
representations are integrated.

Table 5.3 Revision to some design features in version 1.2 and the respective design principles.

Principle Operationalization

Action patterns can activate
concepts, hence actions and
manipulations  of  the
representations  should  be
related to existing concepts
(Fischer, 2012).

Vertical  sliders  are  introduced  to  manipulate  the  equation.  The
values  in  the  equation  can  now  be  increased  or  decreased  by
clicking  and  dragging  the  vertical  sliders  ‘up  and  down’
respectively.  The interface  seeks to make the learners  do actions
that mimic the behavior of the system, so that the system can be
'enacted' - the learning is thus through a form of participation with
the system.

The  interface  should  allow
coupling  of  internal  and

The task requires student to match a given graph. Learners change
the parameters of the pendulum/equation to generate the graph, and
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external  representations
(Chandrasekharan  &
Nersessian, 2015).

visually match the task graph to their graph. This develops learner’s
imagination  and  coupling  between  their  internal  model  and  the
external representation.

Table 5.4 Highlights of the design comparison between the interface versions.

Version/
Feature 
category

Panel/
representati
on

1.0 1.1 1.2

Manipulation

Pendulum Clicking and dragging the pendulum

Equation

Hovering over the numbers 
highlighted in red activates the 
scrubbers, clicking and dragging 
changes the values in the respective 
numbers

Vertical sliders added below
the equation. Scrubbing 
function removed from the 
numbers. Numbers in the 
equation no more 
manipulable directly. Values
in the equation can now be 
changed by clicking and 
dragging the sliders up and 
down.

Graph

Clicking and 
dragging the 
orange dot on 
the curve to 
change the 
amplitude

Not manipulable

Instruction No manipulation

Extent of 
explicit link 
between the 
representation
s/panels

Pendulum

Minimal: Symbols, numbers and 
text not connected. e.g. No explicit 
link mentioned between Ɵ and 
‘initial angle’ within or across the 
representations/panels

Moderate-to-optimum:
Corresponding values for 
initial angle and length 
shown, symbols ‘Ɵ’ and ‘l’ 
not used

Equation

Phrases ‘slider for initial 
angle (degrees)’ and ‘length 
of pendulum (meter)’ 
introduced below respective 
slider

Graph
Corresponding Ɵ and t 
values shown

Instruction No change

Position on the
screen

Pendulum Left half Top left corner Top left corner

Equation Bottom half in 
the right half 

Top centre Top centre
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Version/
Feature 
category

Panel/
representati
on

1.0 1.1 1.2

of the screen

Graph

Top centre 
half in the 
right half of 
the screen

Bottom half of the right half of the screen

Instruction

Embedded 
within the 
respective 
panel

Separate panel, top right corner

ER 
introduction

Pendulum

Simultaneous

Introduced first (screen 1)

Equation After the pendulum (screen 2)

Graph After both pendulum and equation (screen 3)

Instruction Specific instructions present on each screen

Active engagement Learner’s will
Built-in graph- 
matching/learning tasks

This version of the interface (version 1.2) was considered ready for the first DBR

exploration cycle. A two-group controlled pilot study was performed to address

the following objectives and research questions.

5.1.1 Pilot study

Iteration  1  focused  on  the  evaluation  of  usability  and  learning  effects  of  the

system, through a two-group controlled study. 

5.1.1.1 Broad objectives and research questions

The pilot was conducted to understand:

 Are  instructions  (text-based  guidance)  necessary  for  manipulation

(sensorimotor  interaction)?  What  actions  do  the  manipulation  features

afford?

 How easy is  the  interface  to  use (usability)  and/or  learn (learnability)?

What aspects of the interface do the learners find difficult or problematic?
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What  aspects  of  the  interface  do  students  appreciate,  dislike,  and/or

overlook? How can knowing this feed into the next iteration?

 How can we characterize the learner’s sensorimotor interactions with the

interface? What sensorimotor interaction patterns do the learners show, if

any? If and how are these interaction patterns related to ER integration and

its development? Answering these would particularly help in developing

an  analysis  methodology  within  the  larger  embodied  and  distributed

cognition account of RC proposed in chapter 3.

These  broad  goals  led  to  outlining  the  following  specific  research  questions

(RQs):

4. After  interacting  with  the  interface,  can  naive  learners  imagine  the

dynamic  relationship  between  the  ERs,  in  the  absence  of  (physical)

manipulation and dynamics?

5. What are the differences in learner exploration of the interface, particularly

in terms of manipulation or control, between text-guided and self-guided

conditions?

6. What is the difference in learner exploration of the interface between the

free-exploration  phase  (i.e.  screens  1-3,  before  presenting  the  learning

tasks)  and  the  task-specific  exploration  phase  (i.e.  screens  4-6,  while

solving the learning tasks)?

7. How  to  analyze  the  sensorimotor  interaction  data  in  order  to  achieve

insight  into  the  process  and  mechanism  of  ER  integration?  What

differences can be identified in the interaction (particularly eye-tracking

and  mouse-tracking)  behavior  between  participants  who  are  good  at

imagining the dynamic relationship between ERs after the interaction and

the participants who are not?
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5.1.1.2 Sample

12 students (6 female) studying in 7th grade from two urban schools in western

India  participated  in  this  study. This  grade  level  was  chosen  because  the

oscillation concept is not introduced at this level, and the system thus presents

only an ER integration problem to these students, and not a concept problem. The

interface is  designed primarily  to cater  to the development  of RC and not the

concept of oscillation.

Parents of the participants and concerned school teachers were informed that each

participant would be playing a science game on a laptop using a mouse controller,

that the game had stages of increasing complexity similar to any other game, that

his/her eye and mouse interactions would be recorded during the playtime, and

that s/he would be answering a set of questions related to the game after passing

through all  the stages.  Written consent  was obtained from the parents  and the

students, while the school teachers helped in logistics such as preparing the study

time-table in relation to the school timings.

Half the students (text-guided group; 3 female; students code-named L1 through

L6) received an interface which had text instructions of how to use the various

manipulable features on the interface (e.g. sliders). The remaining students (self-

guided  group;  3  female;  code-named  L7  through  L12) received  an  interface

without these instructions.

5.1.1.3 Experiment protocol

Each participant sat in-front of a laptop, attached with a Tobii X2-60 portable eye

tracker (Tobii Technologies, Sweden, sampling rate of 60Hz.), at a distance of 50-

70 cm (figure 5.5). Students who indicated that they were not comfortable with

computers were given a few minutes to practice with the mouse before they were

introduced to the interface.  Once the student was ready, the preset  eye-tracker

(Tobii X2-60) was calibrated and the interface window was opened for student

interaction. The eye-tracker also logged mouse-events.
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Figure 5.5 Experimental  setup: A participant can be seen interacting with the interface on the
laptop using a mouse. At the bottom of the screen is fixed a Tobii X2-60 eye-tracker (highlighted
in a frame) which records the student’s gaze data during the interaction.

Participants in the text-guided group interacted with the interface version 1.2. The

self  guided  group  also  received  the  same  interface  except  that  all  the  text

instructions from the interface were removed. The latter group was only told that

they could manipulate items on the screen with both left and right clicks of the

mouse. Each student was allowed to work independently with the interface for as

long as  s/he  wished,  advancing  through the  screens  and tasks  by  clicking  the

“Next” button. The experimenter only intervened when students had a question,

and  provided  only  minimal  hints  appropriate  to  their  condition  namely,  text-

guided or self-guided.

Once the student indicated that the tasks were completed or that s/he wanted to

quit, s/he was interviewed regarding her/his background (general information such

as family, area of residence, whether and how often s/he interacts with computers/

mobile phones, favorite subjects in the school and hobbies), and impressions of

the interface (e.g. what feature s/he liked or disliked, how the interface could be

improved, etc.) The student was then administered some pencil/paper-based tasks

to  test  if  s/he  imagines  or  simulates  the  dynamics  of  the  interface  (or  her/his
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sensorimotor interaction) in absence of interaction, and hence answer RQs 1 and

4.

5.1.1.4 ER integration tasks

Stimuli that prompt imagination of phenomena readily activate (existing) mental

simulations  (e.g.,  Schwartz & Black, 1999). To prompt student imagination or

simulation and answer RQ 1, six  pencil/paper-based tasks were developed  (see

Appendix 7). One of the tasks showed a point on the curve and the student had to

indicate the corresponding position of the pendulum i.e. if the pendulum would

be: on the right side (of the normal), on the left side (of the normal), in a vertical

position, or in a horizontal position. There were three multiple choice questions of

this kind. In the remaining three tasks, the student was shown a screenshot of the

pendulum in a certain position and was asked to spot/mark point(s) on a curve that

would approximately correspond to (the depicted state of) the pendulum. Solving

these would ideally require imagining the dynamics of the interface or the ERs

with respect to one’s sensorimotor interaction with them, and capturing specific

state(s) of a representation in relation to a given state of another representation.

As  reflected  in  the  RQ1 statement  as  well  as  the  ER integration  task  design,

equations  were  deliberately  avoided  in  these  tasks  due  to  their  complexity  in

relation to the participants’ background and exposure to scientific representations;

it was important to keep in mind that the sample comprised of 7th grade students,

who probably had no previous ‘perceptual’ experiences with equations such as the

one  presented  in  the  interface.  I  also  did  not  want  the  students  to  feel

uncomfortable and/or discouraged by facing tasks they may not (be able to) solve.

Student responses to the tasks were subjected to accuracy assessment.

5.1.1.5 Sources of data

(a)  Student  responses  to  the  ER  integration  tasks:  To  answer  RQs  1  and  4,

students  responses  to  the  six  ER  integration  questions  were  evaluated  for

accuracy. Good, average and poor performers were identified on the basis of the
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number of correct answers provided (Correct number of answers to qualify as a:

good performer = 5-6; average performer = 3-4; and poor performer = 0-2). 

(b) Researcher observations and notes: This included information about the status

of completion of the learning tasks by the students, and an unstructured log of

student behavior and facial  expressions while s/he interacted with the interface

(e.g. what features of the interface go overlooked, or are utilized more, etc.), as

well as her/his responses to the interview questions.

(c) Sensorimotor interaction data: Student eye movements recorded using a Tobii

X2-60  eye-tracker,  capturing  students'  gaze  behavior  as  they  explored  the

interface. The eye-tracker also records mouse-event data (e.g. whether right or left

click, location of the click on the screen, etc.). The eye and mouse data were the

main sensorimotor data collected.  These data could help decipher the dynamic

interaction process involved in integration. Both gaze and mouse-click data are

available as dynamic screen-activity recordings in the software used to run the

eye-tracker. The data can also be extracted as raw data in the form of log-sheets

from the software for a customized analysis.

Data of one student (L12) from the self-guided group were not considered for

analysis due to gaze-data file corruption which happened during the experiment

trial.

5.1.2 Development of interaction analysis

In addition to how the mouse was moved during interaction with the interface, the

focus was also on the task-oriented movements of the eye (and not how attention

was captured by visual elements). Eye movements, in this approach, are treated

similar to mouse movements, and are considered as sensorimotor actions that can

lead  to  integration.  Based  on  this  view,  a  novel  analysis  strategy  of  eye

movements as actions was developed, in order to understand how interactivity is

related  to  learning.  This  analysis  allows  studying  action  patterns  that  are

correlated with ER integration (as measured by ER integration tasks).
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Tobii Studio-3.2 (eye-tracking data analysis package from Tobii Technology) was

used to extract and process the raw interaction data. The unprocessed or raw data

are in the form of dynamic screen-activity recordings (video) and time-stamped

logs of gaze as well as mouse activity. For a detailed analysis, these data needed

filtration  and  refinement.  The  first  step  was  to  generate,  for  each  participant,

separate  segments  of  interaction  with  each  screen  (see  section  5.4.2  of  Tobii

Studio  User’s  Manual  Version  3.4.5  for  procedure  details).  For  a  total  of  six

screens, the segmentation yielded a total of six segments per participant. Segments

for the participants  of each group (text-guided or self-guided)  for each screen

were  compiled  to  generate  a  scene  that  contained  interaction  data  for  all  the

participants in that group for that particular screen (Section 5.5 of Tobii Studio

User’s Manual Version 3.4.5). Each scene has two elements: dynamic interaction

data for all the participants for a screen, and a static image of the respective screen

as a background on which all the compiled gaze data is either superimposed to

generate  a  static  visualization  (such  as  a  heat  map  depicting  gaze  or  mouse

activity  distribution)  or  dynamically  played  and  visualized  as  required.  This

yielded a total of six scenes per group (total 12 scenes; e.g. Scene for screen-1 for

the text-guided group had interaction data of all the text-guided participants with

the screenshot  of screen 1 in  the background;  scene for screen-2 for  the self-

guided group had the group’s participants' interaction data for screen 2 laid out on

the image of screen 2, and so on).

Once  the  interaction  data  of  the  respective  participants  for  each  screen  were

available on a common image of the respective screen, specific areas – known as

the areas of interest (AOIs) – could be defined for isolating and capturing the gaze

and/or mouse activity happening in those areas.

To perform statistical analysis at a different scale of detail, AOIs were generated

at two different layers. First, an overall/general layer of AOIs (figure 5.6) was

defined for each of the six scenes to achieve an understanding about the overall

distribution  of  the  interaction  data  across  the  three  different  representations

(pendulum, equation and graph) for the participants in that group.
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Figure 5.6 General/overall AOIs for: (a) screen 1 has two AOIs – pendulum and instruction, (b)
screen 2 has AOIs for pendulum, equation and instruction, (c) screen 3 has four AOIs – pendulum,
equation, instruction and graph, and (d) screens 4-6 all have four AOIs each – pendulum, equation,
instruction  and  task.  Note  that  for  the  self-guided  group,  the  instruction  panel  was  blank  for
screens 1-3.

The second layer of AOIs, exploring participant interaction in a more detailed and

specific  manner,  was  defined  based  on  the  nature  of  information  in  a

representation panel. This included two subsets of AOIs across the ERs: spatial

and numerical AOIs (see figure 5.7), formed to explore the integration between

spatial and numerical aspects of ERs.
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Figure 5.7 Specific AOIs for: (a) screen 1, (b) screen 2, (c) screen 3, and (d) screens 4-6. These
specific AOIs are classified into two categories – spatial AOIs (in blue) and numerical AOIs (in
red). Spatial AOIs concern the spatial information in a representation/panel while the numerical
AOIs are concerned with information of numerical nature in a representation/panel. This division
is to capture the relative gaze activity between two epistemologically different aspects of the ERs.
Note that for the self-guided group, the instruction panel was blank for screens 1-3.
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Using the AOI-based data,  four levels of analysis were devised to account for

interaction behavior at different depths and extent of abstraction. Figure 5.8 shows

a schematic of the levels of interaction data analysis.

At level 1 (frequency distribution analysis), the following statistics were generated

for each participant per AOI, per screen: (1) Total visit duration/time spent, (2)

visit  count,  (3) mean fixation duration,  (4) fixation count,  (5) total  number of

mouse-clicks,  and (6) mean number of mouse-clicks  (Tobii  Technology, 2014;

Appendix 4). Statistics from individual participants for each screen were tabulated

into two groups, depending on the nature of participants' exploration (text-guided

versus  self-guided  groups).  Combined  statistics  for  all  the  participants  in  that

group were then used for graphical analysis.

For  level  2  (sequence  analysis),  student  interaction  with  the  interface  was

conceptually divided in two cycles using mouse-clicks as a clustering factor: a

perception-action cycle, and an imagination or simulation or thinking cycle. The

perception-action cycle comprises of: students manipulating features on the screen

(e.g. sliders) and observing changes in other representations. The latter happens

when the pendulum simulation is played or paused; students in this cycle attend to

the  static  or  dynamic  features  on the  screen  (e.g.  length/angle  values  and the

graph) in an expectation of how the representation(s) may behave (i.e. imagine or

simulate the dynamics) with respect to the manipulation performed. In this level,

sequences of fixation events and mouse click events are determined, and grouped

as events occurring either in the perception-action cycle, or events occurring in the

simulation/imagination cycle.
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Figure 5.8 Levels of interaction analysis.
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At level  3  (local  integration  marker  analysis),  local  sensorimotor  markers  that

signify integration are defined; the data are processed to achieve more abstraction

to  identify  these  markers  of  integration.  An  example  of  a  local  sensorimotor

marker is gaze transitions (discussed in section 4.1.8) between, say a numerical

AOI  (e.g.  the  equation)  and  a  spatial  AOI  (e.g.  the  pendulum);  this  specifies

integration between numerical and spatial modes. A second example is returns,

i.e. a learners’ gaze returning to a particular AOI (say ‘A’) after going elsewhere

(say AOI ‘B’). Such sequences of events would be characterized as an A-B-A

return,  where  A  and  B  are  any  two  AOIs.  This  indicates  that  the  learner  is

retaining a particular feature in memory and returning to it. If there are multiple

AOIs involved, the returns would look like A-B-C-A, A-B-C-D-A, and so on,

where A, B, C and D are different AOIs. In the pilot, only A-B-A type of returns

were explored. The third example of local markers is a consecutive gaze-mouse or

mouse-gaze activity, which may include the learner manipulating a representation

on the screen (e.g. pendulum) and looking at another representation or AOI (e.g.

graph), as this indicates the integration of two representations via the systematic

variation  offered  by  control.  The  local  markers  cut  across  the  two  cycles  of

interaction  defined  in  level  2.  Once these  markers  were  obtained,  a  goodness

measure  for  these  markers  is  defined  by  comparing  against  marker  values  of

experts – learners who perform well on the ER integration tasks.

The  final  level  of  abstraction  (level  4,  global  integration  marker  analysis)  in

sensorimotor interaction data analysis involves generating global process patterns

of  how  the  learners  interacted  with  the  interface,  using  a  graph  theoretic

framework,  wherein  the  AOIs  are  the  nodes  and  the  transitions  between  the

various AOIs are the weights of the branches.

Data analysis level 1 utilizes the general scheme of AOIs (represented in figure

5.6), whereas for levels 2-4 of data analysis, the data related to interaction activity

in the specific AOIs (figure 5.7) are used.
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5.1.3 Results

5.1.3.1 Performance on ER integration (RQ1) and learning tasks

The text-guided and self-guided groups did not  differ  in  the accuracy of  their

responses to the learning tasks. Table 5.5 presents the total number of correct and

incorrect  responses  to  each  task  by  the  two  groups.  Irrespective  of  their

experiment condition, both the types of tasks seemed equally challenging to the

students.

Table  5.5:  Between-group  comparison:  ER  integration  task  accuracy  (C=correct,  W=wrong).
Highlighted  in  dark  grey  rows  are  good performers  (L3,  L5 and  L7),  white  cells  present  the
accuracy data of average performers (L2, L8 and L11), and students highlighted with light grey
cells are poor performers.

Student Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Total 
Correct

Text-
guided

L1 W W W W W C 1

L2 W W C W C C 3

L3 C C C C C C 6

L4 C W W W W W 1

L5 C C C W C C 5

L6 W W W C W W 1

Total 
Correct

3 2 3 2 3 4 17

Self-guided
L7 C C C W C C 5

L8 C W C W W C 3

L9 W W W W W W 0

L10 W W W W W C 1

L11 W C C W C C 4

Total 
Correct

2 2 3 0 2 4 13

Some members in both the groups were more accurate than their group-mates.

Three students (L3, L5 and L7) were found to be ‘good performers’; two belonged

to the text-guided group while one student was from the self-guided group. Three

students showed average performance on the tasks (L2 from text-guided group,

L8 and L11 from self-guided group). The remaining five students were identified
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as poor performers (L1, L4 and L6 from the text-guided group, and L9 and L10

from self-guided group).

The students were able imagine the dynamic relationship between pendulum and

graph, in the absence of (physical) manipulation and dynamics; however, the data

were  insufficient  to  determine  whether  and to  what  extent  did  the  (i)  student

interaction with the interface mediate their answers to the ER integration tasks and

hence their  ability  to imagine the dynamic relationships between ERs, and (ii)

how the provision of instructions affect ER integration.

There was no difference between the two groups in performance on the learning

tasks. Table 5.6 shows between-group comparisons of: number of students who

completed, gave up or did not attempt a learning task, and the average time spent

by the students per task.

Table 5.6 Between-group comparison of performance on learning tasks

Learning tasks 1 2 3

Group Status of 
completion

No. of 
students

Average 
time-spent
(min)

No. of 
students

Average 
time-spent
(min)

No. of 
students

Average time-
spent
(min)

Text-
guided

Completed 5 8.934 3 19.58 3 11.51

Gave-up 1 30.42 1 5.34 2 8.94

No attempt/
program 
error

- - 2 2.89 1 -

Self-
guided

Completed 5 10.51 3 14.36 2 17.26

Gave-up 0 - 2 16.74 1 13.49

No attempt/
program 
error

- - - - 2 -

There  was  no  noticeable  correlation  between  student  performance  on  the  ER

integration tasks and the status of their completion of the learning tasks; however,

this does not mean that there is no correlation between ER integration and student

exploration of the interface. This point is further explored in later sections.
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5.1.3.2 Level 1: Activity frequency distribution analysis (RQs 2 & 3)

The average time spent looking at each AOI by a group is presented in figure 5.9.

A clear pattern, common to both the groups, was that the total time spent looking

at  a  screen increased markedly  during the task,  compared to  before the tasks.

Secondly, in free-exploration, the text-guided group spent more time looking at

the screen than the self-guided group. Though the fixation duration of the two

groups averaged across all tasks are comparable, the text-guided group spent more

time in task 1 and successively kept looking lesser, while the self-guided group

spent less time in task 1 and successively kept looking more. Further, this data

showed that during the tasks in screen 4-6, both the groups spent comparable time

looking at the equation. Both groups also spent more time looking at the equation

than the pendulum. However, the text-guided group spent more time looking at

the pendulum than the self-guided group.
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Figure 5.9 Between-group comparison: Average time spent (visit duration) in each AOI screen-
wise.

Next, figure 5.10 presents a between-group comparison in the average number of

mouse clicks in each AOI.
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Figure 5.10 Between-group comparison: Average number of mouse clicks in each AOI per screen.

The  figure  shows  that,  consistent  with  increased  fixation  time,  there  was  a

significant increase in the number of mouse clicks as the participants advanced to

the tasks from free-exploration. Secondly, starting from screen 2, the self-guided

group had a higher number of total  clicks on each screen than the text-guided

group. Further, except for screen 4 in which both groups were similar, the self-

guided group clicked more on the equation AOI (containing the sliders) than the
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text-guided group. The self-guided group also clicked more on the graph AOI than

the  text-guided  group.  Mouse-clicks  for  the  text-guided  group  were  fairly

distributed across the different representations in the interface.

The locations of the mouse clicks on the different AOIs of the interface during

free-exploration and tasks are shown in figures 5.11 and 5.12 respectively.  As

seen in figure 5.11, the text-guided group manipulated the pendulum more than

the self-guided group, while the self-guided group manipulated the equation more

than the text-guided group.

Figure  5.11  Between-group  comparison:  Average  number  of  mouse  clicks  on  screens  1-3
combined.
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Figure 5.12 Between-group comparison: mean mouse clicks during the learning tasks. Tiny red
dots on the screenshots are mouse-clicks. The text-guided group has more and denser interactions
with the interface while solving the tasks than the self-guided group on average. However, the self-
guided group seems to click on the graph a lot more than the text-guided group. Researcher’s notes
and analysis of time-spent per screen reveals that students did not interact with the interface during
screens 1-3, and as a result, may not have learnt about the manipulations – particularly that they
need to hit the play button to generate a curve. These students would keep swinging the pendulum
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with mouse instead, wonder why the graph would not appear, and end up clicking on the graph
several times, thinking that doing so would generate one.

Figure  5.12  shows  that  the  text-guided  group  used  both  pendulum and  slider

manipulation for all the tasks, however their pendulum usage was considerably

lesser than the sliders.  They rarely clicked on the graph area.  The self-guided

group also rarely used the pendulum for manipulation, reaching an extreme case

in screen 6, in which they did not use the pendulum at all, and instead, performed

the entire task with the help of sliders. This group clicked on the play button more

than the other group, especially in screen 6. They also clicked on the graph region

several times in screen 4, but when they reached screen 6 they stopped this action.

These behavioral differences between the groups are summarized in table 5.7.

Table 5.7 Relative explorations of participants in text and self guided conditions in comparison
with an ideal case. Direction of the arrow indicates frequency (up = increased, down = decreased).

Exploration Screens 1-3 (free-exploration) Screens 4-6 (learning tasks)

Activity Look Click Look Click

Good/ideal ↑ ↑ Focused ↓
Text-guided 
group ↑ ↑ ↑ ↓
Self-guided 
group ↓ ↓ ↓ ↑
As shown in table 5.7 (RQs 2 and 3), based on the reported behavior of experts in

the RC literature, good exploration could be defined as one in which there are

more looks and clicks during the free-exploration phase, and focused look and

fewer clicks during task-specific exploration phase. Comparing the exploration of

the two groups against this canonical exploration, it was found that the text-guided

group had more looking and clicking activity during free-exploration. During the

task, however, neither group demonstrated ‘good’ exploration, though, the text-

guided group showed exploration closer to the ‘good’ exploration in terms of less

clicking. This indicates that the text-instructions are necessary to help students

explore the interface, but not sufficient to achieve good exploration.

165



Chapter 5  DBR: ER Integration & Interactivity

To answer RQ 3, which is, “What is the difference in learner exploration of the

interface between the free-exploration phase (i.e. screens 1-3, before presenting

the learning tasks) and the task-specific exploration phase (i.e. screens 4-6, while

solving the learning tasks)?” it was found that in both groups the looking and the

clicking increases after the task is presented and hence task-oriented exploration is

better than ‘naked’ exploration as it leads to more manipulation of the interface,

which was one of our goals.

5.1.3.3  Levels  2-4:  Isolating  local  markers  of  ER  integration  from  activity

sequences (RQ 4)

In this section, I outline the results obtained through levels 2-4 of analysis. These

results  are  indicative  of  the  work  done  to  devise  interaction  data  analysis

strategies.  The level  2 and 3 results  discussed here present  a  case of the best

performing student (L3) in order to provide a quick glance of the outcomes of

analysis at those levels. At level 4, I present an overall comparison of this student

with one of the poor performing students (L9) from our sample.

Level  2  data  dealt  with determining sequences  of the  sensorimotor  interaction

events.  Figure  5.13  shows  a  sample  sensorimotor  event  sequence  for  a  good

performer (L3) between two consecutive clicks on the play button. Note that the

events  between play and pause buttons  are  happening in  the perception-action

cycle,  while  the  events  happening  after  the  pause  button  is  hit  are  from the

simulation or imagination cycle. This sequence shows that the student transitions

between  spatial  and  numerical  regions  during  both  the  perception-action  and

simulation or imagination cycles.

Figure  5.13 An example  of  events  for  a  good performing student  (L9).  Rectangle  indicates  a
numerical AOI, hexagon denotes a spatial AOI, while trapezium stands for interface manipulation.
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These sequence data  were fed into further  levels  of  analysis.  Two markers  of

integration, for instance, were identified at level 3. The first is event transitions

between numerical and spatial areas on the screen (Figure 5.14) and the other is

the returns between activities or events on different areas of the screen (Figure

5.15).

Figure 5.14 Click-gaze transitions for screen 3, student L3; rectangle indicates numerical  AOI,
hexagon denotes a spatial AOI, while trapezium indicates interface manipulation, arrow indicates
the direction of transition, while its thickness symbolizes the number of transitions (normalized). 

Figure 5.14 shows that the student transitions from looking at initial angle/length

information  presented  in  the  pendulum-numerical  AOI  (imagination)  to

manipulating  the  pendulum 3 times  – possibly to  set  the  pendulum at  desired

values,  or  to  understand  how  the  values  change  after  the  manipulation

(perception-action).  The student  is  also trying to  understand the  effects  of  the

manipulation on the curve being generated, as indicated by the transitions from

the pendulum (after manipulation) to the graph AOI (imagination or simulation).

Figure 5.15 shows that this student looks from the spatial area of the graph to the

spatial  area  of  the  task  and  returns  11  times;  likely  in  an  attempt  to  make

mappings between the shapes of the curve to be generated and the curve being

generated.  Interestingly,  the  student’s  activity  is  fairly  distributed  between  the

numerical and spatial AOIs; for instance, a significant number of returns for this

student occur between the task Y-axis numerical AOI and the task spatial AOI, as

well as between graph spatial and graph Y-axis AOIs, pointing to her attempt to

compare the initial angle values between the expected and actual curves.
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Figure 5.15 Numerical-spatial returns for screen 4, student L3; rectangle indicates numerical AOI,
hexagon denotes a spatial AOI, trapezium indicates interface manipulation, arrow indicates the
direction of return, while its thickness symbolizes the number of returns (normalized).

Level 4 can be considered to provide a more holistic perspective on the level 3

analysis as it abstracts out several local markers of sensorimotor interaction, to

develop  global  patterns.  The  transitions  defined  and  identified  in  level  3,  for

instance, evolve into transition networks at this level (figures 5.16); whereas the

return diagrams evolve into return networks (figures 5.17). Overall, comparison of

both  the  transition  and return  networks  of  the  students  indicates  that  the  best

performing student L3 (figures 5.16b and 5.17b) had considerably richer as well

as more diverse sensorimotor interactions with the different AOIs of the interface

than the poorly performing L9 (figures 5.16a and 5.17a). Student L9 has not only

made fewer attempts to manipulate the different features of the interface but also

has less gaze activity; and hence, less exploration of the interface in comparison to

L3.
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Figure 5.16 Normalized transition networks of interaction during the learning tasks/screens 4-6 of
(a) a poor performer L9, and (b) the best performer L3. Direction of arrows indicates the direction
of transition, while its width is proportional to percent transitions. Each shape represents an AOI
from the specific  set  of  AOIs.  On the right  side  are  all  mouse interactions  performed on the
different features (e.g. back, next, play/pause buttons, etc.). On the left are gaze activities.
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Figure 5.17 Normalized network of returns between spatial  AOIs,  numerical  AOIs and mouse
interactions  during  the  learning  tasks/screens  4-6  of  (a)  L9,  and  (b)  L3.  Direction  of  arrows
indicates the direction of returns, while its width is proportional to percent returns. Each shape
represents an AOI from the specific set of AOIs.

Further, it appears that the richness and diversity of interaction with the interface

is related to student performance in the ER integration tasks; thus, the ability to

simulate or imagine the dynamic relationship between the ERs. However, the data

are only indicative as only one student exhibited qualities similar to an expert, and

its associated sensorimotor marker; most students fell into the poor and average

performing categories.
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5.1.4 Discussion

Preliminary  results  from the  pilot  indicate  that  the students  could imagine  the

dynamic relationships between the ERs with which they interact. Our interface is

thus  a  potential  candidate  as  an  educational  technology  intervention  to  help

students develop RC, particularly in relation to the concept of oscillation (RQ1).

The self-guided group focused on the equation (sliders) and graph, before and

during the task. This was perhaps because most students in the self-guided group

found  it  difficult,  in  the  absence  of  instructions,  to  discover  the  various

affordances or action possibilities offered by the features of the interface. These

students could explore the affordances only by ‘playing’ with the panels. Students

in the text-guided condition, on the other hand, looked at and manipulated all the

elements of the interface, in varying degrees, both before and during the tasks.

Their exploration of the interface was fairly distributed across the different ERs,

and hence was more desirable for ER integration than students in the self-guided

condition. In summary, specific text-instructions are thus a necessary feature of

the interface as they help learners explore the different affordances of the interface

features (RQ 2).

Student  sensorimotor  interaction  with  the  interface,  both  in  terms  of  eye  and

mouse-activity, increased significantly after task presentation in both the groups,

hinting that exploration during the task is more desirable than free-exploration.

The tasks mediate specific and targeted sensorimotor interaction with the different

interface features and are thus integral to the interface design (RQ 3).

Analysis  of  differences  between  the  best  and  the  poorest  performing  students

across the different levels of sensorimotor interaction show that the devised multi-

level analysis approach is a potential candidate for assessing ER integration and

its relationship with interactivity (RQ 4).

The  interaction  data  also  revealed  a  few  limitations  of  the  interface  design,

particularly in relation to how the sensorimotor behavior of the self-guided group
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was possibly skewed towards the sliders reflected  as high slider manipulation,

particularly during the tasks. However, it is not clear whether the skewed behavior

was  because  the  students  understood  the  controller  aspect  of  the  equation  or

because they were familiar with the slider form of interaction. It is also possible

that  the  sliders  were  more  intuitive  to  the  students  than  other  representations.

Further  studies  are  required  to  evaluate  the  influence  of  such  a  familiar  UI

element.

The ER integration tasks were insufficient to capture student imagination. In the

next iteration, these tasks need to be complemented with qualitative think-aloud or

verbal reasoning data for richer analysis of the student thinking processes. Further,

these tasks  could be integrated  into the  interface  for easy deployment  without

altering the actual experiment settings. This would also help log student responses

digitally, and capture student eye-behavior as they imagine while answering the

tasks, particularly to see if the eye movement patterns during imagination match

those exhibited during interface exploration (Thomas & Lleras, 2009).

Following sections describe the second iteration of this DBR.

5.2 Evolution of the simulation design: Iteration Two (main study)

5.2.1 Modifications to the computer interface design

It was realized from the results of the first iteration that, in order to help students

achieve a more desirable  (expert-like)  exploration of the multi-representational

interactive simulation interface, the following design changes were needed: 

 The interface must have instructions regarding manipulation affordances

of all the representational elements:  The instruction panel was moved to

the top of the screen as a white elongated strip. The back, next and clear

buttons were also presented along the same strip in the top right corner of

the screen.
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 The learner must be given specific tasks which would require her/him to

manipulate  all  the  representational  elements:  The  three  learning  tasks

embedded in the interface were retained in this iteration. The screen-order

was also maintained as before.

 All the interaction affordances must be equally familiar (or unfamiliar) to

the students so that they don’t gravitate towards using one: Sliders in the

equation were changed to bevel buttons over each variable which change

on click and drag.

 From the researchers  notes taken during student  interaction  in  iteration

one, it came to light that owing to the difference in the scales of the task

graph and the dynamically generated representation graph, students had

difficulty in doing the task of graph matching as they could not often ‘see’

the  similarities.  This  led  to  frustration,  which  would  have  affected

exploration. In order to make this process easier, a grey colored sine wave

(a “ghost” graph) which is always displayed on the screen, corresponding

to  the  current  pendulum  parameters  (length  and  initial  angle),  was

introduced. This graph could be manipulated during screens 1-3 (change

maximum  amplitude  by  left  clicking  and  frequency  by  right  clicking)

leading to changes in the length and initial angle in both the pendulum

and equation.  This rendered the interface fully  manipulable again (see

version  1.0).  When  the  learner  clicked  play,  a  blue  graph  would  be

generated,  as  the  pendulum  oscillates,  over  this  grey  ‘ghost’  graph

reflecting  the  pendulum  dynamics.  After  the  learning  tasks  appeared,

while the grey colored “ghost” graph would remain in the background, it

would no longer be manipulable. This was to ensure that learners don’t

end up using only the graph for accomplishing the tasks.

Figure  5.18  below  presents  all  these  features  highlighted  using  red-colored

borders on a screenshot of the new interface version 2.1 (The most recent version

of the system is available here: http://bit.ly/pendulum_old).
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Figure 5.18 Screenshot of the computer interface version 2.1 with all 3 representational modes, a
task and the “ghost” graph feature. Inside the red rectangular border on the top are instructions and
back/next and clear buttons. In the centre of the screenshot inside the two different square-like red
borders are the bevel buttons or bulged scrubbers (as opposed to sliders from the earlier interface
version).  Clicking  and  dragging  the  bevels  would  change  respective  values  in  the  equation.
Highlighted with a rectangular border below the back and clear buttons is a learning task. In the
graph, blue-colored part of the curve is the curve being generated, while grey colored curve in the
background is ‘ghost’ graph on which the blue colored curve is generated once the simulation is
played.  Only for  screens  1-3,  the ghost  graph is  manipulable by clicking and  dragging either
vertically (to change initial angle) or horizontally (to alter length). During the learning tasks, the
graph cannot be manipulated.

 However, it was hypothesized that this “ghost” graph could also become a

crutch  which  the  learner  would  use  to  complete  the  tasks  without

employing their own imagination to generate the given graph (hypothesis

1): Another version of the interface was created where the “ghost” graph

was not available; this was to examine the role of the “ghost” graph in

imagination-based integration. A screenshot of the interface version 2.2

after incorporating these changes in shown in Figure 5.19.
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Figure 5.19 Screenshot of version 2.2, without the “ghost” graph. It is still possible to click and
drag inside the graph panel to change parameters, except that the resultant curve after manipulation
is no longer available. Any change would appear only in the pendulum and equation panels. The
resultant graph would be available only after resuming/running the simulation by clicking ‘play’.

Note that the two versions 2.1 and 2.2 differed only in the ghost-graph feature.

 The interface must offer a more holistic assessment of the ER integration

ability:  The 6 questions presented in the ER integration tasks from the

previous  iteration  were  complemented  with  8  new  questions. Total  14

questions (see Appendix 8) now together catered to the learning objectives

presented in table 5.8 below.

Table 5.8 Learning objectives and question categories. For specific questions, see Appendix 8.

Learning  objectives:
The  student  will  be
able to - 

Question category

Map  phenomenon  and
graph

Check whether  learner  can relate  points on graph to phenomenon and
vice versa (6 questions)

Check  whether  given  a  word  problem,  a  learner  can  imagine  the
phenomenon and its graph? - Oscillatory graphs (1 question)

Non-oscillatory graphs, non-sinusoidal movement in time (2 questions)

Map phenomenon and 
equation

Describe damped pendulum and ask what is the equation (1 question)

How to modify behavior of pendulum (1 question)

Modify equation, ask about behavior (1 question)
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Map equation and 
graph

Show underdamped pendulum graph and ask what is the equation? (1
question)

Modify equation, ask about graph (1 question)

Questions of the last two categories involving equations were anticipated to be

difficult, particularly for the student participants in this study who were studying

in 7th grade at the time, and were naive to complex equations and mathematical

forms such as the pendulum equation embedded in the interface. Nevertheless, I

wanted see if the students could still  develop an implicit  sense of the different

components of the equations.

The ER integration tasks were included within the interface and were introduced

after  the  learning  tasks.  Figure  5.20  presents  a  screenshot  of  ER  integration

question 1.

Figure  5.20  Screenshot  of  the  computer  interface  with a  RC assessment  task.  Students  could
indicate their choice on the screen using radio buttons. A ‘next’ button would appear only after an
answer is marked or chosen.

A summary of the final design principles and corresponding design features, as

they evolved from iteration one to two, are shown in Table 5.9 below, with the

changes highlighted in bold.
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Table 5.9 Comparison of the design principles and respective design features in the two iterations.

Principle Design feature in Iteration
one

Design Feature in Iteration two

External
representations
allow  processing
not  possible  or
difficult  to  do  in
the  mind  (Kirsh,
2010).

The  interface  plots  the
graph  of  the
equation/motion  of  the
pendulum  for  various
lengths and initial angles of
the pendulum.

The  interface  plots  the  graph  of  the
equation/motion of  the pendulum for  various
lengths and initial angles of the pendulum

Cognition emerges
from  ongoing
interaction  with
the world (Brooks,
1991).

The  interface  is  fully
controllable, i.e., the learner
can  control  the  pendulum
and  equation,  to  see  how
change  in  these  affects  the
other element and the graph.

The interface is fully manipulable, i.e.,  the
learner can control the pendulum, equation
and  graph,  to  see  how  a  change  in  these
affects the other two elements.

The features of the
world  are  used
directly  for
cognitive
operations,  hence
the  interface
should have all the
features  needed
for  integration  of
representations
(Landy  et  al.,
2014).

The  interface  has  the
physical  system,  equation
and  graph,  along  with
different  numerical  values.
The  dynamic  nature  of
elements,  and  their
interconnections,  are  made
transparent,  so that learners
can integrate across spatial-
numerical  and  dynamic-
static modes.

The interface has the physical system, equation
and  graph,  along  with  different  numerical
values.  The dynamic nature of elements,  and
their interconnections, are made transparent, so
that  learners  can  integrate  across  spatial-
numerical and dynamic-static modes.

The  active  self  is
critical  for
integration  of
features  (Reed,
1988). 

The  exploration  on  the
interface is guided by tasks
which the learner must do.

The exploration on the interface is guided by
tasks which the learner must do.

Action  patterns
can  activate
concepts,  hence
actions  and
manipulations  of
the representations
should  be  related
to  existing
concepts
(O’Malley  &
Soyer, 2012).

The  learner  can  interact
with  the  pendulum  by
changing  its  length  and
initial angle by clicking and
dragging  the  mouse.  This
interaction  is  meant  to
mimic the interaction with a
real  pendulum.  The
parameters  in  the  equation
can  be  changed  using
vertical sliders – moving up

The learner can interact with the pendulum
by changing its length and initial angle by
clicking  and  dragging.  This  interaction  is
meant to mimic the interaction with a real
pendulum. The parameters in the equation
can be changed using bevel buttons which
are placed over the variables in the equation
and  can  be  changed  by  clicking  and
dragging  left  and  right  to  decrease  and
increase values.  This interaction highlights
the role of the equation as a controller. The
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indicates  increase  in
parameter,  moving  down
indicates decrease. 

parameters of the graph can be changed by
clicking  and  dragging  up  and  down  to
change  amplitude  and  left  and  right  to
change frequency.

The  interface
should  allow
coupling  of
internal  and
external
representations
(Chandrasekharan
&  Nersessian,
2015).

The  learning  task  requires
the learner to match a given
graph.  Learners  change  the
parameters of the pendulum/
equation  to  generate  the
graph  and  visually  match
the  task  graph  to  their
graph.  This  develops
learner’s  imagination  and
coupling  between  their
internal  and  the  external
representation.

The  learning  task  requires  the  learner  to
match a given graph. Learners change the
parameters  of  the  pendulum/equation  to
generate the graph and visually match the
task  graph  to  their  graph.  This  develops
learner’s imagination and coupling between
their  internal  and  the  external
representation.  A  “ghost”  graph  may  or
may not be present on the interface during
the task which  aids the  matching process,
but may adversely affect the development of
the learners’ imagination.

The new design versions 2.1 and 2.2 were evaluated using a lab study described in

the next section.

5.2.2 Methods

The methods from the first iteration were adapted with some changes.

5.2.2.1 Sample

18 students (9 female, age range ~11-13 years) studying in 7th grade from an urban

school in western India volunteered to participate in the study. I wanted to test our

interface with naïve participants who were not formally introduced to the concept

of  oscillation,  simple  pendulum,  time  period,  etc.  as  well  as  multiple

representations  of  these  concepts  such  as  diagrams,  graphs  and  equation.

However, I did not explicitly control the familiarity variable.

Our  participants  belonged  to  socio-economically  underprivileged  communities

with most of them residing in densely populated areas. Initial interactions with the

students revealed that only one of them had a computer system (desktop) at home.

Others  reported  to  have  some  experience  interacting  with  a  desktop/laptop

(specifically  the 'paint/drawing'  application in MS Windows operating system),
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mostly  in  the  school.  Every  child,  however,  frequently  interacted  with  touch-

screen cellular phones and had at least one such phone at home.

None of the participants spoke English.  Their  English literacy,  vocabulary and

understanding was limited to simple 5-7 letter words. These students could barely

read, pronounce or write words such as ‘graph’, ‘pendulum’ and ‘equation’. All

the participants fluently spoke Marathi and Hindi (major regional languages in

this part of India), and preferred Marathi as the language of communication during

the experiment.

Before they agreed to participate, each student and his/her parents were informed

that s/he would be playing a science game on a laptop using a mouse controller,

that the game had stages of increasing complexity similar to any other game, that

his/her  eye  movements  would  be  recorded  during  the  playtime,  and  that  s/he

would be answering a set of questions related to the game after passing through all

the  stages.  On  expressing  willingness  to  participate,  a  written  consent  was

obtained from at least one parent of each child.

5.2.2.2 Experimental setup and protocol

Before  commencing  the  experiment,  students  who  expressed  unfamiliarity  or

discomfort using laptop and mouse control were allowed to familiarize themselves

with the mouse for 10-20 minutes  by practicing  with applications  such as the

Microsoft Paint. The student was asked to verbally indicate when s/he was ready

to start the game.

Below is the schematic of the experiment sequence:

Start >> Introduction to the setup >> Eye-tracker calibration >> Interaction

with the interface >> Relax >> ER integration questions >> Relax >> Interview

>> End.

The  overall  setup  and  experiment  procedure  was  similar  to  the  first  iteration

(revisit section 5.1.1.3).
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For  each  screen,  a  Marathi  translation  of  the  instructions  was  read  to  the

participant. The researcher repeated the instructions as and whenever the student

needed.  The  researcher  also  provided  appropriate  hints  when  students  had  a

question,  but  carefully  avoided  providing  any  cues  related  to  the  functional

relationships between the ERs in the interface and solutions to the learning tasks.

After  the student completed or quit  the learning tasks,  s/he was given a small

break (ranging from 1-3 minutes) to relax. S/he then proceeded to attempt the ER

integration questions; the student was told that s/he could skip questions or quit at

any time. A Marathi translation of each question was read to the participant when

and as frequently as the student required. To ensure that students understand each

question,  the  interviewer  rephrased  the  translated  version  of  the  question,  if

required, without using any representations or gestures. After completion of the

questions, students could relax for about 5-10 minutes.

Finally, each participant was interviewed about his/her (i) overall experience with

the interface, (ii) assessment of the interface in terms of usability, learnability and

interactivity,  (iii)  observation of own actions  performed during the interaction,

effects of those actions and their own thoughts about why they performed those

actions, and (iv) strategies used or thinking process employed while answering the

questions. During (iv) the researcher walked the participant through each question

on the interface as well as reminded the answer provided by the student, while the

student reasoned about why s/he chose that answer. The interview session was

video recorded using a Sony camcorder (DCR SR40). 

Interestingly, a post-facto analysis (not included in this dissertation) indicated a

pedagogical advantage of this interview session as it allowed students to reflect on

their own actions, their effects on the ERs (Danish et al., 2015; Sengupta, Krinks

and  Clark,  2015)  and  the  relationships  between  those  ERs,  thus  making  the

imagination richer with a strong possible reasoning component.
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Each student took 45-70 minutes for interacting with the interface (inclusive of

the time spent on ER integration questions). The interview with each participant

took 10-17 minutes.

11 students (code named with letter ‘G’) received the interface version 2.1 (with

ghost-graph) – hence the ghost graph condition, while 7 students (code named

with letter ‘N’) interacted with interface version 2.2 which did not have a ghost

graph – hence ‘no ghost graph’ condition.

5.2.2.3 Data sources

Eye  Tracker:  Eye  and  mouse  activities  were  recorded  using  a  Tobii  X2-60

portable eye-tracker.

Mouse tracker: Code was designed and embedded within the interface to record

logs  of  mouse  movements  and  clicks  as  the  participant  interacted  with  the

interface.  This data could then be synchronized with the eye-tracker data for a

more holistic interaction analysis.

Researcher  Observations:  The  researcher  kept  an  unstructured  log  of  student

behaviors and facial expressions while they interacted with the interface, as well

as their responses during the interview.

ER integration  questions:  These  questions  attempted  to  evaluate  the  extent  to

which students are able to imagine and simulate the movement(s) they observed

on the interface. There were a total of 14 multiple choice questions (Appendix 8).

The option chosen by each student was automatically recorded into a log after the

interaction was completed. Accuracy data for all the students were captured from

the logs, and tabulated.

Verbal responses and video recording: The interview session was video recorded

and transcribed.  The transcripts,  tagged with  student  gesture  data,  served as  a

source of data on reasoning process. These data were coded and then correlated

with the accuracy data. This combined analysis could help identify students who
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better imagine or simulate the pendulum behavior and oscillation phenomenon,

and therefore, integrate the ERs.

5.2.2.4 Data analysis strategies

The following data related to student performance were obtained from the logs

created by the interface code: (a) time spent on each screen, (b) time spent on each

learning task, (c) status of completion of the learning task (e. g. successful, did not

attempt, etc.), and (d) accuracy on the ER integration questions (Q1-14). These

data were compiled from all the students and tabulated.

The transcripts (statements tagged with gesture/action data) from the interviews

were coded for accuracy as well as qualitative patterns of reasoning. Table 5.10

presents  in  detail  the  coding scheme,  with  examples,  that  emerged  out  of  the

transcript  analysis,  in  relation  to  the  learning  objectives  of  the  interface.  The

categories  are  hierarchical;  for  instance,  a  student  is  deemed  ‘successful’  on

providing a justification related to the dynamic relationship between ERs; ‘less

successful’ if the student’s explanation about relationships between ERs is based

on physical  features  or  numbers  in  ERs  or  a  combination  of  both;  and ‘least

successful’ on providing an explanation that does not involve either of the first

two types of reasoning.

Table 5.10 Reasoning categories and verbal/non-verbal behavior pointers.

Category/
code

Explanation Example behavior (verbal + non-
verbal)

Color 
code

Mapping 
dynamics 
between 
(M)ERs 
(simulation)

1. Explicit description of effects of
the act of changing one 
representation on the other 
(involving self as the cause of 
change).
2. No explicit mention of the 
dynamic cause-effect link, but 
reasoning includes description of 
coupling between multiple states 
of two (more) representations.

3. Description of 

- When I move/change ‘this’, 
‘that’ changes in a certain way; 
often accompanied by relevant 
gestures such as pointing to 
specific feature(s) in 
representation(s). 
- When ‘this’ goes here, ‘that’ goes
there; complemented with gestures
such as pointing on the screen to 
the feature(s) referred to.
- 'This’ moves like ‘this’ 
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covariance between 
physical appearance of a 
representations, say shape
of the curve (such as up 
and down, straight line) 
and 
numbers/quantity/magnit
ude (numbers increasing 
and decreasing, identical 
numbers in two 
representations). Such an 
explanation is also often 
accompanied by gestures 
such as waving hands.)

4. Use of 
contexts/meaning or 
function of features of 
representations such as 
the ‘-’ (minus) sign with 
decrease in quantity, to 
map equation or graph 
with phenomenon. Such 
explanations often tend to
be incorrect, although 
they involve some 
imagination of the 
dynamics.

(accompanied by a waving-hand 
gesture, etc.)

- When ‘this’ is ‘up’, 
‘that’ is on the right side 
(indicated by a waving 
gesture or pointing to the 
features referred to)

- When ‘that’ is ‘less’ 
(pointing to a number), 
this is like ‘this’.

- Because there is a minus
sign, the curve will be 
less/down.

Physical 
feature or 
number 
mapping 
between the 
ERs

5. Descriptions of mapping 
between physical features of 
representations (e.g. straight-line 
indicating car direction and a 
plateau curve) accompanied with 
relevant gestures (such as moving 
hand in a straight line, pointing 
along a curve on the screen).

6. Explicit description solely based
on mapping between numbers in 
the representations – typically 
between graph and equation. 
Student would indicate specific 
number(s) in ERs (by pointing or 
explicit mention or a combination 
of both)

- The car is in a straight line 
(pointing to the car direction) and 
this (pointing to a straight line 
curve from the options) is also a 
straight line so this is the answer.

-  The length is 10 in this 
equation.. and here.. it is 5 in the 
second equation. 5 is half less than
10.. so it'll take less time than the 
original.. Maybe half of it..

Performing 
spatial 

7. This involves explicit 
descriptions and/or gestures 

- I thought that there is this mid-
point here in the pendulum, so if 
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operations 
on ERs. 
Three kinds: 
(a) ER 
super-
imposition,

(b) 
Extension of 
feature(s) of 
a 
representatio
n till it 
intersects 
with 
feature(s) in 
another 
representatio
n,

(c) Spatial 
division of a 
representatio
n into parts 
that are 
further 
mapped with
other ERs

related to the student imagining a 
superimposition of images, as if s/
he were taking the two images in 
hand and laying them over each 
other to see points of 
coincidence(s), typically between 
the curve and the pendulum. The 
superimposition may also be an 
attempt to match the ‘point’ 
features present in pendulum and 
curve images.

8. Descriptions of imagining an 
extension of, say the pendulum 
length, so that it intersects with, 
say graph or curve, to establish 
some relation between the ERs. 
The student either reports this 
verbally or using gestures or a 
combination of the two.

9. Explicit descriptions of mental 
operations on ERs accompanied by
appropriate gestures. For instance, 
splitting the screen or a 
representation into two or more 
parts to reason about the direction 
of pendulum or curve. This could 
be accompanied sometimes with 
physical feature or number 
mapping between the ERs.

we put this on the graph, there will
be a midpoint here too.. 

- Gesture: imaginary drawing 
pendulum image on graph

- The bob is here, if we pull it 
more till here (gesture indicating 
an extension of the pendulum 
length till it intersects the curve), 
the curve will be here (at the point 
of intersection).

- I imagined cutting the pendulum 
image into right half and left half 
and compared it to the graph cut 
into two halves to point the answer
on the curve.

- Gesture: chopping figures with 
hand(s), indicating the parts

An inter-rater reliability test using 33.33% of the sample was done by a researcher

other  than the experimenter.  This test  showed 100% agreement  on the coding

scheme.

The sensorimotor interaction data included eye as well as mouse data. Since our

analysis  treats  eye movements similar  to mouse movements – actions that can

potentially  lead  to  integration  --  the  eye  and  mouse  tracking  data  logs  were

collected from respective sources, synchronized and compiled in a single file. The

interaction  analysis  strategies  developed  during  iteration  1  were  employed  to

analyze  these  data  (see  section  5.1.2  for  details;  also  Kothiyal  et  al.,  2014 &
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Majumdar et al., 2014). Figures 5.21a to 5.21d depict the specific AOIs generated

for the current interface versions 2.1 and 2.2.

Figure 5.21 AOIs for (a) Screen 1, (b) Screen 2, (c) Screen 3, and (d) Screens 4-6. Color codes:
Pink = instructions, green = buttons (play and pause below the pendulum; back, next and clear
next to instructions in the top right corner),  blue = spatial (pendulum in screens 1-6, graph in
screens 3-6 and task in screens 4-6), and red = numerical (pendulum in screens 1-6, equations in
screens 2-6, graph Y-axis and graph numerical in screens 3-6, and task Y-axis in screens 4-6).

In iteration 1, I discussed the following four hierarchical levels of interaction data

analysis varying in the degree of abstraction:

(i) Level 1 analysis provides data on spread of attention (e. g. number of fixations

or mouse clicks per AOI, time spent on each AOI, etc.).

(ii)  Level  2  analysis  concerns  movement  of  participants  from one AOI to the

other; sequences of fixation events and mouse click events are determined here

(e.g.  figure 5.13)  and classified  into  two cycles  – perception-action  cycle  and

simulation or imagination cycle.

(iii) At level 3, level 2 data are fed in to define and compute markers that signify

integration.  An  example  of  a  marker  is  returns  –  identified  as  an  A-B-A

movement of the eye, where A and B are two different representations (AOIs).
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Such a movement  indicates  that  the learner  is  retaining  a  particular  feature  in

memory and returning to it.

(iv) Finally at the fourth level, process patterns of how the participants interacted

with  the  interface  are  generated  from  level  3  data  using  a  graph  theoretic

framework such as a transition diagram, wherein the AOIs are the nodes and the

transitions between the various AOIs are the weights of the branches.

Apart from generating the transition and return diagrams, level 4 in the present

analysis also focuses on defining and computing interaction parameters specific to

the simulation or imagination cycle of interaction. This is primarily because it is

postulated that, during this cycle, the participant would expect an outcome using a

forward model (Schubotz, 2007; Rahaman et al., 2017) of the action (i.e. mouse

click) performed during the interaction as an active effort to understand system

behavior. This expectation is, in a way, a simulation of the system mediated by the

interaction with ERs (Pande & Chandrasekharan, 2017).

In the following sections, data analysis is reported at levels 3 and 4 only as it

directly  addresses  an  important  objective  of  this  iteration  –  i.e.  understanding

(inter)action  patterns,  and not  attention.  Table  5.11  presents  definitions  of  the

parameters  computed  in  this  iteration  to  characterize  the  interaction  of

participants. See Appendix 9 for details on the data analysis steps taken.

Table 5.11 Definitions of interaction parameters calculated in this iteration.

Parameter Definition

Gaze 
Transitions 
(Level 3)

Eye movements between two consecutive fixations (e. g. A-B, where A and B 
are two different AOIs)

Gaze Returns 
(Level 3)

Eye movements between two or more AOIs of the nature A-B-A, A-B-C-A, A-
B-C-D-A, and so on, where A, B, C, D are different AOIs. Returns can be 
thought of consisting multiple transitions, for instance, the return A-B-A has an 
A-B transition and then a B-A transition. Similarly, A-B-C-A- consists of three 
transitions, A-B, B-C and returning from C to the AOI A i.e. a C-A transition.

Useful A-B-A 
returns

Returns of the nature A-B-A between two successive mouse clicks.
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(Level 4)

Useful A-B-C-
A returns
(Level 4)

Returns of the nature A-B-C-A between two successive mouse clicks.

Unique AOIs 
count between 
mouse clicks
(Level 4)

The number of AOIs visited between two successive mouse clicks, where even 
multiple visits to an AOI are counted as a single entry (e. g. if a participant 
visits AOI A twice, AOI B four times and AOI C just once between two 
successive mouse clicks, his/her unique AOI count will be 3 irrespective of the 
number of times s/he visited each of the AOIs).

AOIs count 
between mouse
clicks
(Level 4)

Total count of AOI visits, where multiple visits are counted separately (in the 
above example, the total AOI count between the two mouse clicks will be 
recorded as 2+4+1 = 7 counts).

Average 
spread
(Level 4)

The average number of occurrences of different AOIs between mouse clicks. 
Spread = Average number of AOIs visited between mouse clicks.

Elasticity
(Level 4)

The weighted sum of the average number of useful returns of the nature ABA 
and ABCA. Elasticity = 1*(average number of ABA returns) + 2*(average 
number of ABCA returns). Elasticity also shows how elastic or fluent a person 
is transitioning between AOIs. It can be understood in contrast to a general 
meaning of ‘inertia’ which usually signifies rigidity. Elasticity would thus 
indicate how easily does a person navigate between the different parts of a 
stimulus.

5.2.3 Results

5.2.3.1 ER integration

Table 5.12 below presents the top-level data: learner time spent on screens and

learning  tasks,   accuracy  on  the  ER integration  questions,  and  the  qualitative

category of reasoning in the ER integration questions. 

187



Chapter 5  DBR: ER Integration & Interactivity

Table 5.12: Group level data (I: Incorrect  answer,  C: Correct  answer,  DNA: Did not attempt).
Color coding of the cells indicates category of reasoning (Dark grey: Dynamic mapping; light
grey: Feature/number mapping; white: Spatial operations or no mapping or no response).
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Time on screen (seconds) Performance on ER integration questions
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496.92 0.49 I C I I I I C C I I I I I I

G3 160.73 92.01 66.44 695.12 569.85 10.42 I I I I I I C C I I C C C I

G4 334.40 408.52 283.04 458.89
1114.5
7

268.44 I I I I I I I C I I I C I C

G5 118.42 48.99 66.25 588.45 261.22 27.23 I I C I I I C C I I I I I I

G6 140.77 165.11 123.71
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116.58 8.18 I I I I C I I C I C I C I C

G7 628.41 571.44
1148.6
0
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2609.8
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3

659.01 I I I I I I C C I C I C I C
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Student

Time on screen (seconds) Performance on ER integration questions
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There were no noticeable differences between the ghost-graph and no-ghost-graph

conditions  in  terms  of  both  time  spent  on  screens  and  accuracy  on  the  ER

integration questions, except that the participants from the ghost-graph condition

took longer to solve learning tasks 1 and 2 on an average (hypothesis 1). The

researcher’s records from the interaction session note that several students from

the  ghost  graph  condition  spent  the  initial  few minutes  constantly  clicking  at

different points in the graph panel during the learning tasks; few of these students

eventually got frustrated as the curve would not generate. The researcher had to

intervene by reminding the students to try some other features in the interface

(such as the ‘play’ button, without explicitly mentioning it). Students in the no-

ghost-graph condition also scored well above average, similar to students in the

ghost-graph condition, in questions 6 and 12; the former requires one to map the

movement of pendulum with that of the curve, while the latter requires mapping

pendulum to  its  equation.  There  was  no  difference  between  the  conditions  in

qualitative reasoning.

There was no correlation between the time spent per screen and the accuracy on

the  ER  integration  questions.  The  accuracy  as  well  as  reasoning  patterns  are
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similar among students in both the conditions. Highest accuracy among both the

conditions is recorded on questions 7 and 8 (72.72% and 81.81% for ghost-graph

condition, and 71.43% and 85.71% for the no-ghost-graph condition respectively).

Question  7  tested  if  the  students  transfer  the  learning  or  achievement  of  ER

integration (in relation to the phenomenon of oscillation) from simple pendulum-

based ERs  to  a  real-life  situation  (mood swings).  Question  8 (and 9)  did  not

involve the oscillation situation.  Most students,  including the poor performers,

described behavior of the curve in relation to the event referred to in the question,

while  answering  these  questions.  One  student  (G7),  for  instance,  said  the

following in response to question 8:

My friend's mood is good in the morning (pointing on the answer graph at the beginning of the
curve), then it decreases as the time goes (moves finger along the curve), then it gets better again
and decreases as the time goes, so this is the answer (Moving fingers along the curve throughout)...
G7 while explaining her answer to question 7.

G7’s response shows that she not only related the ‘up’ and ‘down’ states of mood

with respective features in the curve (crest and trough respectively), which would

have been coded as a feature-based reasoning, but also indicated an understanding

of the dynamic change or process of the phenomenon of mood change in relation

to the static curve.

On  a  question  testing  if  the  students  transfer  the  understanding  of  oscillation

dynamics to other representations or situations, N15 exhibits her understanding

that not every curve represents change in a parameter of oscillatory nature.

Car runs at 60km.. they said.. and it does not go up-down.. Speed is same… (Researcher: What 
does not go up and down?).. Its speed remains the same.. so.. straight... N15 on question 8.

Further,  based  on  the  accuracy  and  quality  of  reasoning,  the  students  were

classified  into  three  performance  categories  irrespective  of  the  condition  they

received:  Good  integrators,  intermediate  or  partial  integrators,  and  poor

integrators. Below is the student distribution across the categories.

1) Good: G7, N13, N15

2) Intermediate/partial: G2, G6, G11, N18
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3)   Poor: G1, G3, G4, G5, G8, G9, G10, N12, N14, N16, N17

The good integrators (G7, N13 and N15) extensively reported the dynamics of

ERs when mapping between the pendulum and the graph (Q1-9), but not in the

questions requiring mapping equation with either graph or pendulum (Q10-14).

These  students  exhibited  a  good  understanding  of  the  various  graphs  shown

during  the  different  ER  integration  questions,  including  those  not  related  to

oscillation. In a few cases, phenomenon dynamics was reported upon observing

various ERs even when this was not required to answer the question successfully.

For instance,  N13, while explaining her answer to Q5 (which presents a static

picture of the sine-wave curve with a point highlighted on x-axis and requires one

to  mark  position(s)  of  the  pendulum  corresponding  to  that  point)  said  the

following:

Because  when  it  (pointing  to  the  highlighted  point  on  the  curve)  is  in  the  middle,  the  ball
(pendulum) goes to the left… N13

To answer this question, it is sufficient to correspond the static states of the two

representations without imagining their dynamic behavior. The phrase, “goes to

the  left”  in  N13’s  response  is  a  clear  description  of  the  dynamic  to-and-fro

movement of the pendulum. Note that the question (or the correct answer) does

not concern the direction of pendulum movement.

Nothing  conclusive  could  be  said  about  student  performance  on the  questions

involving  equations  (Q10-14),  as  all  the  participants  uniformly  found  them

difficult; most students relied on number and feature mapping, including the good

integrators. Specifically, it was observed that:

a.  For  Q10,  which  requires  changing  the  equation  by  mapping  the  problem

statement in imagination to static equation components, none of the participants

could provide any acceptable justification.

b. For Q11, which requires imagination of pendulum movement, change in one of

its parameters, and its effect on that movement, correct answer accompanied by

191



Chapter 5  DBR: ER Integration & Interactivity

acceptable explanation about the dynamics was given only by three students (G3,

G7, G11).

c. For Q12, which requires reading equations and mapping the differences in those

equations  to  the  differences  in  the  behavior  of  pendulum,  correct  answer  and

reasoning  was  given  by  8  students  (G1,  G3,  G4,  G6,  G7,  N12,  N13,  N16).

However, most provided a number mapping-based answer though they could not

map these numerical components with the pendulum behavior.

d. For Q13, which requires mapping the equation and its  components  with an

unfamiliar,  damped  graph,  5  students  (less  than  half)  ‘guessed’  the  answer

correctly  (G3,  G8,  G9,  N15,  N17)  but  failed  to  provide  intelligible  reasoning

about mapping between ERs.

e. For Q14, which requires mapping equation and its components with a familiar

graph, 6 students answered correctly (G1, G4, G6, N14, N15, N16). However,

analysis  of  their  transcripts  revealed  that  they  did  so  by  mapping  numbers

between the equations and physical features on the graphs without transforming

between the equation and the graph.

5.2.3.2 Interaction Patterns

The table below (Table 5.13) shows the interactivity parameters defined earlier in 

table 5.10 for all participants, except for G5 whose interaction data was not 

included due to technical problems.

Table 5.13: Interactivity parameters for screens 2 and 3, and tasks 1 and 2.
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Statistical significance could not be established in any case as the category sizes

are  very  small  and  the  standard  deviation  values  within  each  category  are

considerably high. Overall, good integrators had the highest average values on all
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interactivity parameters except for task 1, where they record the lowest values.

Poor performers  had the second highest  average values  across all  interactivity

parameters for all the screens and tasks; although, not significantly different from

the values for good integrators. Intermediate performers had the lowest average

values  across  all  the  interactivity  parameters  for  all  screens  and  tasks.  The

interactivity  values  suggest  that  good  integrators  had  the  richest  sensorimotor

interaction  with  the  interface,  followed  by  poor  integrators  whose  values  are

slightly lower; while the average integrators had the least diverse interaction with

the interface.

Next, figure 5.22 presents how the overall ‘spread+elasticity’ patterns vary for the

three  performance  categories,  as  students’  interface  exploration  progressed

through the different screens and tasks. Average spread and elasticity provide a

more holistic picture of the interaction patterns (described in table 5.10) as they

are abstracted from other level 3 and 4 parameters.

Figure 5.22 Trend across screens and tasks for average spread+average elasticity values of good,
intermediate and poor integrators. Notes: (1) Screen 1 interactivity data are not calculated as only
one ER (pendulum) is available for interaction at that stage; ER integration-related interactivity
thus is neglected for screen 1. (2) Task 3 data are not considered as most participants did not
attempt this task.

Across the screens and tasks, good integrators exhibit a strong trend with a drop in

their  interaction  with  the  interface  during  the  learning  tasks  as  compared  to

screens 2 and 3. They have the lowest values on all interactivity parameters for

task 1. The values in task 2, although more than those in task 1, are almost half the

values recorded for screens 2 and 3. For average and poor integrators, although

196



Chapter 5  DBR: ER Integration & Interactivity

the overall  nature of their  interaction with the interface does not seem to vary

significantly as they transit from screen 2 through task2, a weak pattern exactly

opposite to that for the good integrators is noticeable with an increase in activity

after transit from screen 3 to task 1.

These  trends  match  the  ideal  (expert-like)  eye-behavior  patterns  described

previously in table 5.7, suggesting that good integrators had already explored the

interface and the dynamic relationships between the ERs while in screens 2 and 3,

and that they were able to do the tasks with a more focused approach, where they

relied more on imagination than sensorimotor interactivity.

To dig more into the correlation between patterns of reasoning and patterns of

interaction,  four  participants  (two  each  from the  good  and  poor  performance

categories), who were able to articulate the reasons for their answers clearly and

elaborately,  were selected for detailed interaction analysis  at  level 4. This was

because  such  computer  interfaces  are  expected  to  develop  learners’  implicit

understanding of the target domain and I wanted to examine learners who were

able to make their implicit knowledge explicit and describe what they had learned

from the interface.

The four participants selected were G7, N13, G9 and N16. Of these G7 and N13

(good integrators) developed correct understanding of the dynamic relationship

between the ERs and were able to imagine it accurately later on in the absence of

interactivity,  while  the  other  two,  G9  and  N16  (poor  integrators),  developed

incorrect  understanding  of  the  relationship  between  the  ERs  (for  example,

physical  feature  or  number  based)  but  were  able  to  imagine  this  relationship

clearly later on.

Figure 5.23 compares the transition networks of these participants for screens 2

and 3 and task 1. Figure 5.24 presents a comparison of the plots of the returns.
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Figure 5.23 Comparison of patterns of transitions for screens 2 and 3 and task 1. Rectangular
boxes with a yellow fill are AOIs and the arrows connecting them are transitions. Direction of
arrow signifies direction of transition. The width of an arrow is proportional to relative number
(tag) of transitions in that direction.
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Figure 5.24 Comparison of returns for screens 2 and 3 and task 1. Rectangular boxes with a yellow
fill are AOIs and the arrows connecting them are returns. Direction of arrow signifies direction of
return. The width of an arrow is proportional to relative number of returns (tag) in that direction.

The  transition  networks  for  the  good  and  poor  integrators  during  screen  2

interaction are more or less similar, while there are clear qualitative differences

between  the  students  for  interaction  during  screen  3  and  learning  task  1.

Particularly  for  task  1,  the  transition  networks  for  the  good  integrators  are
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qualitatively richer than those of the poor integrators; the former group not only

transited more frequently between the AOIs but also exhibited activity between

diverse AOIs. However, these observations are only indicative as this difference

could not be established quantitatively. Moreover, no such patterns were observed

in  the  return  diagrams  where  both  low  and  high  performers  exhibit  similar

interaction patterns (e.g. transition networks of all the four students for screen 2,

return  networks  of  N13  and  N16  during  screen  2;  figure  5.24).  In  summary,

participants who could not integrate ERs may have interacted with the interface in

ways qualitatively similar to those employed by good integrators.

An  overall  comparison  between  the  transition  and  return  plots  of  these  four

students  shows that  their  interaction  patterns  do vary qualitatively  in  terms of

emphasis laid on the different representations and the sequence of looking and

clicking.  Importantly,  these  are  individual  variations  and  not  just  variations

between the performance categories. In fact, these strong individual differences

within groups indicates that there are multiple patterns of interaction among good

integrators  as  well  as  poor  integrators.  This  suggests  that  not  only  there  are

multiple patterns supporting integration but also that the same interaction pattern

can lead to different integration performance (good or poor).

5.2.4 Discussion

In this section, I discuss how findings presented in the previous section inform us

about the relationship between interactivity, imagination and ER integration.

5.2.4.1 Hypothesis 1: Ghost graph may be a hindrance to ER integration and

imagination

Considering  that  the  ghost  graph changes  in  real  time in  accordance  with  the

manipulation of any of the parameters, having a ghost graph in the background

should have reduced the time taken to solve the problem significantly, as both the

target curve and the curve that would be generated as a result of manipulation

would be available for direct visual comparison. Yet, students in the ghost-graph

condition took longer to solve the learning tasks on an average than students in the
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no-ghost-graph  condition.  These  students  also  performed  considerably  more

‘extra’  clicks  in  the  graph  region  during  the  tasks  than  students  in  the  other

condition. Why?

Before I seek to answer this question, I must remind the reader of the nature of the

learning  tasks.  Completing  task  1  required  changing  only  one  setting  of

parameters right in the beginning (i.e. at t = 0). Once the correct pendulum length

and initial angle values were set, playing the simulation would generate the curve

and complete the task. For solving tasks 2 and 3, one had to change the parameters

more  than  once  –  first  in  the  beginning  (at  t =  0),  and  then  again  after  the

simulation has run for a certain time (say at  t = x, where x could be anything

between  2-14  seconds,  depending  on  the  task).  To  change  the  parameter  the

second time, one needed to run the simulation with the initial settings, pause it

after  a  while  (at  t =  x  seconds,  depending  on  the  target  curve),  change  the

parameters as required, and then resume the simulation to complete the curve.

Considering that the average time that was taken by students in both conditions to

achieve precision at playing/pausing the simulation within the mechanical error

window, was more or less similar, the following are a few possible mutually non-

exclusive events that may have led to this inverse result:

(a) In task 1, because the students in the ghost graph condition could visualize in

the graph the effects of changing a parameter without any delay, they did not feel

it necessary to play/run the simulation to cross check their settings with the task

image. However, it took them longer to realize that they had to generate a curve

over the ghost graph by playing the simulation so that the task could be complete.

It is possible that the students deemed it unnecessary to play/run the simulation

much earlier, during screen 3 interaction. The no-ghost-graph condition students,

on the other hand, realized the need to play/run the simulation quickly as they had

no option (right from their interaction in screen 3) but to complete the simulation

in order to observe effects of their manipulation and check if their initial settings

were correct.
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(b) In tasks 2 and 3, playing/pausing the simulation was critical to a successful

completion. Students from the ghost graph condition who did not learn to play the

simulation in task 1 either failed in task 2 for obvious reasons or took more time

to engage in the play/pause cycles.

(c) In tasks 2 and 3, at the first pause after a certain curve had been generated,

changing a parameter would update the ghost graph only from the end-point of the

previously generated partial  curve,  and continue till  the cycle  ends.  The graph

panel  now  showed  a  ‘hybrid’  or  combined  curve  (that  had  a  partial  curve

generated till the pause with initial settings + ghost graph for new settings which

originated at end of the first pause). Figure 5.25 shows a screenshot of such a

hybrid curve.

Figure 5.25 Example of a hybrid curve displayed in the simulation interface. The curve with the
larger amplitude (from t = 0 to t = 4) is generated with initial settings, the curve with smaller
amplitude is a ghost graph displayed after pausing the simulation and changing the initial angle
setting, as a result, obtaining a hybrid of a generated curve and a resultant ghost curve.

This hybrid curve confused students as it  would look different from the target

curve. Getting out of this confusion needed a significant leap of thought – that the

simulation could be run and paused to change the parameters again, and that the

ghost graph shows only a possible curve every time a setting is changed. The

more the manipulations involved in each play/pause cycle, the easier it would be

to  achieve  this  leap;  and  hence,  more  time.  With  no  ghost  graph  available,

students in the other condition did not face this problem.

In all  the learning tasks,  the ghost graph turned out  to  be a crutch instead of

support, working as a means to offload the imagination of parameter change and

curve generation dynamics, thus confirming hypothesis 1.

202



Chapter 5  DBR: ER Integration & Interactivity

5.2.4.2 Hypothesis 2: Integration is correlated with interactivity

The  result  that  distinct  patterns  of  interaction  were  identified  with  each

performance category shows that interactivity and ER integration are related. The

consistently  higher  values  for  interaction  parameters  during  screens  2  and  3

indicate  a  positive  relationship  between  interactivity  and  ER  integration,

suggesting that interactivity is necessary for integration.

5.2.4.3 Hypothesis 3: Interactivity does not guarantee integration

High interactivity did not always lead to integration. Despite exhibiting values as

high  as  the  good  integrators  across  various  interactivity  parameters,  poor

integrators  failed  to  imagine  the  dynamic  relationship  between  the  ERs.

Intermediate or partial integrators, who could develop partial imagination-based

integration of ERs, reported the lowest interactivity with the interface, indicating

that low eye and mouse interactivity leads to partial, but incomplete integration.

The  good  integrators,  however,  exhibited  a  strong  downward  trend  of

spread+elasticity values (figure 5.23) as they moved from screen 2 through the

learning tasks, consistent with the ideal interactivity behavior (see table 5.7). This

means that the participants interacted and explored the dynamic ER relationships

more during the screens 2 and 3. A decrease in their activity during the learning

tasks indicates that they focused more on solving the problems as, perhaps, they

had  already  explored  the  relationships  between  ERs.  The  interactivity

(spread+elasticity  values) for average as well  as poor integrators,  on the other

hand,  does  not  seem  to  change  across  the  different  phases  in  the  interface;

although the average integrators show slightly increased activity  as they move

from screen  3  to  the  learning  task  1.  These  trends  in  interactivity  across  the

different phases of the interaction may have some role to play in ER integration.

While it can be tempting to conclude from these results that it may be good to

explore  the  interface  freely  (i.e.  when  there  are  no  tasks  or  specific  goals  to

accomplish)  in  order  for  integration  to  happen,  results  from  our  pilot  study

reported earlier suggest otherwise.
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Secondly,  good  integrators  imagined  the  phenomenon  dynamics  through  ERs

even during situations where it was not necessary to do so. N13’s response to Q5,

as discussed in the results section shows this clearly. Note that the question does

not concern the direction of pendulum’s movement as it could have been going

either ways (left to right or right to left) when the picture was captured. A possible

explanation to this behavior could be that N13 got drawn into the dynamics of the

pendulum-graph relationship. It is possible that her interaction with the simulation

interface and the three representation was intense/effective enough so that just the

perception of a state of the static representation readily triggered an imagination

of the movement of the pendulum and graph dynamics, consistent with what she

had  experienced  during  the  interaction.  This  maybe  a  case  of  automatic

simulation, which is one aspect of RC as per our model presented in chapter 3.

The other important aspect of RC is to gain explicit control over the dynamics in

order  to  capture  its  static  states  at  will  (Pande  &  Chandrasekharan,  2017).

However,  despite  exhibiting  gaze  and  click  interactivity  as  high  as  the  good

integrators,  not  even  a  single  such  incident  was  observed  in  case  of  poor

integrators. The poor integrators, in fact, failed to imagine the dynamics almost

always.

While good and poor integrators shared interaction patterns to some extent, the

strong  individual  differences  observed  within  each  performance  group  in  the

nature of interaction leads to the final finding discussed below.

5.2.4.4 Integration has no unique pattern of interactivity

This statement is a corollary of the previous finding that interactivity does not

guarantee integration. It is supported by the individual differences between transi-

tion and return networks of the good and poor integrators. The transition and re-

turn patterns of these four students showed that their interaction patterns varied

qualitatively in terms of emphasis laid on the different representations and the se-

quence of looking and clicking. 
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Importantly,  these are individual  variations and not just variations between the

performance categories. These strong individual differences within groups suggest

that there are multiple patterns of interaction among good integrators as well as

poor integrators. This suggests that not only are there multiple patterns supporting

integration, but also that the same interaction pattern can lead to different integra-

tion performance (good or poor).  The results  imply that  there is  no unique or

“ideal” interaction pattern that can guarantee integration.

In summary, these findings indicate that the relationship between sensorimotor in-

teraction and ER integration is more complex than assumed in conjecture 2, and

may involve other factors such as facilitation by a teacher, context, etc. In sum-

mary, extensive interaction is necessary for ER integration, but it is not sufficient.

5.3 Limitations

1.  Students  in  this  study  experienced  a  simulation  intervention  for  about  ten

minutes with minimal instruction. Future studies are needed to investigate whether

(a) a longer exposure to the interface would help ER integration more, and (b)

would it be possible for a teacher to smoothly connect this computer interface

with  the  existing  classroom dynamics,  possibly  using QR codes  (Borar  et  al.,

2017) linking the simulation to the textbook, to scaffold ER integration.

2. The intervention and assessment modules are presented separately in the cur-

rent interface. Students interact with dynamic ERs but are presented with static

ERs during the assessment (ER integration questions). This design allows investi-

gating how students imagine based on the static ERs, but does not provide infor-

mation on how they would use interactions in the simulation itself to solve the

problems. An ongoing revision of the design seeks to include both static image

based tasks and simulation based tasks to address this question.
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Chapter 6: Concluding remarks

6.1 Summary

The theoretical  and empirical work reported in this dissertation focuses on ER

integration,  which  is  central  to  RC  –  a  critical  skill  in  learning  science,

mathematics and engineering. I argue that a theoretical account of ER integration,

based  on  recent  developments  in  distributed  cognition  (DC)  and  embodied

cognition (EC), taking into account the constitutive character of ERs, is needed,

particularly  to  (a)  understand  the  cognitive  mechanisms  underlying  ER

integration, and (b) develop design guidelines for developing enactive new media

interventions. As a first step to develop such an account, I reviewed the theoretical

frameworks proposed for ER integration as well as RC development, and related

studies  within  and  across  the  STEM  domains  (chemistry,  biology,  physics,

mathematics,  engineering).  The  review  revealed  that  existing  accounts  and

approaches  to  ER  integration  are  primarily  rooted  in  classical  information

processing theories of cognition, particularly cognitive load-based models. Such

accounts make the development of ER integration appear mysterious, as they do

not seek to unravel the underlying cognitive mechanisms. Further, the computer-

based interventions derived from such frameworks consider ERs merely as tools

to achieve conceptual understanding, and ironically end up helping offload some

of the learner’s cognitive processes to the computer screen. 

To  address  the  need  for  a  state-of-the-art  understanding  of  the  cognitive

mechanisms that support ER integration, I outline a theoretical account extending

the idea of constitutivity. This model (the TUF model) focuses on the interaction

between internal cognitive processes and external representations, applying and

extending  recent  advances  in  distributed  and  embodied  cognition  theory.  The

account illustrates  how learners incorporate ERs, by interacting with them using

sensori-motor mechanisms. ERs thus gradually become part of, and thus extend,

the  cognitive  system,  as  well  as  form  and  extend  the  internal  model  of  the

scientific phenomena they represent. Imagination based on these internal models
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can thus connect and integrate external models smoothly. Further, activations of

the sensori-motor system during interactions with these ERs, as well as mental

simulations  based  on  the  internal  traces  of  these  sensorimotor  interactions,

facilitate ‘freezing’ and ‘unfreezing’ the different states of ERs in imagination.

This theoretical approach suggests that:

(1) The development of the ER integration ability (expertise) would result in a

reorganization of the cognitive system, particularly the sensorimotor system. This

suggests  that  the  way  learners  perceptually  access  ERs  would  change  after

significant training in a domain.

(2) Sensorimotor interaction would support ER integration and its development.

To test these predictions, I developed two empirical projects. The first explored

behavioral markers of sensori-motor mechanisms associated with ER integration.

The second developed a novel interaction-based learning environment, and tested

it  extensively  to  understand  the  role  of  interaction  in  ER  integration.  Both

empirical investigations treat eye-movements (or gaze) as actions similar to hand

movements.

Project 1 concentrated on identifying gaze and other behavioral markers across

various  expert  and  novice  populations,  to  understand  the  development  of  ER

integration in chemistry. The results confirmed that, among the multiple variables

at work, a sensorimotor change is critically associated with the development of

ER integration. This sensorimotor component, in our sample, was identified as a

tuning of the perceptual system, in the process of novices turning into experts

(marked by changes in eye movements and gaze patterns while viewing ERs).

This tuning helps in quickly and effectively picking up relevant information from

the  ERs.  Interestingly,  experts  also  appeared  to  ‘simulate’  the  chemical

phenomenon dynamics during their context-based encounters with chemical ERs,

suggesting that expertise is supported by a close coupling between perceptual and

imagination systems, thus confirming the first conjecture. This study is among the
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first to objectively characterize the sensorimotor changes facilitated by training in

a discipline.

The DBR project reported two design-development and testing iterations of a fully

manipulable,  interactive  multi-representational  computer  interface.  It  was

conceptualized to support integration of ERs at the middle-school level, based on

the concept of oscillation. Results revealed that although sensorimotor interaction

in general  facilitates  ER integration,  high interactivity  does not always lead to

integration. As a corollary, there is no unique interaction pattern leading up to ER

integration. This indicates that the relationship between sensorimotor interaction

and ER integration is more complex than assumed in conjecture 2.

In summary, the similarity in eye movements in the way experts (study 1) and

good integrators (study 2) interacted with the ERs together support the idea of

sensorimotor markers of ER integration. These data are only indicative given the

small  samples,  but it  suggests the possibility of developing assessment models

based on sensorimotor markers. However, such sensorimotor change is just one

trackable outcome of ER integration. Generating such change does not guarantee

ER integration. 

6.2 Educational implications

This  research,  particularly  its  unique  perspectives  on  the  problem  of  science

learning, has many different implications. I highlight a few important ones below.

Firstly, the conjecture that concepts are constituted by interaction with many ERs,

and  the  converging  results  corroborating  this  model  based  on  theoretical  and

empirical  work,  indicate  that  sensorimotor  interaction  supports  ER integration.

This  suggests  a  focus  on  manipulative-based  pedagogies,  particularly  those

utilizing  the  potential  of  computer  technologies  and new-media  as  they  make

possible  manipulation of ERs and observing the effects in real time. They also

allow coupling static and dynamic states of ERs at will.
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Secondly, the proposed model provides a theoretical justification for action-based

learning. Recent  research argues that (embodied) interactivity  leads to learning

(Abrahamson  &  Sánchez-García,  2016;  Borar  et  al.,  2017),  particularly

manipulation  based  on  new-media.  But  it  is  not  clear  how  manipulation

contributes to learning. One proposal is that the process of interaction associates

the self with perception and memory, and this leads to better cognition (Hung et

al., 2014). A second approach argues for constructionism (Papert & Harel, 1991),

which is considered as a new epistemology, where the central role of interactivity

is  the  support  it  provides  for  collaborative  building,  of  mathematical  objects

(using Logo) and complex systems (using NetLogo), based on manipulation-based

programming. A recent third approach considers gestures in new computational

media as similar  to the process of gestures  during the mathematical  discovery

process, which are hypothesized to be part of the mechanism that helps shift body-

based intuitions (about possible results) into external symbolic proofs built using

known and accepted mathematical structures (De Freitas & Sinclair, 2014; Sfard,

1991 & 2000). There is also a recent (fourth) approach which, through empirical

research,  indicates  that  (conceptual)  learning through interaction  (with ERs)  is

further strengthened when learners reflect on their interaction explicitly (Danish et

al.,  2015;  Sengupta  et  al.,  2015).  The  constitution  view  argued  for  in  this

dissertation suggests that actions done on manipulatives help in learning because

actions  are  inherently  integrative  in  nature.  Every  action  requires  a  complex

integration process, bringing together objects, forward models and feedback from

various channels (visual, tactile, proprioception). This integration process would

be primed when manipulatives are used to interact with symbolic entities, and this

priming would help integrate different symbolic components in imagination.

Next,  while  this  research  suggests  that  interactivity  is  necessary  for  ER

integration, it also shows that interactivity is not sufficient. The role of the teacher

is  crucial  in  directing  learner  attention  to  important  parts  of  the  interface,  to

facilitate  the  ER  integration  quickly  and  optimally.  Apart  from such  cultural

support  needed  to  support  interactivity,  the  system we developed  has  a  more

210



Chapter 6   Concluding Remarks

content-related limitation. Our computer interface was very useful for learners in

understanding the 'controller' role of equations, where the equation is used to set

the initial value of the variables. Once the oscillation starts, the equation works as

a 'descriptor', because the variable values change as the simulation progresses, and

this change is captured by the graph. However, the general equation embeds a

third  aspect,  where  it  describes  an  idealized  system that  is  true  of  all  natural

number values of the variables. This idealization, and the process by which it is

derived  using  modeling  and  deductive  thinking,  are  not  supported  by  our

interactive system. This is because the system only presents an instantiation of the

general description provided by the equation, and this simulation of the general

system  only  illustrates  the  oscillation  behavior  for  a  range  of  values.  These

illustrative cases may help in understanding the general case, but possibly not its

derivation. The illustration of oscillation behavior can be considered similar to the

way teacher demonstrates examples, by embodying and simulating the dynamic

behavior using the blackboard and gestures. This process may allow the student to

extend the specific cases the teacher illustrates, to reach a general case. However,

there is another process the teacher illustrates, where she derives the oscillation

equation.  The inductive  extension process does not work in understanding the

derivation  case,  as  derivations  are  based  on  model-based  reasoning.  This

derivation process is not supported by current interactive systems. It is an open

question  whether  the  model-based  reasoning  involved  in  this  process  can  be

supported  by  interactive  media,  as  the  reasoning  here  proceeds  using

uninstantiated  variables  and  general  principles.  These  are  integrated  by  the

imagination process, to arrive at the model system. This integration capacity based

on variables may well  be a unique affordance of the imagination process, and

manipulatives may not contribute much to this process.

Finally, extending the above reasoning, it is possible that a lot of interactivity may

hinder or suppress imagination. If every manipulation is made possible externally,

students may end up over-relying on the external world, and not feel the need to

develop  the  internal-external  coupling.  This  is  not  a  problem  if  the  external
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affordances  are  always  available,  as  in  the  case  of  scientific  calculators  in

advanced  classes.  But  it  would  definitely  be  a  problem if  the  external  action

possibilities are unavailable – which is most often the case.

6.3 Other contributions of the dissertation to the field

1.  The  comprehensive  review  of  literature  around  ER  integration  and  RC

development  provided  in  chapter  2  is  one  of  its  kind,  as  it  brings  together

extensive  and  highly  diverse  theoretical  as  well  as  experimental  work  from

different disciplines, among which no common threads are readily apparent.

2.  The  empirical  projects  reported  in  the  dissertation  are  among  the  first  to

objectively  characterize  the  sensorimotor  changes  facilitated  by  training  in  a

domain. Findings from these projects and their conceptual background provide a

fresh perspective towards theories of ER integration and expertise.  

3.  Our  fully  manipulable  interface  is  one  of  the  first  theoretically  motivated

interventions  targeting  ER  integration,  by  using  interaction  features  emerging

from DC and EC theories. It is also among the few DBR projects studying the

development of RC using eye and mouse tracking.

4.  The  idea  of  making  equations  as  an  interface  element,  making  them

manipulable, and using equations as controllers, is first proposed and developed in

this  work,  based  on  theoretical  considerations.  All  other  existing  simulation

systems either hide equations in code, only allowing discrete parameter changes,

or  display equations  in  a  haphazard  way.  Our theory-based approach to  using

equations as control elements in the interface leads to the fundamental insight that

formal systems are best understood as dynamic systems, capturing dynamic real-

world behavior continuously.

5.  This  work  is  the  first  to  systematically  examine  the  relationships  between

interactivity,  ER integration  and learning.  In  contrast,  most  existing  computer

interventions  assume interactivity  is  good,  based  on  design  principles  coming

from usability paradigms in HCI (human-computer interaction) and educational
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technology  design.  The  analysis  presented  here  shows  that  usability  design

principles  cannot  be  applied  directly  to  the  problem  of  learning  complex

representations and conceptual content.

6. The empirical work reported here led to the development of novel interaction-

based methods to study problem-solving, using gaze and (inter)action tracking.

The interaction analysis methods described in the dissertation are state-of-the-art,

and emerged from dedicated collaborative work over the years with contributions

from cognitive scientists, educators, computer scientists, teachers and students.

6.4 Limitations and future work

The work reported here only provides indicative data to support the conjectures

related  to  the  theoretical  model,  as  the  studies  have  the  following  set  of

limitations.

A major limitation of the empirical work reported in this dissertation is related to

the use of eye-tracking methodology. When using eye-tracking technology, firstly,

it  cannot  be  known  for  sure  if  looking  at  something  equals  (consciously)

processing it. Given that it is possible for humans (and perhaps animals as well) to

physically have eyes pointed to an object in the external world and simultaneously

attend  to  something  else  in  imagination,  the  gaze  behavior  captured  by  eye-

tracking  may  not  always  be  related  to  the  participant’s  cognitive  processes.

Related to the above, changes in the cognitive processes may not always reflect in

changes in gaze behavior. 

Secondly, the statistical outputs of eye-tracking often contain systematic errors to

a certain degree, arising out of individual differences in calibration accuracy and

precision. Particularly when dealing with stimuli displayed on computer screens,

the issues of staggering of stimulus or task windows (for each individual as well

as across participants) can further increase the errors. Moreover, there is often loss

of gaze data points due to several unavoidable factors such as blinks, proximity to

the laptop screen, rapid head-movements, or moving out of the eye-tracking zone,
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etc. However, considering the state-of-the-art of the technology, such errors are

permitted within a certain range, depending on the context of the experiment.

Next, part of the work reported is based on the conjecture that ER integration is

cognitively  more  fundamental  as  well  as  simpler  than  conceptualization.  This

conjecture grants that the process of conceptualization, in relation to sensorimotor

and ER integration,  may involve feedback loops,  and that  there may be many

different  phases  in-between.  Future  research  is  needed  to  test  this  conjecture

systematically from the point of view of designing and sequencing instructions

specifically  for  conceptualization,  and  understanding  the  complex  relation

between sensorimotor interaction and conceptualization. One interesting question

here  is:  should  instructional  tools  provide  perceptual  experiences  related  to

learning  content  (such  as  simulations),  before  introducing  concepts  (such  as

physical  laws),  to  help  students  have  a  concrete  cognitive  base  for  better

comprehension of the concepts?

In the second project, students experienced a simulation intervention that provided

perceptual bases for about ten minutes, instruction was provided for about five

minutes. If students spent more time interacting with the simulation,  and more

instruction was provided, it is possible that results with larger effect sizes would

have emerged. Generally, it takes a considerable amount of time before complex

embodied experiences are internalized, to the point that the internalized traces can

be used to run imagination events. Even with a carefully designed instructional

process to provide embodied experience, more intervention time (long enough for

students  to  fully  embody  their  perceptual  experiences)  would  make  the

imagination  effects  stronger.  It  would  also  be  useful  to  investigate  whether

different instruction types activate the multimodal representation differently.

Further,  the  result  that  the  same  patterns  of  interactivity  lead  to  different

understandings about the relationships between ERs suggests that these patterns of

sensorimotor  interaction  need  to  be  supported  by  instructions,  constantly

modulated  based  on  contexts  and  the  nature  of  students,  which  only  a  good
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teacher can provide. Future studies are needed to investigate (a) how the interface

would help a teacher in scaffolding ER integration, and (b) how the teacher would

address the need to constantly modulate the complex classroom dynamics based

on interactions between technology, conceptual content, materials and students.

Future work in this direction may also include opportunities for students to reflect

on  their  own  actions,  effects  of  those  actions  on  the  ERs,  the  relationships

between the  ERs,  etc.  A post-facto  analysis  (not  included in this  dissertation)

indicated that the interviews conducted in Iteration 2 may have had further effects

on student ER integration abilities. This has been reported previously in the case

of  conceptual  learning  through  agent-based  modelling  environments  (e.g.

Sengupta  et  al.,  2015)  and  computer-supported  collaborative  learning

environments (e.g. Danish et al., 2015).

From the technology point of view, the interface design discussed in this work

allowed  student  to  see  in  real-time  on  screen  the  changes  that  resulted  from

interaction  or  manipulation.  However,  with  the  emergence  of  more  enactive,

embodied  and  immersive  (new-media)  technology  platforms,  the  instruction

design principles  and features  outlined in this  dissertation could be fused with

gesture-based control  (Kinect,  Wii,  LeapMotion)  and/or  haptic  devices,  which

allow experiences that imitate kinaesthetic movements associated with interaction

with physical  objects.  Such experiences  would allow students to have a richer

(multimodal) experience of formal systems. Future studies are needed to compare

the advantages and limitations of such different new-media interventions.
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Appendix 1  (Chapter 4)

Representations used in ER categorization (screenshot images)

Representation Image Description of the 
representation

A A solubility vs. concentration 
curve governing the dissoluti 
silver chloride in relation to the 
concentration of ammonia.

B Demonstration of a 
neutralization reaction between 
sodium hydroxide and 
hydrochloric acid. The different 
colors are due to the addition of 
an indicator. Corresponding 
video shows how mixing certain 
quantities of pink colored acid 
with blue colored base results in 
formation of a neutral products –
salt and water. 

C Temperature vs. concentration 
curves related to an equilibrium 
reaction.

D 3D molecular animation 
depicting effects of heating on 
an equilibrium reaction between 
water and dissolved cobalt 
chloride.
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E Representative equation of a 
neutralization reaction between 
strong base and strong acid.

F 3D molecular animation 
representing the above 
neutralization reaction.

G Equation of the NO2-N2O4 gas 
equilibrium reaction.

H Demonstration video of the 
precipitation reaction between 
potassium iodide and lead 
nitrate. 

I 3D molecular animation 
depicting the dynamics of the 
above reaction.
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J Titration curves of the strong 
acid-strong base neutralization 
reaction. One depicts the 
addition of base in acid while the
other captures the opposite.

K Temperature vs. concentration 
curves related to an equilibrium 
reaction.

L 3D molecular animation 
capturing dynamics of the 
equilibrium reaction between 
solid silver chloride and 
ammonia. 

M A demonstration video showing 
effects of different temperature 
conditions on the NO2-N2O4 
gas equilibrium reaction filled in
closed tubes.

N Equation of the equilibrium 
reaction between silver chloride 
and excess of ammonia.
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O Demonstration video showing 
effects of heating on an 
equilibrium reaction between 
water and dissolved cobalt 
chloride.

P Chemical equation capturing the 
precipitation of lead iodide as a 
result of a reaction between 
potassium iodide and lead 
nitrate.

Q 3D molecular animation 
showing effects of different 
temperature conditions on the 
NO2-N2O4 gas equilibrium 
reaction.

R Equation of the equilibrium 
reaction between water and 
dissolved cobalt chloride.

S Demonstration video showing 
the dissolution of solid silver 
chloride on addition of excess 
liquid ammonia – equilibrium 
reaction.

Sample animations and demonstration videos can be found at: 

http://lsr.hbcse.tifr.res.in/chem/reactions_render/ 

237

http://lsr.hbcse.tifr.res.in/chem/reactions_render/


Appendix 2 (Chapter 4)

Chemical equation balancing task problems:

Question Image

Bal1

Bal2

Bal3
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Bal4

Bal5

Bal6
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Appendix 3 (Chapter 4)

Instructions given to each participant during the Balancing task:

You will be seeing a simple unbalanced chemical equation and your task is to

balance it. No paper and pencil are available as you are expected to do it mentally.

There is no time limit, so you can take as long as you want. You can also proceed

to the next equation if you find the current one difficult but remember that you

will not be allowed to return to the equation you skip.

Instructions for the ER categorization task:

Now we begin the second task. Here, I will be showing you one by one, a number

of  representations  such  as  chemical  equations,  graphs,  3D  animations  and

laboratory  demonstration  videos  on the laptop screen.  When I  show you each

representation,  I  will  be  handing  over  to  you  a  card  with  the  corresponding

representation printed on it. In case of animations and demonstration videos, the

card  will  have  a  screenshot  of  some  moment  in  the  movie.  Attend  to  each

representation on the screen carefully as you will not be allowed to return to it

after you have proceeded to the next one. You can take as much time as you want

to view each image, and watch each movie as many times as you want before

proceeding to the next. Once you have seen all the representations on the laptop

and collected all the corresponding cards with you, I will tell you what to do with

them.
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Appendix 4 (Chapters 4 & 5)

Definitions of gaze parameters.

Fixation point Point (location) on the stimulus where the eye is fixated.

Fixation index Represents the order in which a fixation event was recorded. The index is an 

auto-increment number starting with 1 (first gaze event detected).

Visit duration The duration of each individual visit within an AOI.

Visit count The number of visits within an AOI.

Fixation 

duration

The duration of each individual fixation for a participant within an AOI.

Fixation count This metric measures the number of times the participant fixates on an AOI or 

an AOI group.

Saccade Movement of the eye between fixation points.

Gaze 

Transitions 

Eye movements between two consecutive fixations (e. g. A-B, where A and B 

are two different AOIs)

Inertia The number of transitions made to the same AOI/total number of transitions.

Volatility 1 – inertia. 

Gaze Returns Eye movements between two or more AOIs of the nature A-B-A, A-B-C-A, A-

B-C-D-A, and so on, where A, B, C, D are different AOIs. Returns can be 

thought of consisting multiple transitions, for instance, the return A-B-A has an 

A-B transition and then a B-A transition. Similarly, A-B-C-A- consists of three 

transitions, A-B, B-C and returning from C to the AOI A i.e. a C-A transition.

Useful A-B-A 

returns

Returns of the nature A-B-A between two successive mouse clicks.

Useful A-B-C-

A returns

Returns of the nature A-B-C-A between two successive mouse clicks.

Unique AOIs 

count between 

The number of AOIs visited between two successive mouse clicks, where even 

multiple visits to an AOI are counted as a single entry (e. g. if a participant visits
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mouse clicks AOI A twice, AOI B four times and AOI C just once between two successive 

mouse clicks, his/her unique AOI count will be 3 irrespective of the number of 

times s/he visited each of the AOIs).

AOIs count 

between mouse

clicks

Total count of AOI visits, where multiple visits are counted separately (in the 

above example, the total AOI count between the two mouse clicks will be 

recorded as 2+4+1 = 7 counts).

Average spread The average number of occurrences of different AOIs between mouse clicks. 

Spread = Average number of AOIs visited between mouse clicks.

Elasticity The weighted sum of the average number of useful returns of the nature ABA 

and ABCA. Elasticity = 1*(average number of ABA returns) + 2*(average 

number of ABCA returns). Elasticity also shows how elastic or fluent a person is

transitioning between AOIs. It can be understood in contrast to a general 

meaning of ‘inertia’ which usually signifies rigidity. Elasticity would thus 

indicate how easily does a person navigate between the different parts of a 

stimulus.
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Appendix 5 (Chapters 4 & 5)

Steps taken to process raw eye-tracking data in order to obtain transition matrices:

Step  1: In  the  raw  data  sequence  generated  from  Tobii  Studio,  as  there  are

separate columns for different areas of interest (AOI), there is unique AOI hit (1

denotes a hit) under respective column headers (each AOI). So the AOI columns

were  merged,  using  'CONCATENATE'  function  in  excel,  so  that  a  number

represents a specific AOI hit. For example, consider the stimulus figure below. 

While generating the (gaze or mouse) activity  sequences for this stimulus,  the

number 1000 denotes AOI hit for CURVE, 0100 denotes ORIGIN hit, 0010 marks

hit in Y-AXIS area, 0001 for X-AXIS hit. 0000 denotes a non AOI hit, i.e. no

fixation was recorded in any of the AOIs. The fixation in this case may lie outside

all  the  AOIs.  So  from the  raw  data  sequence,  the  fixation  hit  sequence  was

retained in the form of these numbers, stored under a separate column.

Step 2: To this concatenated column, the filter (from 'Sort & Filter" option) was

applied wherein 0000 box was unchecked to remove all the non AOI hit entries

from the sequence. Then a different column stores this filtered sequence. In the

adjacent column, difference between two consecutive cells, (A2-A3, A3-A4 and

so on) is calculated. A new filter is applied to this column to filter the cells with

the value '0' (zero). In this way consecutive duplicate AOI entries are deleted, to

get only the unique AOI hits. For instance, if four consecutive fixations happen in

AOI  curve  while  the  next  three  happen  in  AOI  X-axis,  after  applying  our
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algorithm, these will be filtered as only two AOI events – one happening in AOI

curve  and  the  very  next  in  AOI  X-axis.  This  would  then  be  counted  as  one

transition from AOI curve to AOI X-axis. In this way, the entire sequence was

analyzed to count transitions between the different AOIs.

Step  3: Subsequently,  the  transition  diagrams  were  plotted  according  to  the

transition sequence using a graph theoretic framework.

Step 4: For returns, the event or transition sequence obtained in step (2) is further

filtered  to  identify  transitions  of  the  A-B-A or  A-B-C-A kind,  by  applying  a

similar logic.

The tables for fixation duration, fixation count, and saccades were generated from

TOBII and the data tables were created to calculate the required parameters across

participants and groups and graphs were plotted accordingly.
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Appendix 6 (Chapter 5)

Learning tasks (images): The task required students to generate a curve in the 

graph panel similar to that depicted in the respective task image by manipulating 

the parameters accordingly and playing the simulation.

Task 1

Task 2

245



Task 3
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Appendix 7 (Chapter 5)

ER integration questions in iteration 1 (printed sheet was presented to the student).

Question 1: On which side will be the pendulum (the moving object) when the 

end of the graph is negative, as below?

(a) Right (b) Left (c) Exactly vertical (d) Exactly

horizontal

Question 2: Where will be the pendulum (the moving object) when the end of the 

graph is on the x-axis, as below?

(a) Right (b) Left (c) Exactly vertical (d) Exactly

horizontal

Question 3: Where will be the pendulum (the moving object) when the end of the 

graph is as below?
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(a) 30 degrees left

(b) 30 degrees right

(c) 30 degrees vertical

(d) Exactly horizontal

Question 4: The pendulum (the moving object) is at the point shown in the figure 

below. Where is this point on the graph? 

You can mark the point(s) on the graph below:
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Question 5: The pendulum (the moving object) is at the point shown in the figure 

below. Where is this point on the graph?

You can mark the point(s) on the graph below:
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Question 6: The pendulum (the moving object) is at the point shown in the figure 

below. Where is this point on the graph?

You can mark the point(s) on the graph below:
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Appendix 8 (Chapter 5)

Learning objectives and ER integration questions (general) in iteration 2:

Learning

objectives:  The

student  will  be

able to - 

Question category Multiple-choice question with four

options 

Map phenomenon

and graph

Check  whether

learner  can  relate

points  on  graph  to

phenomenon and vice

versa

Given  a  particular  position  on  the

graph,  identify  the  corresponding

position of the pendulum. 

Given a diagram of a pendulum at a

certain  position,  mark  the

corresponding  position(s)  on  the

graph.

Check  whether  given

a  word  problem,  a

learner  can  imagine

the  phenomenon  and

its  graph?  -

Oscillatory graphs

Imagine  you  have  a  friend  whose

mood swings regularly. She starts the

day with a very happy mood, but as

the day progresses, she gets upset. At

night  she  is  very  sad.  The  next

morning she is very happy again, and

her  mood  deteriorates  as  the  day

progresses. This continues every day.

Which  graph  among  the  following

best  represents  your  friend's

behavior? 

Options (with figures) y = constant; x

= constant; parabola; sinusoid.

Non-oscillatory

graphs  (non-

sinusoidal  movement

in time):

A car  is  moving  along  a  road  at  a

constant  speed  of  60  kph  (a  line

diagram of car). The graph that best

represents its speed of movement is: 
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Options (with figures) y = constant; x

= constant; y=x; sinusoid.

I threw a ball in the air towards my

friend  50  m away.  It  went  towards

him, rising initially  and then falling

down  as  it  approached  him  (line

diagram of  two  people).  The  graph

that best describes the path of the ball

is: 

Options (with figures) parabola; x =

constant; sinusoid; y = x.

Map  system  and

equation

Describe  damped

pendulum  and  ask

what is the equation.

Consider  the  simple  pendulum  you

worked with earlier. When you move

the  bob  to  a  particular  angle  and

release  it,  the  pendulum  keeps

moving  back  and  forth  around  the

vertical  position  without  stopping.

The  equation  of  the  angle  of  the

pendulum  at  any  point  of  time  is

given by √ g
l

θ ( t )=θ0 cos  
t). T is the time

taken for one cycle, i.e. starting from

one point and returning to the same

point.  Now  suppose  there  was  air

drag. When the pendulum is released

from a particular angle, the drag will

slow it down and after moving back

and forth about the vertical position a

few times, the pendulum will stop at

the vertical position. What would the
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equation for the approximate angle of

such a pendulum at any point of time

be? 

Options: 2*θ ( t ), θ ( t )/2, θ ( t )-2, (1-t/2) 

How  to  modify

behavior of pendulum

Consider  the  simple  pendulum  you

worked with earlier. The equation of

the  angle  of  the  pendulum  at  any

point of time is given by √ g
l

θ ( t )=θ0 cos  

t). T is the time taken for one cycle,

i.e.  starting  from  one  point  and

returning to the same point. Consider

a  pendulum  which  completes  one

cycle in 1.2 sec. Now suppose if you

want to make the pendulum go faster

and  complete  one  cycle  in  1  sec.

What would you do? 

Options:  Increase  l,  Decrease  g,

Decrease  l,  Let  the  pendulum  go

from a greater angle initially 

Modify  equation,  ask

about behavior

Consider  the  simple  pendulum  you

worked with earlier. The equation of

the  angle  of  the  pendulum  at  any

point  of  time  is  given  by  This

pendulum completes  one cycle  in  2

sec,  i.e.  starts  from  one  point  and

returns  to  the  same  point  in  2

seconds.  Now consider  a  pendulum

with  equation  given  by.  How  long
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does this pendulum take to complete

one cycle? 

Options: Less than 2 sec; More than

2 sec; Equal to 2 sec; Half the time

Map  equation  to

graph

Show  underdamped

pendulum  graph  and

ask  what  is  the

equation?

Look at the graphs below (diagrams

of  sinusoid  and  damped  sinusoid

shown). The graph on the left has the

equation.  What  is  the  approximate

equation of the graph on the right? 

Options: 2*θ ( t ), θ ( t )/2, θ ( t )-2, (1-t/2).

Modify  equation,  ask

about graph

Look at the graphs below (diagrams

of  two  sinusoids  with  different

amplitudes).  The  graph  on  the  left

has the equation.  What is the graph

of the equation? 

g
l

t

√❑
θ ( t )=20 cos  

Options: Graph with same frequency

and amplitude  20;  graph with  same

frequency  and  amplitude  40;  graph

with  different  frequency  and  same

amplitude;  graph  with  different

amplitude and frequency.
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ER integration questions (screenshot images)

Question Screenshot

1

2

3
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4

5

6
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8

9
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11
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14
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Appendix 9 (Chapter 5)

Data processing steps taken (Chapter 6). This algorithm is based on a logic similar

to the gaze data analysis explained in appendix 5. Here I briefly mention the steps

from a program we developed to automate the data processing.

Step 1: The raw data is obtained from Tobii.

Step 2: Assign Event Type to mouse and fixation events.

Step  3: Remove  all  the  non-mouse  and  non-fixation  entries  (e.g.  saccades,

microsaccades and other classified events)

Step 4: Assign AOI to fixation (from the list of AOI hits) and mouse events (from

the pixel values of the mouse click and the AOI rectangles)

Step 5: Remove all the non-AOI data The timestamp value is corrected, i.e., the

gaps in time due to removing data are re-arranged such that all the resulting is

continuous in time. Also each data entry is assigned a time duration of (1000/60)

milliseconds because of the 60-Hz data entry by Tobii Pupil Data is extracted and

the  average  of  left  and  right  eye  data  is  stored  separately  along  with  the

corresponding AOI data. Next, average and Standard Deviation of the pupil data

is calculated for the entire timespan and for individual AOIs.

Step 6: Consolidate the entries with the same Fixation Index.

Step 7: Make 3 data arrays: only fixation events, only with mouse events, with

both mouse and fixation events.

Step 8: Calculate the time duration for each fixation event.

Step 9: Club fixations happening in the same AOI into one event entry.

Step 10: Calculate the total time and the time spent in each AOI. Note: The time

data in the sequence sheet is the corrected time data. The mouse click could have

fixation,  saccade  or  unclassified  gaze  event.  Tobii  does  not  provide  AOI-hit

information for the mouse click event entries in the data Tobii does not provide
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the mouse down time, ie, we don’t have the drag data. The mouse click given by

Tobii happens when the mouse button is pressed or released.
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i This chapter contributed to the following journal publication: Pande, P., & Chandrasekharan, 
S. (2017). Representational competence: towards a distributed and embodied cognition account. Studies in 
Science Education, 0(0), 1–43.
ii This chapter contributed to the following journal publication: Pande, P., & Chandrasekharan, 
S. (2017). Representational competence: towards a distributed and embodied cognition account. Studies in 
Science Education, 0(0), 1–43.
iii The classroom activities are one way of interacting with the dynamics embedded in ERs, 
new-media technologies is another. I do not consider educational technologies as stand-alone 
resources, to be used independent of classroom activity.
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