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We have arranged a civilization in which most crucial elements
profoundly depend on science and technology. We have also arranged

things so that almost no one understands science and technology. This
is a prescription for disaster...Sooner or later this combustible mixture

of ignorance and power is going to blow up in our faces.

— Carl Sagan,
The Demon-Haunted World: Science as a Candle in the Dark, p. 26

(Random House, New York, 1995).



Dedicated to my grandparents
Kalarattu Kandiyil Moosa Haji and Khadeeja



iv



v

Declaration

This thesis is a presentation of my original research work. Wherever contributions of
others are involved, every effort is made to indicate this clearly, with due reference
to the literature, and acknowledgement of collaborative research and discussions.
The work was done under the guidance of Professor Vijay A. Singh, at the Tata
Institute of Fundamental Research, Mumbai.

Mashood K. K.

In my capacity as supervisor of the candidate’s thesis, I certify that the above
statements are true to the best of my knowledge.

Prof. Vijay A. Singh

Date:



vi



vii

Acknowledgment

It was a long walk. Perhaps the longest which I ever undertook in my life consciously.
Looking back to express my gratitude to all those who made this journey possible, I
am at a loss on where to begin. Even the logical beginning from my parents seems
inadequate. The work would not have been possible without my supervisor, Prof.
Vijay Singh. I am grateful for his continuous and scholarly guidance.

I express my gratitude to Arvind Kumar, Anwesh Mazumdar, Paula Heron,
Peter Shaffer, Lillian McDermott, Joe Redish, Eric Mazur and Ravi Menon for
valuable discussions. I thank the referees for their careful evaluation of the thesis,
valuable suggestions and positive remarks. I acknowledge Jayashree Ramadas, Chi-
tra Natarajan and G. Nagarjuna for their encouragement. I thank Sugra Chunawala,
H.C. Pradhan, S.C. Agarkar, Savita Ladge, R. Vartak, K. Subramaniam, P. De and
Praveen Pathak whose courses I have attended or with whom I had discussions.

I thank the American Physical Society - Indo-US Science and Technology Forum
(APS-IUSSTF), Sir Ratan Tata Trust and American Association of Physics Teachers
for financially supporting my US visit. I express my gratitude to Paula Heron and
S. M Chitre in this regard.

I am grateful to the teachers, students and content experts who participated in
the work. I thank the Physics Olympiad and the National Initiative on Undergrad-
uate Sciences (NIUS) programs of the Homi Bhabha Centre for Science Education
- Tata Institute of Fundamental Research (HBCSE - TIFR), Mumbai, India.

I thank all my teachers, friends and well wishers, from my childhood till date, for
their support. I thank Charles Jose and Manoj Nair for their help. Let me conclude
by admitting my conviction that a genuine gratitude should express itself in ways
more meaningful than words. I pray that my life, knowledge and skills manifest
accordingly.



viii



ix

Abstract

This thesis describes the research involved in the development and evaluation of a
concept inventory (CI) in rotational kinematics at the higher secondary school level.
A CI essentially comprises of a carefully crafted set of multiple choice questions (also
called items) on a concept or a topic aimed at probing student difficulties, miscon-
ceptions or alternative conceptions, and eliciting their ill-suited reasoning patterns
(Singh, 2011). They constitute a major trend in the field of physics education re-
search (PER) (Kumar, 2011). Our concept inventory comprises of three parts as
stated below and developed broadly in the same order.

1. Rotational kinematics of a particle (19 questions) (Mashood and Singh, 2012a).

2. Rotational kinematics of a particle in rectilinear motion (7 questions) (Mas-
hood and Singh, 2012b, 2012c).

3. Rotational kinematics of a rigid body rotating about a fixed axis (13 questions)
(Mashood and Singh, 2014).

The inventory was constructed systematically and iteratively. The processes
involved in the initial phase of development can be categorized into (a) theoret-
ical analysis, which constitute content mapping, cognitive analysis and literature
review, (b) empirical investigations which include interactions with students and
teachers. The theoretical analyses led to a preliminary draft of questions (open
ended, true-false, explanatory type etc.) which evolved iteratively in the course
of our interactions with students and teachers. In this initial phase we interacted
with around 50 students and 12 practicing teachers. As part of the exercise we
also taught rotational motion to a group of students. Verbal data was collected
using think aloud protocol, retrospective probing and semi-structured interviews.
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The items were then validated before administration to larger samples. Face vali-
dated was carried out by 10 practicing teachers, 10 higher secondary students and
8 graduate students in physics. The content validity was established by 8 faculty
who taught physics at the university level. Before the first phase of administration
the inventory was pilot tested on a group of 58 undergraduate students. They were
asked to write down brief explanations for their answer choices.

The inventory was administered to four groups of students and two groups of
teachers. A subset of the samples were interviewed. In the first stage of administra-
tion the student groups comprised of 79 (S1) and 74 (S2) candidates respectively.
The entire inventory was further administered to a large sample of over nine hundred
students (S3, N=905) from 5 urban centers (Jaipur, Patna, Mumbai, Hyderabad and
Bangalore) spread across the country. All the students were at the higher secondary
school level (HSS) and had a course on rotational motion. A part of the inventory
was also administered to 384 (S4) introductory level students at the University of
Washington, Seattle. The teachers taught physics at the HSS or undergraduate
level. The two groups comprised of 26 (T1) and 25 (T2) candidates respectively.

Analysis of the response patterns and interviews revealed an array of miscon-
ceptions and pitfalls pertaining to rotational kinematics. These include student
difficulty in comprehending the counter intuitive direction of angular velocity (~ω)
and angular acceleration (~α), their notion that ~ω mimics the behavior of ~α, lack
of knowledge of the validity conditions associated with equations like ~v = ~ω × ~r,
~a = ~α × ~r and τ = Iα (here the symbols have their usual meaning), reluctance to
ascribe angular quantities when the trajectory of motion is a straight line, the incor-
rect assumption that angular acceleration cannot exist without a net torque, among
others. These misconceptions and pitfalls were further categorized into broader
patterns of thinking prevalent among students which include fixation with inappro-
priate prototypes, indiscriminate use of equations, pitfalls paralleling those found
earlier in linear kinematics, inappropriate extension of familiar procedural practices,
reasoning cued by primitive elements in thought, and lack of differentiation between
related but distinct concepts. Administration of part of the inventory to students
at the University of Washington, Seattle indicated similarities between the response
patterns of Indian and American students. Our study highlights the stark necessity
for meaningful teacher professional development programs in the country.
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The large scale administration made possible detailed statistical and item re-
sponse curve (IRC) analyses of the inventory. Item-wise statistics namely the dif-
ficulty level, index of discrimination and point biserial coefficient were calculated.
Ferguson’s delta and Kuder Richardson reliability index were calculated to evaluate
the discriminatory power and reliability of the inventory. IRCs were plotted for all
39 items and analyzed. The statistical and IRC analyses attested to the quality of
individual items as well as the whole test. During the large scale administration
we also administered two internationally standardized inventories namely the Force
Concept Inventory and the Conceptual Survey on Electricity and Magnetism. The
values of Ferguson’s delta and Kuder Richardson reliability index calculated for these
inventories were consistent with the values obtained for our inventory. Further, the
results from our studies were communicated to international peer reviewed journals
at appropriate stages of our study. The publication of the results ensured that the
research was proceeding in the right direction.

A pedagogical spin-off, namely the variation of angular velocity and angular
acceleration of a particle moving in a straight line with constant acceleration (origin
not on the line of motion) was uncovered during the course of inventory development.
The non-monotonic behavior of ω and α with associated extremum is interesting. We
briefly discuss the pedagogical implications of our study. An operational definition
for the angular velocity of a particle was suggested. The relevance of the present work
in the Indian educational scenario and avenues for further research are explored.
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3

Chapter 1

Concept Inventories: An
Introduction

1.1 Introduction

Quality science education to a larger populace is integral to our economic and soci-
etal progress. Undoubtedly the challenges that we face in this regard are enormous.
One should adopt a systematic approach towards identifying and addressing the
underlying problems. This constitutes the broad goal of science education research
(SER). The complex problems pertaining to teaching and learning of science are ad-
dressed by adhering to the procedures and rules of evidence characterizing scientific
research as closely as possible (Wieman, 2007; McDermott, 2013). SER is a nascent
area in India. In the west however, particularly in the United States, the discipline
has gathered substantial momentum. The field owes its origin mainly to the theo-
retical insights on learning which emerged nearly half a century ago (Kumar, 2011).
The pioneering work of Jean Piaget along with others like Lev Vygotsky are notable
in this regard. Physics education research (PER) is a sub-discipline of this field. As
evident from the term it focuses on aspects related to the teaching and learning of
physics. PER has undergone tremendous growth in the past few decades. Areas of
research include conceptual understanding, epistemology, problem solving, concept
inventories, affective aspects, attitudes, social aspects and use of technology among
others (McDermott and Redish, 1999; Beichner, 2009; Kumar,2011). Our study on
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rotational kinematics falls under the concept inventory category in PER.
A CI essentially comprises of a carefully crafted set of multiple choice questions

(MCQs) on a concept or a topic aimed at probing student difficulties, misconceptions
or alternative conceptions, and eliciting their ill-suited reasoning patterns (Singh,
2011). They constitute a major trend in the field of physics education research
(PER) (Kumar,2011). Inventory questions/items should be distinguished from the
MCQs that form a part of admission tests like the Indian Institute of Technology -
Joint Entrance Examination (IIT-JEE). Inventories are not designed to grade indi-
vidual students and act as a toll gate for placements. Rather they emerged in science
education as continuation of the studies on student conceptions of topics in physics
(Kumar, 2011). In addition to its utility as a diagnostic tool to identify student
misconceptions and pitfalls, they serve to evaluate the effectiveness of instructional
techniques and pedagogies. The potential for large scale application, rapid and easy
evaluation, objective and quantitative data are among the merits of a CI. We will
discuss aspects pertaining to inventories further in the coming sections. In what that
follows we review literature on concept inventories and rotational motion. We also
discuss the potential of CIs in the Indian context. We end the chapter by providing
an overview of our inventory on rotational kinematics.

1.2 Concept inventories: Early history

The history of concept inventories in science education research can be traced back
to the Force Concept Inventory (FCI) published in 1992 along with the Mechan-
ics Baseline Test (MBT) (Hestenes, Wells, and Swackhammer, 1992; Hestenes and
Wells, 1992; Richardson, 2004; Hake, 2011). The prequel to these inventories ap-
peared earlier in 1985 (Halloun and Hestenes, 1985a, 1985b). FCI consists of 30
items probing students preconceptions which are incompatible with Newtonian me-
chanics. The subtopics include linear kinematics, Newton’s three laws of motion,
different types of forces and vector sum of these forces. MBT comprises of 26 items
probing student understanding of the formal knowledge of these topics. These two
inventories investigate two complementing dimensions of student understanding per-
taining to basic mechanics. FCI items and distractors are meaningful even to those
who have not learned any physics. In contrast formal knowledge of the topic is a
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prerequisite to comprehend and answer the MBT items (terms items and questions
are used interchangeably).

The complementary probing of two dimensions of the same topic reflects a per-
spective concerning student cognition of physics concepts (Arons, 1990; Reif and
Allen, 1992; Grayson et al., 2001; Reif, 2008). Broadly the sources of student diffi-
culties were considered to be rooted in following two major factors.

1. The prior knowledge state of the learner: They are primarily characterized by
naive notions concerning the physical world. These notions are often tacitly
acquired over years of informal interactions with the physical world. Successful
application of them in situations encountered in daily life makes them deep
rooted. They do not yield very easily to formal instruction.

2. The form of the knowledge structure of physics: Physics and science in general,
are designed deliberately to ensure maximum generality. The standards on
precision, coherence etc are stringent. Novices stand in need of cognitive skills
hitherto unlearnt to handle these complexities.

The inventories, particularly FCI, played a significant role in stimulating re-
search driven educational reforms in physics (Richardson, 2004; Hake, 2011). Hake
(2011) has provided a review of the impact inventories had on physics education and
related disciplines. He noted that,

For more than three decades, physics education researchers have repeatedly shown
that traditional introductory physics courses with passive student lectures, recipe labs,
and algorithmic problem exams are of limited value in enhancing students’ concep-
tual understanding of the subject (McDermott and Redish, 1999). Unfortunately,
this work was largely ignored by the physics and education communities until Halloun
and Hestenes (1985a,b) devised the Mechanics Diagnostic (MD) test of conceptual
understanding of Newtonian mechanics. (Hake, 2002)

Owing particularly to the limited outreach of PER he characterized the pre-
inventory period as the ‘dark ages of post secondary physics education’ in the United
States.

FCI acted as an eye opener for many traditional instructors. The experience of
the Harvard physicist Eric Mazur is an illustrative example. Administration of the
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inventory to his students gave him a surprisingly bleak picture of their understanding
of basic concepts. The experience compelled him to incorporate research driven
educational practices in his teaching. In the following excerpt Mazur describes his
experience of trying the FCI with his students (Richardson, 2004).

I was entirely oblivious to this problem. I now wonder how I could be fooled into
thinking I did a credible job teaching Introductory Physics. While several leading
physicists have written on this problem, I believe most instructors are still unaware
of it. A first step in remedying this situation is to expose the problem in one’s own
class. The key, I believe, is to ask simple questions that focus on single concepts.
The result is guaranteed to be an eye- opener even for seasoned teachers.

Mazur (2007) later developed a pedagogy emphasizing interactive teaching in
contrast to passive lecturing. The pedagogy known as ‘Peer Instruction’ is currently
one of the most popularly employed research driven teaching method. The effective-
ness and success of FCI further led to the development of inventories in physics as
well as other areas of science and engineering. In the next section we review major
inventories, with focus on physics.

1.3 Concept inventories: A literature survey

Major inventories in physics include Test of Understanding Graphs in Kinematics
(TUG-K), Force and Motion Conceptual Evaluation (FMCE), Conceptual Survey
of Electricity and Magnetism (CSEM), Brief Electricity and Magnetism Assessment
(BEMA) and Student Understanding of Rotational and Rolling motion concepts,
among others (Beichner, 1994; Thornton and Sokoloff, 1998; Maloney et al, 2001;
Rimoldini and Singh, 2005; Ding et al, 2006). All these inventories were developed in
the United States. Recently they are being developed in other parts of the world as
well (Wuttiprom et al., 2009; Tongchai et al., 2009; Kohnle et al., 2011; Sharma and
Ahluwalia, 2012; Aslanides and Savage, 2013). A useful list of CIs in physics has been
provided by Biechner (2007). The topic-wise subcategories include graphing, force,
mechanics, energy, thermodynamics, electricity and magnetism, light and optics,
quantum mechanics, astronomy and waves. Table 1.1 provides a list of some of the
inventories in physics.

Allen (2007) cataloged a similar list of inventories in the domains of engineering,
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Table 1.1: List of some of the concept inventories in physics.
Concept Inventory Authors (year)

Force Concept Inventory (FCI) Hestenes, Wells and
Swackhammer (1992)

Mechanics Baseline Test (MBT) Hestenes and Wells
(1992)

Test of Understanding Graphs in Kinematics
(TUGK) Beichner (1994)

Force and Motion Conceptual Evaluation Thornton and Sokoloff
(1998)

Conceptual Survey of Electricity and Magnetism
(CSEM)

Maloney, O’Kuma,
Hieggelke and Heuve-
len (2001)

Multiple choice test of energy and momentum con-
cepts

Singh and Rosengrant
(2003)

Rotational and Rolling Motion Concepts Rimoldini and Singh
(2005)

Brief Electricity and Magnetism Assessment
(BEMA)

Ding, Chabay, Sher-
wood and Beichner
(2006)

Conceptual Survey in Introductory Quantum
Physics

Wuttiprom, Sharma,
Johnston, Chitaree
and Soankwan (2009)

Diagnostic Test to Assess Secondary Students’ Un-
derstanding of Waves

Caleon and Subrama-
niam (2010)

Conceptual Diagnostic Survey in Nuclear Physics Kohnle, McLean and
Aliotta (2011)

Alternative Conceptions of Fermi Energy Sharma and
Ahluwalia (2012)

Relativity Concept Inventory Aslanides and Savage
(2013)
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chemistry, maths, geo-sciences etc. CIs have started playing an increasingly impor-
tant role in biology education. Reviews of concept inventories in the subject are
now available (D’ Avanzo, 2008; Knight, 2010). Fisher and Williams (2011) have
provided a list of CI’s in various sub-disciplines of biology which include natural
selection, genetics, introductory biology, molecular and cell biology. Some of the
inventories in chemistry, biology, maths, astronomy and engineering are listed in
table 1.2.

We briefly discuss the salient features of some of the prominent inventories in
physics.

Test of Understanding Graphs in Kinematics, TUG-K (Beichner 1994):
TUG-K was developed by Beichner to probe student difficulties in interpreting

graphs in linear kinematics. The inventory comprises of a set of 21 multiple choice
questions. The sub-topics covered by the questions include position-time graph,
velocity-time graph, acceleration-time graph and textual motion description. A
number of difficulties were uncovered. Students tend to mistake graphs as pictures
rather than as abstract representations. They believe that the graphs for distance,
velocity and acceleration of motion under consideration will be identical to each
other in appearance. Confusion between slope and height were also found. Value on
the axis for height were thought to be the value of the slope. Students who correctly
identified the slope of a line found the same difficult when the line was not passing
through the origin. In terms of methodology, the paper presented a model for the
construction of inventories. It provided a generic flowchart showing the various steps
involved in the development of the inventory.

Force and Motion Conceptual Evaluation, FMCE (Thornton and Sokoloff,
1998)

FMCE comprising of 43 questions evaluates student understanding of basic
Newtonian mechanics. More specifically the test covers one-dimensional kinemat-
ics and Newton’s laws. The content covered is narrower than FCI. FCI includes
two-dimensional motion with constant acceleration, vector addition, identification
of forces etc, but FMCE does not. Both inventories also differ in terms of the rep-
resentational format employed in the items. Verbal and graphical representation
dominates FMCE. In contrast FCI relies more on verbal and pictorial representa-
tion (Thornton, et al., 2009). The construction of FMCE was accompanied by the
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development of a microcomputer based laboratory (MBL) curricula. The aim of
this curricula was to help students develop a functional understanding of Newton’s
first and second laws.

Conceptual Survey of Electricity and Magnetism, CSEM (Maloney et
al., 2001)

The inventory is a 32 item test to assess student knowledge of topics in electric-
ity and magnetism. The content areas covered by CSEM include charge distribution
on conductors/ insulators, Coulomb’s law, electric field, principle of superposition,
electric potential, work, induced charge, magnetic force, magnetic field by a current
and Faraday’s law. The authors noted that the number of studies on preconcep-
tions in electricity and magnetism were limited, in contrast to mechanics. An array
of pitfalls in understanding were uncovered. Poor understanding of charge distri-
bution on conductors and insulators was noted. Students seemed to answer based
on memorized statement about distribution of charge with little understanding of
the physical mechanism. Another example is students’ belief that a magnetic force
acts on an electric charge whenever it is in a magnetic field. They often did not
realize that the charge must have a velocity, with a component perpendicular to the
direction of magnetic field. It was also found that many students failed to extend
Newton’s third law to electric and magnetic forces. The notion that the ‘larger
magnitude charge exerts larger force’ on a smaller charge was popular.

Student understanding of rotational and rolling motion concepts (Ri-
moldini and Singh, 2005)

This inventory consists of 30 items investigating student difficulties with regard
to concepts in rotational and rolling motion. The concepts covered include moment
of inertia, angular velocity, angular acceleration, torque, rotational kinetic energy,
motion on an inclined plane and rolling motion. It was found that students had
difficulties with these concepts regardless of their level of mathematical knowledge.
Some of the difficulties were related to the intricate nature of rotational motion. For
example students considered force and torque to be equivalent as they were not clear
about the concept of lever arm. They tend to think that two equal and opposite
forces always imply a zero net torque. Some other difficulties could be traced back
to related difficulties in linear motion. An illustration is the misconception in linear
motion that ‘constant net force implies a constant velocity’. Rotational analog of
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Table 1.2: Some of the concept inventories in science and engineering disciplines.
Concept Inventory Authors (year)

Chemical Concept Inventory (CCI) Mulford and Robinson
(2002)

Conceptual Inventory of Natural Selection (CINS) Anderson, Fisher and
Norman (2002)

A Concept Inventory for Molecular Life Sciences
Howitt, Anderson,
Hamilton and Wright
(2008)

Genetics Concept Assessment (GCA) Smith, Wood and
Knight (2008)

A Concept Inventory for Material and Energy Bal-
ances Shallcross (2010)

The Astronomy and Space Science Concept Inventory Sadler et al. (2010)

Geoscience Concept Inventory (GCI)
Libarkin, Ander-
son, Kortemeyer and
Raeburn (2011)

Osmosis and Diffusion Conceptual Assessment Fisher, Williams and
Lineback (2011)

Chemical Engineering Fundamentals Concept Inven-
tory (CEFCI)

Ngothai and Davis
(2012)

Calculus Concept Inventory Epstein (2013)

this namely that a ‘constant net torque implies a constant angular velocity’ was
observed. The notion that friction always slows down motion is another example.
We will discuss aspects of this inventory again in the next chapter while describing
the development of our inventory on rotational kinematics.

1.4 Inventories: Focused vs broad survey instru-
ments

An inventory can be broadly categorized as a focused or as a broad survey instru-
ment, depending on the content it covers. It may be noted that the terms inventory
and instrument are being used interchangeably. Broad survey instruments cover an
entire topic like electricity and magnetism, nuclear physics etc. Examples include
CSEM, the survey in nuclear physics and the inventory of rotational and rolling
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motion concepts (Maloney et al., 2001; Kohnle et al., 2011; Rimoldini and Singh,
2005). Some of them were discussed in the previous section. These instruments pro-
vide an overview of the student knowledge of the topic under consideration. Since
most domains in physics build themselves upon an earlier topic (eg. special rel-
ativity on electromagnetism), the broad survey instruments have their merits. It
gives instructors an idea of the knowledge state of the students in the concerned
area. Since an entire topic like electricity and magnetism has to be covered, it is
very likely that an item will involve two or more concepts. As a result what one
obtains is an overview of student understanding of the topic. However we know that
even elementary concepts like velocity and acceleration are rich in nuances (Trow-
bridge and McDermott, 1980, 1981; Reif and Allen, 1992; Shaffer and McDermott,
2005). Students experience an array of difficulties in comprehending these nuances
pertaining to a single concept. This bring forth the need for focused inventories.

A focused inventory, in contrast to broad survey instruments, restricts itself
to an in-depth investigation of a smaller domain or a smaller number of related
concepts. Test for understanding graphs in kinematics (TUGK) discussed in the
previous section is an example. It investigates student interpretation of graphs
of position, velocity (~v) and acceleration (~a) with respect to time. Such in-depth
investigations provide insights which can directly feed into teaching and inform cur-
riculum development. They can also be adapted as clicker questions for interactive
pedagogies like Peer Instruction.

Broad survey instruments as well as focused inventories can be used as pre-/post-
tests. They serve as tools to evaluate teaching methods. As mentioned earlier CIs
played a crucial role in establishing the effectiveness of interactive pedagogies over
traditional modes of instruction. FCI and MBT data collected for over 6000 students
showed significant gains in conceptual understanding and problem solving ability
in interactive classrooms (Hake, 1998). Figure 1.1 illustrates how three types of
classes, traditional and (moderate and strong) interactive, were evaluated using FCI
(Redish, 2003). As the figure shows, the fractional gain h = (class post-test average
- class pre-test average) / (100 - class pre-test average), increased with interactive
engagement in the classroom. It may be noted that interactive pedagogies are often
developed by incorporating insights from science education research and cognitive
science. Similar reforms and research driven educational practices are required in
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the India.
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Figure 1.1: A plot of the fractional FCI gain (h) achieved in three types of classes:
traditional (leftmost), moderate active engagement - tutorial/group problem solving
(middle), and strong active engagement - early adopters of workshop physics (right-
most). Histograms are constructed for each group and fit with a Gaussian, which is
then normalized [Source - figure and caption: Redish (2003)].

1.5 Indian scenario

India has a huge and diverse student and teacher population. But science education
research has received scant attention from the academic community. The teaching
and learning of science are seldom research driven. As mentioned earlier, we should
adopt a scientific approach towards identifying and addressing the underlying prob-
lems. By a scientific approach we mean isolating specific problems, studying them
using appropriate methodology or instruments, developing claims and arguments
based on data rather than anecdote or untested personal convictions. The present
work is an initiative towards achieving these broader goals. We focus on the higher
secondary school (HSS) level. It may be noted that HSS plays a decisive role in the
career trajectory of science students in India.
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We decided to craft our research in the mode of a concept inventory because
CI’s can uniquely blend research and dissemination. Its potential for large scale
application is particularly relevant to the Indian educational scene owing to our
huge student population. A well developed CI, whose validity and reliability has
been established, serves as a ready to use diagnostic and assessment tool. They can
be administered to a large number of students at a time and evaluated easily and
objectively. Student understanding and effectiveness of pedagogies /teaching can be
evaluated. Our experiences reveal that classrooms across the country are still largely
based on traditional lectures. Students are often passive recipients in this instruc-
tional format. We encountered numerous instances where the gap between what is
taught and what is learnt is attributed to ‘poor’ students or teachers or both. Very
few people are aware of even the basic findings of science education research such as
the existence of alternative conceptions. Acquaintance with concept inventories can
be an opportunity to educate students and teachers in this regard. It may be noted
that distractors to well constructed CI items incorporate students’ alternative con-
ceptions and pitfalls. We recall many instances after administration of inventories
like FCI where students and teachers remarked that they seldom encountered such
questions. Similarly, exposure to other inventories in a variety of topics (see tables
1.1 and 1.2) can be an initial step towards a culture of learning where alternative
conceptions are viewed as resources to achieve a better understanding. Our expe-
rience suggests that they are often looked down upon or dismissed without further
consideration.

The linguistic, cultural and socio-economic diversity of India would make it
a fertile ground for investigating alternative conceptions. As mentioned earlier,
crafting them in the form of inventories would facilitate dissemination. The huge
teacher population of the country is an untapped resource in this regard. Researchers
in science education can collaborate with motivated teachers and develop a pool of
inventories to make significant impact. Content experts from our universities can
also form a part of the endeavor. Such an effort may provide momentum to science
education research in the country. These initial steps can then be supplemented
by transforming traditional classrooms to an interactive mode. Again the inventory
items can be a facilitator as exemplified by pedagogies like peer instruction (Mazur,
2007). Items with good distractors that capture students’ alternative notions can be
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resourceful in initiating peer interactions. The simplicity of multiple choice questions
would help even less assertive students to participate in the process. Taking into
account these possibilities we embarked upon the process of inventory development.
We focused on rotational motion, the reason for which will be discussed in the next
section.

1.6 Rotational motion in PER

We chose rotational motion because the topic has not yet received the attention
it deserves from the physics education research community (Rimoldini and Singh,
2005). This is despite the fact that it is one of the most difficult topics at the higher
secondary level, as revealed by our interactions with both students and teachers.
The work by Rimoldini and Singh (2005), discussed above, was the first major effort
to address this lacuna. There also exist scattered work on student understanding of
the dynamics of rigid body rotation and rolling motion. We briefly review them in
this section.

Physics education group at the University of Washington investigated aspects
of dynamics of rotational motion. Part of the work was carried out while study-
ing student understanding of static equilibrium (Ortiz et al., 2005). They found
that students were relatively more comfortable analyzing point particles compared
to a mass distribution. Aspects pertaining to the concepts of torque and center of
mass were probed in the context of objects in static equilibrium. Students tend
to believe that tilted orientation of bodies at rest is caused by unbalanced torques.
Another naive notion concerned the center of mass (CoM). Students thought that
CoM ‘divides an object into two pieces of equal mass’. They also probed student un-
derstanding of the definition of torque involving a cross product. It was found that
students experienced difficulties in differentiating force from torque. In general stu-
dents difficulties were found to increase with slightly complicated mass distributions,
in contrast to point particles and symmetrical shapes.

Another interesting work focused on the angular momentum of particles (Close
and Heron, 2011). It was found that introductory students tend to ascribe zero
angular momentum to a particle moving in straight line. The dependence of angular
momentum of a particle on the choice of origin was not appreciated. In addition
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many students thought that angular momentum and linear momentum are related
in such a way that increase in the former was at the expense of the latter. This
was revealed by a context in which a ball hits a rod and sticks to it. Students
were asked about the angular momentum of the ball-rod system in the following
two cases; (a) ball hits the center of mass of the rod, (b) ball hits one of the ends
of the rod. In general students attributed a lower linear momentum to the ball-rod
system in case b compared to case a. In case b since the rod rotated after collision
students thought that a part of the linear momentum contributed to the increase
in angular momentum. Another related study investigated students’ application of
Newton’s second law in the context of rigid body rotation (Close et al., 2013). The
same force was applied on a rigid body at various points. In cases when the body
rotated students erroneously thought that the force had a diminished effect on linear
acceleration of the body. Force was being conceived as a quantity that gets ‘used
up’ partly or fully as the body rotated.

There exist scattered studies probing student difficulties with rolling motion.
Lopez (2003) investigated misconceptions pertaining to the relation between the
linear and angular acceleration of a body rolling without slipping. Another work
studied the effect of frictional force on rolling motion (Carvalho and Sousa, 2005).
Our group at an earlier stage developed a concept inventory probing the direction
of friction on rolling bodies (Singh and Pathak, 2007). Students and teachers ex-
perienced an array of difficulties understanding various aspects of rolling motion.
In particular the fact that frictional force can sometimes be along the direction of
motion were probed. However our further interactions with students and teachers
revealed that they experienced difficulties in understanding even elemental concepts
of rotational motion like angular velocity and angular acceleration. A review of
literature made clear that studies on the concepts of angular velocity (~ω) and angu-
lar acceleration (~α) were missing. The broad spectrum inventory by Rimoldini and
Singh (2005) touches on a few aspects (which will be discussed in next the chapter).
A minor study by Unsal (2011) involved the development of a low cost apparatus to
help students understand angular speed. On the other hand linear velocity (v) and
acceleration (a) have been the subject of repeated investigations (Trowbridge and
McDermott, 1980, 1981; Halloun and Hestenes, 1985a, 1985b; Reif and Allen, 1992;
Hestenes and Wells, 1992; Thornton and Sokoloff, 1998; Shaffer and McDermott,



16 Chapter 1. Concept Inventories: An Introduction

2005). Our observation of the existence of difficulties among students as well as
teachers regarding (~ω) and (~α), led us to research them in a focused manner.

1.7 A concept inventory on rotational kinematics

We have developed a concept inventory on rotational kinematics at the higher sec-
ondary school level. The following questions served as the basis of our research.

1. What difficulties do students face in rotational kinematics at the higher sec-
ondary school level?

2. Do the pitfalls in student reasoning in the topic exhibit patterns? Can they
be categorized into broader themes within physics education research?

3. Are there any parallels between our findings in rotational kinematics and the
documented research in linear kinematics?

We developed an inventory comprising of three parts and developed broadly in
the order stated below.

1. Rotational kinematics of a particle (19 questions) (Mashood and Singh, 2012a).

2. Rotational kinematics of a particle in rectilinear motion (7 questions) (Mas-
hood and Singh, 2012b, 2012c).

3. Rotational kinematics of a rigid body rotating about a fixed axis (13 questions)
(Mashood and Singh, 2014).

The next chapter describes the methodological details involved in the system-
atic and iterative construction and administration of our inventory (Mashood and
Singh, 2013a). In chapter 3 we discuss the first part of our inventory comprising 19
questions on rotational kinematics of a particle (Mashood and Singh, 2012a). The
content evolution of items along with our findings is presented. Misconceptions and
pitfalls were identified and categorized into broader themes within PER. Chapter
4 similarly discusses the next part of the inventory, namely rotational kinematics
of a particle in rectilinear motion (Mashood and Singh, 2012b). This consists of
7 questions. Chapter 5 describes an interesting pedagogical spin-off related to the



1.7: A concept inventory on rotational kinematics 17

case of a particle moving in rectilinear motion (Mashood and Singh, 2012c). The
non-intuitive variation of the angular velocity and the angular acceleration with
associated extremum is the theme of the chapter. The final part of the inventory
focusing on rotational kinematics of a rigid body about a fixed axis (13 questions) is
discussed in chapter 6. We administered the entire inventory to around a thousand
students in five cities spread across the country. The data from this large scale
administration served as the basis for item level and whole test statistical analyses.
This includes item response curve analyses and calculation of the Kuder-Richardson
reliability index and other indices for the inventory. These statistical analyses con-
stitute the subject of chapter 7. Chapter 8 constitutes the conclusion.
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Chapter 2

Methodology

2.1 Introduction

The processes involved in the construction of our inventory on rotational kinematics
can be arranged into three broad stages, namely an initial developmental phase
followed by administration and evaluation. A schematic representation of these
stages is given in figure 2.1 (Singh, 2011). The whole process was iterative as
indicated by the loop in the figure. Only after the three stages have been completed
and the inventory’s validity and reliability is established, can it be disseminated.
We note however that the items and distractors are open to refinement even after
dissemination, in the face of new insights. Let us discuss the methodological details
and intricacies involved in each of the three stages mentioned above.

2.2 Initial phase of development

In this section we discuss the steps involved in the initial phase of development of
our inventory. Figure 2.2 schematically shows these various steps (Mashood and
Singh, 2013). The processes involved can be categorized into (a) Theoretical analy-
sis and (b) Empirical investigations. The theoretical analyses comprising of content
mapping, cognitive analysis and literature review led to a preliminary draft of ques-
tions. Our experience and informal interactions with students and teachers also
helped us in this regard. The preliminary draft of questions served as the basis for
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Figure 2.1: Schematic of stages involved in the construction of a concept inventory.
Note the loop which signifies the iterative nature of the process.

our systematic interactions with students and teachers and these constitute empir-
ical investigations. The aim was to obtain insights so that appropriate items and
distractors could be framed and inappropriate ones discarded. We discuss each of
the steps outlined in figure 2.2 in detail with illustrative examples.

2.2.1 Conception to content mapping

As discussed in chapter 1, we decided to develop a focused inventory on angular ve-
locity ~ω and angular acceleration ~α at the higher secondary school (HSS) level. The
conception of the topic was based on the fact that it is an inadequately researched
topic in physics education research (PER) and students harbor many misconcep-
tions about it. The development began by chalking out aspects of ~ω and ~α covered
at the HSS level. This process, which we refer to as content mapping, was done by
analyzing presentations of rotational motion by various text books (Reif, 95; Hal-
liday et al., 2001; Young and Freedman, 2004; Giancoli, 2005; NCERT, 2006). In
addition two books in the vernacular language (Hindi) were consulted (Singh, 1988;
Kumar and Mittal, 1991).
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Figure 2.2: Processes involved in the initial phase of construction of the concept
inventory. These steps are followed by validation, after which the inventory is ad-
ministered to larger samples.

We found that the discussion of ~ω and ~α takes place mainly in the context
of a rigid body. For a particle, it is often restricted to a brief discussion alongside
uniform circular motion. This short shrift given to rotational kinematics of a particle
may not be pedagogically prudent. A detailed treatment of the case of a particle is
important and the broad structure of our inventory comprised of

• Rotational kinematics of a particle.

• Rotational kinematics of a rigid body about a fixed axis.

It was followed by identification aspects of ~ω and ~α that would be probed by
the inventory. These aspects included

• Magnitude of angular velocity.

• Direction of angular velocity.

• Magnitude of angular acceleration.
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Table 2.1: Aspects of ~ω and ~α probed by the current inventory and the
items/questions probing them. The alphabet adjoining the question number in
the right column indicates the correct answer. The items are listed in appendix A.
Magnitude of angular velocity of a particle 1c, 7a, 8c
Direction of angular velocity of a particle 2d, 5d, 8c, 20c
Discriminating angular velocity from angular position 3a
Concept of limit (single instant, single position) 3a, 7a, 14d
Change in angular velocity as the particle moves 4a, 9c, 10c, 11a, 19b
Validity of the equation ~v = ~ω × ~r 6c, 19b

Magnitude of angular acceleration of a particle 12c, 14d, 15b, 21c,
22d

Direction of angular acceleration of a particle 12c, 15b, 21c, 24c
Change in angular acceleration as the particle moves 13b, 16d, 17d, 18d
Relation between angular acceleration and centripetal acceleration 36b, 37b
Relation between angular acceleration and tangential acceleration 35a, 37b
Validity of the equation ~τ = I~α 23a, 33d
Components of linear velocity, linear acceleration 25a, 38c
Angular and linear velocities of particles on a rigid body 29b, 30d
Angular velocity of a rigid body 26c, 27c, 31a
Trajectory of an arbitrary particle on a rotating rigid body 28a
Angular acceleration of a rigid body 32b, 33d
Validity of the equation ~a = ~α × ~r 36b, 39d
Origin dependence of angular velocity 3d, 34a

• Direction of angular acceleration.

• Relationship between linear and rotational kinematic variables.

Open ended and free response questions were designed around these conceptual
dimensions. In the process of development these dimensions further branched out
into specifics, as can be seen from table 2.1. The table provides a description of
various aspects of ~ω and ~α covered by the inventory , along with the relevant ques-
tions. It may be noted that table is based on the latest version of inventory which
had been developed systematically as discussed in the current chapter.
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2.2.2 Cognitive analysis

The development of open ended and free response questions was guided by a cog-
nitive analysis of ~ω and ~α akin to that done by Reif and Allen (1992) for linear
acceleration. This process was facilitated by reviewing an undergraduate and an
advanced level presentation of rotational motion (Kleppner and Kolenkow, 2007;
Goldstein et al., 2004). It involved a ‘theoretical analysis of the kinds of knowledge
required to interpret the concepts effectively and efficiently’ (Reif and Allen, 1992).
Such an analysis unveils subtleties and nuances which are of pedagogical relevance.
For linear acceleration it was pointed out that application of its definition would
involve a sequence of steps even in the simplest cases. Each of these steps, though
obvious to an expert, can prove to be a potential conceptual hurdle for a novice. The
case of ~ω and ~α is similar. Consider the operational definition of angular velocity
of a rigid body as an illustrative example. Identifying the angle ∆θ in ω = ∆θ/∆t

would require selecting an arbitrary particle on the body, not necessarily the center
of mass, drawing a perpendicular line from the particle to the axis of rotation, not-
ing the angle traced by this line as the rigid body rotates etc. As another example,
consider the case of ~α which may be non-zero even if instantaneous angular velocity
is zero. Operationally this would entail, among other things, identifying angular ve-
locities at two different instances and vectorially subtracting them. We noted other
intricacies which helped us probe pitfalls in student thinking.

Other pedagogically significant aspects concerning ~ω and ~α which we noted
include

1. The counter intuitive direction of the vectors ~ω and ~α.

2. The derivations of commonly employed equations involving ~ω and ~α and their
range of validity.

3. Origin dependence of the angular velocity of a particle.

4. Irrelevance of an origin in the definition of ~ω for a rigid body, where the
significant aspect is the axis of rotation.

5. Rigid body rotation about a fixed axis dealt at the introductory level is a
special case of the general case described by Euler’s theorem.



24 Chapter 2. Methodology

Open ended and free response questions (see appendix B for examples) were
crafted incorporating these aspects. After interactions with students these questions
evolved into multiple choice questions. Table 2.1 gives the question numbers along
with the conceptual aspect being probed. The developed items are listed in appendix
A.

2.2.3 Literature review

PER literature relevant to the topic was reviewed with the aim of obtaining insights
that could feed into the development of questions. The literature review focused on
works pertaining to

• Linear kinematics

• Rotational motion

• Prominent inventories in physics

We have reviewed works on rotational motion and inventories in physics in chap-
ter 1. Here we will focus on studies which influenced the development of our items
and distractors. As mentioned in chapter 1 linear kinematics has been repeatedly
investigated (Trowbridge and McDermott, 1980, 1981; Halloun and Hestenes, 1985a,
1985b; Reif and Allen, 1992; Hestenes and Wells, 1992; Thornton and Sokoloff, 1998;
Shaffer and McDermott, 2005). The study by Trowbridge and McDermott (1980)
on linear velocity and linear acceleration uncovered interesting patterns in student
thinking. Prominent among them is the non-discrimination between position and
velocity where students think that bodies moving in parallel have the same velocity
when they reach the same position. Students tend to focus on the ‘perceptually obvi-
ous phenomenon of passing’ rather than the procedure for identifying instantaneous
speed. The general lack of differentiation between related concepts like position,
velocity and acceleration was pointed out by many studies that followed.

Reif and Allen (1992) investigated student reasoning about velocity and accel-
eration. An oscillating simple pendulum was used as one of the contexts for posing
questions. We realized that a pendulum can be a pedagogically rich context not only
for probing linear kinematics, but also for rotational kinematics. A popular question
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was to probe both linear velocity and linear acceleration at the same point. Students
were asked about the linear acceleration of the pendulum bob at the extreme point
where its velocity is zero. The same concepts were probed in other contexts like
a ball which is thrown up vertically. This motivated us to craft similar questions
involving angular velocity and angular acceleration, which eventually resulted in
items 7 and 14 (see appendix A).

We have discussed the broad survey instrument by Rimoldini and Singh (2005)
in chapter 1. It may be noted that the terms instrument and inventory are used
interchangeably. The instrument has a few questions on angular velocity and an-
gular acceleration. However since it spans the whole area of rotational and rolling
motion the questions in general involve two or three major concepts. For example
consider question 5 which probes the effect of a non-zero net torque acting on a rigid
body. The distractors involve angular velocity, angular acceleration and torque. In
contrast question 13 was restricted to probing the variation of angular velocity of an
oscillating rod of negligible mass with a mass M attached at one end. However the
distractors to the question involved interpretation of graphs as well. This motivated
us to probe student understanding of the variation of angular velocity. Since the
variation could be in magnitude or direction, both the aspects were probed. Table
2.1 provides the number of questions on this topic in the inventory.

As discussed earlier textbooks were reviewed. This cued us to physically relevant
situations like pendulum, elliptical or planetary motion etc wherein the questions
could be posed. Analysis of the NCERT text book and vernacular textbooks along
with our own experiences helped in figuring out contexts familiar to the Indian sce-
nario such as wall clock, potters wheel, giant wheel etc to pose the questions. Most
of our items were consciously framed in such physically relevant and familiar con-
texts. Questions from national level tests, namely the Indian Institute of Technology
- Joint Entrance Examinations (IIT JEE), spanning twenty years were reviewed. An
illustrative example would be the following problem on angular momentum which
appeared in the 1997 IIT JEE (Pandey, 2011) .

1. A mass m is moving with a constant velocity along a line parallel to x-axis,
away from the origin. Its angular momentum with respect to the origin

(a) is zero. (b) remains constant. (c) goes on increasing. (d) goes on decreas-
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ing.

A similar problem was also part of a PER work (Close and Heron, 2011). This
problem led us to investigate student understanding of the simpler concept of angular
velocity of a particle in rectilinear motion.

The initial draft of questions did not have four choices for all items. Some were
true - false types and some others open ended. Examples of them are listed in
appendix B. It was the interactions with students and teachers that gave the items
their final form. Methodological intricacies involved in those interactions along with
illustrations of how some of the items evolved will be the theme of the next section.

2.3 Prior interactions and pilot studies: Method-
ological intricacies

Interaction with students and teachers is one of the important aspects involved in the
process of developing an inventory. A knowledge of the thought processes of novice
students helps significantly in constructing good questions/items (term questions
and items are used interchangeably throughout) and distractors. We interacted
with around 50 students and 12 practicing teachers before administering the test to
a larger sample. The students comprised of 21 from the higher secondary level, 14
from bachelors level, 6 from masters level and 9 at the doctoral level. Some of the
interactions were with small groups (2 - 6 students) while others were individual
(Mashood and Singh, 2013a). The processes were iterative and began with the
preliminary set of items/questions mentioned in the previous section. Verbal data
was collected, primarily through the following modes.

1. Think aloud protocol: This involved candidates answering the questions and
verbalizing their thinking at the same time. This was often followed by clari-
fications which progressed into discussions.

2. Retrospective probing: This involved students solving the questions and being
probed by us at the end of the task (Young, 2005). Some students were more
comfortable with this mode rather than the think aloud protocol in which they
have to simultaneously solve and verbalize.
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3. Semi-structured interviews: This involved candidates taking the test, marking
their confidence level to each answer and then being interviewed.

All three of these were employed in the initial phase of development whereas
only semi-structured interviews were employed later. The think aloud data, inter-
views and discussions were audio recorded and analyzed. The insights obtained
were successively incorporated at each stage thereby refining the questions and dis-
tractors. Let us delve into some of the intricacies involved in the above mentioned
methodologies. Think aloud protocol essentially comprises of the subject articulat-
ing their thoughts while solving a given problem. The method is particularly useful
for providing insights during the early phases of investigation (Young, 2005). This
makes it an apt tool in the developmental phase of a test. Cognitively it aims at
capturing what is held in the short term memory (Ericsson and Simon, 1993). The
primary aim is to elicit the sequence of thoughts as the subject is processing the
information. As such, the researcher should restrict oneself to minimal intervention
so that the stream of thought is not cued or influenced. We, like others, limited
ourselves to minimal prompts or prodding such as ‘keep talking’, whenever the sub-
ject turned quiet (Young, 2005; Rimoldini and Singh, 2005). It is also important
that the problems should be of optimal cognitive load (Young, 2005). A highly
demanding problem makes it difficult for the participant to simultaneously attend
to solving it and verbalizing. An extremely easy task may be performed with such
automaticity that the subject may not be able to describe any sequence of steps.
We tried to make our questions optimal in terms of difficulty and ensured that they
could be answered without resorting to any lengthy algebraic manipulations. These
issues are significant for retrospective probing as well. The individual differences in
the ability to verbalize was taken into account. Students who found it difficult to
solve and verbalize simultaneously opted for retrospective probing.

The cognitive analysis of the concepts discussed in the previous section helped
structure our interviews. We tabulated a list of probable methods and arguments
participants may invoke. As mentioned earlier the initial draft of open ended ques-
tions (see appendix B) evolved into multiple choice questions based on the interac-
tions with students. These MCQs underwent pilot tests before they were shaped
into the final form given in appendix A. In the pilot tests students were asked to
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assign confidence level to their choices, which further helped in interviews. A wrong
answer with a high confidence level was indicative of the existence of misconceptions
(Hasan et al, 1999). Thus the confidence level in conjunction with the answer choice
hinted at potential focal points for interviews. The interviews were audio recorded
and analyzed. The duration of each session ranged from 40 - 50 minutes.

In total there were around 30 open ended and free response questions in the ini-
tial draft. Examples of these are listed in appendix B. Interaction with students and
teachers resulted in the development of around 80 multiple choice questions. There
were multiple versions of questions probing the same student notions. Questions
were dropped or modified during the course of development, winnowing down to the
39 items listed in appendix A. Faculties who conducted research in PER or taught
physics at the university level were consulted in this regard. Illustrative examples of
modifications made to items during the iterative process are given in appendix C.
Appendix C also contains examples of items that were dropped along with reasons
for the same. In the next section we discuss the details of the samples and some of
the observations made during our interactions with students and teachers. Following
that we give illustrative examples of the development of some of our items.

2.4 Prior interactions and pilot studies: Sample
descriptions and observations

2.4.1 Higher secondary school level students

Interaction with teaching: 4 students, who had completed a course on particle
mechanics were taught rotational mechanics by us. This was intended to obtain
insights about the difficulties exhibited by novices while trying to comprehend ~ω

and ~α. While I taught, the supervisor carefully observed the classroom behavior
such as questions, clarifications and responses to them. After teaching, the students
were asked to answer questions by thinking aloud. Teaching scrupulously followed
a text book, in order to avoid teaching to our items (NCERT, 2006).

Our observations, borne out of classroom interaction as well as analysis of audio
recordings included
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1. Difficulty in accepting that the direction of ~ω was perpendicular to the plane
of motion.

2. Ignoring the directional aspect of vectors.

3. Considering circular motion as the sole prototype of rotational motion.

4. Clumsy reasoning and retrieval, indicating a poor knowledge organization.

Interaction without teaching: This involved three students who had recently
learnt rotational motion. Here two opted for retrospective probing. The observations
were similar to those mentioned for the above group.

Interaction with olympiad aspirants: We interacted with 3 olympiad stu-
dents, who answered the items by thinking aloud. All of them were physics or
chemistry olympiad aspirants, selected for the final round. They answered most of
the questions easily. Two were not very comfortable in verbalizing their thoughts
and mostly provided answers without qualifiers. Notable errors were made regarding
the validity of the equations ~v = ~ω×~r and ~τ = I~α. Here ~v, ~r, ~τ , I denote linear
velocity, position vector, torque and moment of inertia respectively.

Pilot test 1: The questions were pilot tested with 7 students. All were asked
to attach a confidence level to each answer on a 3 point scale. The performance
suggested pitfalls in reasoning. Interviews affirmed the existence of robust erroneous
notions like ~ω lies in the plane of motion, rotational motion concepts are relevant
only when the trajectory is circular or curvilinear etc.

Pilot test 2: Here 4 olympiad students answered the items. The confidence
level was high for all items including a few questions which were answered incorrectly.
Instances of high confidence level along with wrong answers indicated the existence
of pitfalls, which were probed in detail during interviews. For example 3 students
confidently maintained that the equation ~v = ~ω×~r holds for all situations.

2.4.2 Undergraduate and post graduate students

Interaction: This comprised 6 undergraduate students and 2 post graduate stu-
dents. Three preferred retrospective probing. The students were from regional col-
leges as well as national institutes like Indian Institute of Science Education Research
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(IISER), Indian Institute of Technology (IIT) etc. The performance of students
from regional colleges was unsatisfactory, at times displaying stark unfamiliarity
with elementary concepts like ~ω and ~α. Students from national institutes performed
satisfactorily, some of them exceptionally well. Notable observations include a stu-
dent answering questions in a variety of ways exhibiting strongly connected network
of concepts and some others invoking unnecessary mathematics where simpler rea-
sonings would have sufficed.

Pilot test 3: 8 undergraduate students and 4 post graduate underwent pilot
tests. The interviews with the regional college students indicated difficulties which
involved poor understanding of the concept of limit and confused reasonings for ~ω

and ~α particularly in the context of a simple pendulum.

2.4.3 Doctoral students

Interaction: We interacted with 4 doctoral students in physics. Some of them
were out of touch with topics. Nevertheless they were ready to reason out and this
at times led to digression to advanced aspects of the topic. Discussion of Euler’s
theorem , Chasle’s theorem etc provided us with wider perspectives. Inspired by
this, we crafted a few items on the basic definition of ~ω for a rigid body.

Pilot test 4: Involved 5 doctoral students. Some similarity was observed with
the errors of olympiad aspirants.

2.4.4 Practicing teachers

We interacted with about 12 teachers. They shared their classroom experiences and
aspects of the topics which they found difficult. This included the vector nature
of the rotational concepts, mathematical operations like cross products, transition
from single particle to rigid body etc. The discussion mostly proceeded informally
unlike with students. Some experienced teachers suggested problems and questions
which inspired items for our inventory.



2.5: Development of questions: Illustrative examples 31

2.4.5 Pilot test 5

The multiple choice questions before administration (to the samples discussed below
in section 7) was pilot tested on a group of 58 undergraduate students. They were
asked to write brief written explanations to their answer choices. The coherence
between the explanations and answer choices were examined. Insights from these
explanations fed into refinement of items and distractors.

2.5 Development of questions: Illustrative exam-
ples

In this section we discuss how the student interviews helped open ended questions
evolve into the multiple choice format given in appendix A. In what follows ‘I’ stands
for the interviewer and ‘S’ for the student.

2.5.1 Development of item 2 - Appendix A: Interview ex-
cerpts

A familiar artifact to the Indian students is the wall clock. We decided to probe
aspects of angular velocity using it as a context. Item 2 probes student knowledge
regarding the direction of angular velocity. It asks about the direction of the angular
velocity of the second hand of a transparent clock when viewed from both the front
and the rear. Below we provide excerpts from a student interview that helped craft
the item and its distractors.

I: What can you say about the motion of the clock hands ?
S1: The second hand moves faster than the other two hands.
I: Let us ignore the hour hand and focus only on the minute hand and second

hand. Assume that they are moving continuously. Which one has a greater angular
velocity?

S1: Second hand has a greater angular velocity since it is moving faster.
I: What about the direction of angular velocity?
S1: (Student draws a clock on a paper. Talking to himself.....Murmurs....‘clockwise’....

Simultaneously making gestures using hand.) Direction of angular velocity will be
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into the paper (shows the direction pointing fingers into the paper).
I: Why?
S1: Using right hand rule.....
I: Can you illustrate.
S1: The second hand is always moving clockwise. (Starts using right hand to

show the orientation of motion). That means the thumb will be pointing into the
paper. So direction of angular velocity will be into the paper.

I: Suppose it is a transparent clock. How will the second hand appear if you
look at it from the back side.

S1: (Thinks for a moment. Uses gestures with right hand. Finger drawing arcs
clockwise and anticlockwise). From the backside the second hand will be moving
anticlockwise.

I: What about the direction of angular velocity, if you are looking from the
backside?

S1: It will be opposite......When the second hand moves clockwise and the direc-
tion of angular velocity is into the plane of paper....from the back it will be moving
anticlockwise...so the direction will be opposite......It will be out of the plane of paper
(tries to illustrate the flipping of direction using right hand).

2.5.2 Development of items 19, 23 - Appendix A: Interview
excerpts

Particle moving in a straight line is a pedagogically rich area to probe rotational
kinematics. As mentioned earlier, studies have probed student understanding of
angular momentum in the same context (Close and Heron, 2011). We developed a
series of questions to investigate student understanding of angular velocity and an-
gular acceleration in the context. Given below are excerpts from a student interview
that helped develop items 19 and 23.

I: A particle is moving in a straight line. Can it have an angular velocity.
S2: Yes it can....it depends......
I: Can you elaborate.
S2: (Writes the equation v = ωr)......ω is the angular velocity..... From the

equation ω = v/r. If v and r are not equal to zero, there is an angular velocity for
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the particle......
I: How does the angular velocity of the particle change as the particle moves......
S2: Is the velocity v increasing.
I: v is a constant.
S2: Then its simple..... angular velocity decreases........
I: Can you explain.
S2: From the same equation ω = v/r......As the particle moves r increases......

(shows it by drawing a straight line, an origin and two rough lines from origin to
two distinct points on the line of motion).......Since r is in denominator......angular
velocity decreases.......

I: What about angular acceleration ?
S2: (Thinks for a moment).....If angular velocity is changing......yes there is an

angular acceleration.....
I: Is there a torque acting on the particle.
S2: If there is an angular acceleration.....there should be a torque.......
I: Why do you say so?
S2: Because torque τ = Iα........
I: Can there be a torque without a force.
S2: (Thinks for sometime).... No.....
I: Is there a force here on particle.....
S2: (Silent for sometime).....No.......but there has to be a torque........since there

is an angular acceleration there should be a torque........
I: Why do you say so?
S2: It is like Newton’s second law.......there can’t be acceleration without a

force........ I am confused........I don’t know.......I am not sure......but I think there
should be a torque...........

2.5.3 Development of items 26, 27 - Appendix A: Interview
excerpts

Items 26 and 27 were developed to probe student understanding of angular velocity
of a rigid body rotating about a fixed axis. The excerpts from a student interview
given below helped develop aspects of these two items.
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I: What do you mean by angular velocity of a rigid body?
S3: (Draws a circle and an axis through its center. Then draws a radius.) The

object is rotating about the axis. Angular velocity ω = ∆θ/∆t...... ∆θ is the angle
traced by this line (pointing to the radius and marking the angle).......

I: Let us draw an arbitrary rigid body, not a circle.
S3 Draws an arbitrary stone like shape and an axis through it.
I: What do you mean by the angular velocity of this rigid body you have drawn

? (Tells the student that a water bottle on the table may be used as a rigid body if
that helps.)

S3: (Holds the water bottle in hand for some time, keeps it back and turns
attention back to the drawing) It is complex......this rigid body has many particles....
I know ω = ∆θ/∆t ....but don’t know which particle traces it........(Pauses for a
moment).....One minute.... We will take the center of mass of the body.........

I: Why center of mass?
S3: Center of mass represents the whole body.......I remember using it while

solving problems...... drawing the forces......all forces are considered to act on the
center of mass........

I: OK. How do you find the angular velocity of the rigid body using its center
of mass?

S3: (Marks a point close to the middle of the object as the center of mass).
This is the center of mass (CoM)...... (pauses for sometime)...... this is the ori-
gin.......(marks a point O as origin outside the body in the figure, in the same
horizontal plane as the center of mass, draws a line from O to CoM)..... This line
traces an angle ......like this (pointing to the earlier figure of circle)...... I think this
will be the angle......in ω = ∆θ/∆t......but.......

I: Why that ‘but’ ?
S3: I think this is correct.....but.......this is not very clear...... (showing the figure

and the ∆θ marked in it)......the circle is very clear..........
We will discuss the salient aspects involved in the evolution of each of the 39

items of appendix A in chapters 3, 5 and 6. In these chapters we discuss the three
parts constituting our inventory. The inventory which was developed systematically
through the processes discussed so far was then validated and we discuss this next.
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2.6 Validity of the Inventory

A good inventory should be able to measure what it purports to measure. The
methodological construct which estimates how well the inventory does this is termed
as the validity of the test. In psychometry one has different types of validities. A
review of PER literature reveals that the usually employed validities with regard
to concept inventories are face validity and content validity (Halloun and Hestenes,
1985; Beichner, 1994; Ding et al, 2006; Wuttiprom et al., 2009).

1. Face validity: Face validity is a prima facie assessment of the test and its ap-
propriateness by the subjects (e.g., students who take test). The purpose is
to ensure the clarity of statements of the questions and the distractors so that
they are not misinterpreted (Adams et al, 2006). Our inventory was face vali-
dated by 10 practicing teachers, 10 higher secondary students and 8 doctoral
students. Some of these candidates were part of our prior interactions/pilot
studies mentioned in section 2.4.

2. Content validity: refers to assessing whether all relevant aspects of the con-
cepts were adequately covered by the items. This is carried out by content
experts. Our inventory was content validated by 8 experts which included
senior professors and highly experienced undergraduate lecturers in physics.
All of them had experience in designing various types of physics tests. They
carefully analyzed each item and the corresponding distractors. We also car-
ried out a semi-quantitative approach employed by Maloney et al (2001) which
requires the experts to rate each item on a 5 point scale for reasonableness and
appropriateness. Suggested modifications and changes were made to ensure
that the inventory measures what it purports to measure. Suggestions given
varied from minor modifications in wordings to dropping of the items. Some of
the dropped items and a few illustrations of the suggested minor modifications
are discussed in appendix C.
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2.7 Administration of the inventory: Samples

The inventory was administered to four groups of students and two groups of teach-
ers. We first discuss the student samples. In the first stage of administration the
student groups comprised of 79 and 74 candidates respectively. All the students
were at the higher secondary school level. The age range was 16-18. They had been
taught rotational motion. We call the N=79 group as S1. They were from schools
in Mumbai and it was a convenient sample. The percentage of boys and girls was
almost equal in this sample. The group N = 74, which we denote as S2 were among
the finalists who appeared for selection tests to represent India in the international
olympiads in physics, chemistry and mathematics. The number of girls in S2 was
8 (11 %). The entire inventory was further administered to a large sample of over
nine hundred students from 5 urban centers (Jaipur, Patna, Mumbai, Hyderabad
and Bangalore) spread across the country. We denote this sample of 905 students as
S3. The number of girls in this sample was around 360 (40 %). Requests were sent
to schools in 7 urban centers and, among those who volunteered, 12 schools were
selected. Our selection was influenced by (a) the geographical spread (b) variety in
terms of certifying government boards (state vs central) and (c) administrative set
up (private vs government schools). A part of the inventory was also administered
to 384 introductory level students at the University of Washington, Seattle. We call
this group as S4. A subset of 7 students from S2 and 35 students from S3 were
interviewed.

The teachers taught physics at the HSS or undergraduate level. They were
attending an exposure camp in physics olympiad in our institute and therefore con-
stitute a convenient sample. The selection to the camp was done to ensure that
(a) they were from across the country and (b) hailed mainly from semi-urban areas
such as district towns and block level schools or colleges. The sample in the first
stage consisted of 26 teachers. We denote the group as T1. A second group of 25
teachers (T2) participated in a later stage. Their demographics was similar to T1.
The number of female teachers in both groups was around 30 %. Informal conver-
sational interviews were carried out with a subset of 5 teachers each from T1 and
T2.
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2.8 Evaluation of the inventory

The performance in the inventory was gauged by assigning one mark to the correct
answer. There was no penalty for wrong choices. No strict time restriction was
imposed. Participants were asked to answer all items. Item level and whole test
statistical analyses including item response curve analysis were carried out. The
statistical indices calculated included difficulty level, index of discrimination, point
biserial coefficient, Ferguson’s delta and Kuder Richardson reliability index among
others (Ding et al., 2006; Ding and Beichner, 2009). Difficulty level is defined as
the ratio of the number of correct responses to the total number of students who
attempted the item. The index of discrimination measures the extend to which an
item can discriminate between low and high scoring students. The point biserial
coefficient is a measure of correlation of students’ score on the item and the score
in the test. A high value indicates that students whose total scores are high are
more likely to answer the item correctly. Ferguson’s delta (δ) is a measure of the
discriminatory power of the whole test. Kuder Richardson reliability (rtest) index
measures the self consistency of the test. Item response curves (IRC) are a visu-
ally rich versatile tool for analyzing student responses. IRC involves a plot of the
percentage of students Pi(θ) selecting a choice i to an item vis-a-vis their ability θ.
Further details regarding these indices and techniques will be described in chapter
7 which is devoted to the analysis of the inventory.
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Chapter 3

Rotational kinematics of a particle

3.1 Introduction

Rotational kinematics of a particle poses serious difficulties to students as well as
teachers at the higher secondary school (HSS) level. The topic is often given short
shrift by text books. After a brief discussion of angular velocity and and angular
acceleration in the context of uniform circular motion, the concepts are directly
introduced for rigid bodies. The pedagogical significance of a proper treatment of
the single particle case, to ensure a smooth transition to the many-particle system or
rigid body, is scarcely appreciated. These observations prompted us to investigate
student difficulties in the topic and develop an inventory on the same (Mashood
and Singh, 2012a). After the winnowing as described in chapter 2, this part of the
inventory comprised of 18 items (items 1-7, 9-18 and 39). Another item was added
later (item 8). The items are listed in appendix A.

In section 3.2 we discuss the development of the inventory for which we inter-
acted with students as well as teachers. The validated inventory was administered
to groups of students and teachers, details of which will be discussed in section 3.3.
Here we also present our analysis of the collected data.
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3.2 Content development of items

The evolution of items broadly followed the protocols described in chapter 2. In
this section we discuss how the physics content of each item that constitutes the
first part of the inventory developed. We describe how some of the observations
during our interactions with students and teachers contributed to the development
of questions/items and distractors. These questions are listed in appendix A. The
numbering of questions in this chapter is in accordance with appendix A. Some stu-
dents experienced trouble with ratios which was incorporated in question 1. Simple
visualisations are required in basic rotational kinematics, often complemented by
heuristic aids such as the right hand thumb rule. These aspects were addressed
in question 2. The concept of limit or the instantaneous aspect associated with
the definitions of ~ω and ~α presents difficulties to students. This is related to the
non-discrimination between position and velocity where the students think that
bodies moving in parallel have the same velocity when they reach the same position
(Trowbridge and McDermott, 1980). Students tend to focus on the ‘perceptually
obvious phenomenon of passing’ rather than the procedure for identifying instanta-
neous speed. Similar lack of discrimination between position and acceleration was
also observed (Trowbridge and McDermott, 1981). Question 3 and its distractors
were framed to probe rotational parallels to these pitfalls. The concept of limit
was addressed partly in questions 7 and 14, besides question 3. The items 1-3 were
posed in the familiar context of a wall clock. These questions pertained to the an-
gular velocities of the tip of the second hand and the minute hand. The clock was
made transparent to facilitate the probing of simple visualisations like how would
the hands be moving when viewed from the rear.

We found that the direction of ~ω was one of the most difficult things for the
beginner students to comprehend. The notion that the vector (~ω or ~α) must be in
the ‘direction’ of the actual motion of the particle is persistent. Even after repeated
emphasis students reverted to the idea that ~ω is ‘in the plane of motion’. The
phrase appears in the distractors to items 9 and 16. Observing this we emphasised
to a group of students that ~ω is ‘perpendicular to the plane of motion’. A negative
influence of this assertion was that some students started remembering the phrase
like a cliche without understanding. The direction of ~ω was probed in items 4 and
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5. The contexts comprise of a particle in circular motion and a planet moving in
elliptical path respectively. It may be noted that clarity regarding ~ω is a prerequisite
for correctly answering questions about ~α. The direction of angular acceleration was
the theme of question 13, probed in the context of circular motion.

The angular velocity (like any other vector) can vary either with a change in
magnitude or direction or both. We found that students ignore or forget one of the
parameters. Often it was the directional aspect possibly because it is less familiar.
Understanding and distinguishing both aspects of a vector clearly is important. We
devised questions 9-11 to probe student understanding of variation in magnitude
and direction of ~ω. An oscillating simple pendulum provided us with a rich context
for this investigation. Similarly, understanding of the variation in magnitude and
direction of angular acceleration was probed in questions 12, 16, 17 and 18. The
confusion between linear velocity and linear acceleration had been documented in
earlier works (Trowbridge and McDermott, 1981; Shaffer and McDermott, 2005).
To investigate the existence of any rotational parallels, we decided to probe ~ω and
~α in the same context of a simple pendulum. With this aim items and distractors
were framed almost identically for ~ω (questions 7-11) and ~α (questions 14-18). It
may be noted that throughout the designing of the inventory we drew upon familiar
and physically relevant contexts while posing the items.

A significant finding was that most students consider circular motion to be
the prototype for rotational motion. Such fixations has its demerits which include
recalling of memory fragments inappropriate to the situation. Another observation
was the indiscriminate usage of equations ignoring the associated validity conditions,
and this was the theme of question 6. We probed this issue by presenting elliptical
motion to assess the understanding of the equation ~v = ~ω×~r, which in fact is valid
only for circular motion. Probing a similar pitfall in the case of angular acceleration
was the motive behind designing question 39 where the context was an accelerating
giant wheel. We found the equation ~a = ~α×~r was used ignoring the fact ~a here refers
to the tangential component and not the total acceleration. It may be recalled that
the conceptual dimensions probed by the inventory and the corresponding items
probing them have been tabulated in chapter 2 (see table 2.1).
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Table 3.1: The average performance of candidates of each group, the associated
standard deviation and the average difficulty level. The corresponding percentage
performances are in brackets. Total number of questions was 18 for students and 17
for teachers. Groups are described in chapter 2.

S1 (N=79) T1 (N=26) S2 (N=74)
Average score 6.49 (36.06 %) 6.69 (39.35 %) 15.57 (86.50%)

Standard deviation 2.69 2.87 1.83
Average Difficulty Level 0.37 0.41 0.87

3.3 Administration and analysis

The inventory was administered to groups S1, S2 and T1, described in chapter 2.
A subset of the students were interviewed. The average of the number of questions
correctly answered by candidates of each group is given in table 3.1. The average
performance in percentage is given in brackets. We also calculated the corresponding
standard deviations and the average difficulty level (averaged over items) for all the
three groups. The difficulty level (DL) of an item for a given group is defined as the
ratio of the number of correct responses to the number of candidates who attempted
the question. It may be noted from the definition that a more meaningful word for
the index would be ‘easiness level’ (Ding et al, 2006).

The detailed response pattern of the student groups and the teachers is shown
in table 3.2. The number of candidates responding to each of the choices of an
item is displayed. We also calculated the difficulty level (DL) of each item for all
the three groups. As can be inferred from table 3.2 the S2 group answered most
of the items correctly. The response pattern of S1 as well as T1 exhibit pitfalls in
understanding. In what follows we mainly discuss these two groups. The difficulty
level index of most of the items pertaining to ~ω are centred around 0.5. The teacher
group scored slightly better for all items except question 6. For items on ~α the
difficulty level index drops for both groups. It may be recalled that magnitude
wise difficulty level represents easiness. The value of DL is centred approximately
around 0.35 for teachers as well as students. The DL index of some of the items
was very low, particularly questions 17, 18 and 39. This prompted us to revisit
the items and seek expert opinions regarding the questions. This iterative aspect
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involved in the construction of an inventory helps in refining the test as a diagnostic
tool. In this particular case experts were satisfied with the content aspect of the
questions. Simple modifications in the wordings to enhance simplicity and clarity
were suggested.

Broadly, the results that can be inferred by an analysis of table 3.2 are coherent
with what was observed in the pilot studies and associated interactions. Let us
analyse the response pattern to some of the questions in greater detail. A perusal
of the frequency with which distractors to each of the 18 items (see appendix A)
were chosen reveals interesting patterns. This was confirmed later by interviewing a
subset of students. Some of the pitfalls identified are similar to those found earlier in
linear kinematics. While others are peculiar to rotational motion. Some difficulties
overlap both domains, such as the concept of ratio. The concepts ~v, ~a, ~ω and ~α ba-
sically involve ratios. A qualitative as well as quantitative understanding of ratios is
integral to understanding these concepts (Trowbridge and McDermott, 1980; Arons,
1990). As we can see from the response pattern to item 1, half of the candidates
have problems in calculating and comparing simple ratios. For question 2 the op-
tions b and c which wrongly depicted the direction of ~ω were chosen by a significant
majority of students and teachers. This indicates inadequacies in visualisations as
well as usage of heuristic aids like the right hand thumb rule. It also suggests that
many people think that angular velocity of the tip of the clock (transparent) hand
would change direction depending on whether we are looking at it from the front or
the rear, since the motion changes from clockwise to counter clockwise.

Further analysis of the choice of distractors and the interviews helped us cate-
gorise the pitfalls and difficulties under the following broad themes.

3.3.1 Fixation with inappropriate prototypes

As mentioned earlier students had difficulty in comprehending the non intuitive
direction of ~ω and correspondingly ~α. This is validated by the number of teachers
and students who wrongly chose c as the answer to question 4. The distractor c
states that the direction of ~ω of a particle in circular motion with increasing speed is
different at two distinct points on the trajectory. One student who opted c explained
that: angular velocity tells about motion of objects in rotational motion ....in circular
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Table 3.2: Boldfaced numbers indicate the correct choice. The numbering of ques-
tions are in accordance with their position in appendix A. Question 39 was not
administered to the teachers because it was in the developmental stage at the time
of administration. Some of the participants left a few questions unanswered despite
being requested otherwise.

S1 (N=79) T1 (N=26) S2 (N=74)
Q. No. a b c d DL a b c d DL a b c d DL

1 16 14 42 7 .53 3 4 13 6 .50 0 1 71 1 .97
2 5 33 20 21 .27 6 5 7 8 .31 0 4 20 50 .68
3 35 6 26 12 .44 13 3 3 6 .52 70 2 0 2 .95
4 29 6 33 11 .37 11 1 8 3 .48 68 2 2 2 .92
5 19 11 27 22 .28 5 2 6 11 .46 0 1 2 71 .96
6 19 17 32 11 .41 11 7 4 3 .16 45 3 25 1 .34
7 41 9 8 21 .52 17 5 2 1 .68 68 5 0 1 .92
9 8 20 25 26 .32 3 4 11 7 .44 1 1 63 9 .85
10 20 3 12 44 .56 6 1 1 18 .69 1 0 1 72 1
11 46 13 16 4 .58 16 1 7 2 .62 74 0 0 0 1
12 18 11 29 21 .37 3 5 9 9 .35 2 1 68 3 .92
13 17 32 23 7 .41 7 11 5 3 .42 4 65 4 1 .88
14 25 10 10 34 .43 10 4 1 10 .40 1 7 0 66 .89
15 2 29 30 18 .37 2 8 9 6 .32 0 69 1 4 .93
16 7 22 22 28 .35 1 8 9 7 .28 0 0 4 70 .95
17 15 9 43 12 .15 7 0 13 6 .23 2 1 3 68 .92
18 40 10 19 10 .13 15 1 7 2 .08 10 0 1 63 .85
39 39 20 11 9 .11 14 6 3 51 .69
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motion at different points they are moving in different directions. Further insights
into the same difficulty can be obtained by looking into the response pattern to
question 5. A majority wrongly chose the first three distractors, all of which implying
that angular velocity lies in the plane of motion. This suggests that students are
unable to grasp the idea that direction of ~ω of a particle is always perpendicular to
their position vector. It has been noted earlier that students’ performance is impeded
by ‘fixation’ to prototypical notions (Reif and Allen, 1992). What distinguishes the
present case is that the prototype is a formally learnt one. The notion that a
vector should be in the plane of the position vector is a ‘hangover’, particularly
from linear kinematics and not a preconception acquired from everyday life. The
difficulty with the direction of ~ω will evidently carry over to ~α and this is indicated
by the response to items 12 and 13. Around 60 % of both students and teachers
made wrong choices. Students are often unable to think beyond the circular motion
framework when it comes to rotational motion. The following remark from a student
illustrates this notion: there are two types of motion.....linear motion and rotational
motion......in linear motion objects move in straight line and in rotational motion
they move in circle like wheel or a fan..... We will report an extreme case of this
‘fixation’ where students and teachers were reluctant to ascribe rotational motion
concepts to a particle in rectilinear motion (origin not on the path), in the next
chapter (Mashood and Singh, 2012b).

3.3.2 Indiscriminate usage of equations

Responses to question 6 reveal indiscriminate usage of equation ~v = ~ω×~r, ignoring
that it is valid only for circular motion. The context was a planet moving in an
elliptical orbit. A majority erroneously chose a and b which says that the equation
holds true either ‘by definition’ or ‘because the planet is in rotational motion’ re-
spectively. A student noted: the equation ~v = ~ω×~r is always true..... it connects
angular and linear velocity. Surprisingly the students did far better in this ques-
tion compared to the teachers. The corresponding pitfall for angular acceleration
concerns the usage of ~a = ~α×~r, which was the theme of item 39. The students’
performance was unsatisfactory, the difficulty level index dropping to its minimum.
The most popular incorrect choice was a, chosen by about half of the students. As
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per the distractor the equation holds true ‘because the motion is circular’. In fact
the equation does not hold true in the case because ~a has a radial component as
mentioned in the correct choice d. The item was not administered to the teachers
being under development at the time of administration.

3.3.3 Pitfalls paralleling those found earlier in linear kine-
matics

Here we discuss those pitfalls which are similar in pattern to those identified ear-
lier for linear velocity and linear acceleration. The response pattern to question 3
clearly shows that almost one-third of the students in S1 harbour the misconception
that angular speed of the tip of the second and minute hands are same when their
positions overlap. A student who made the choice said: when they are both at 12’O
clock their motion looks same.....both of them move in the same way for that small
time interval...we can see it.... This is similar to the position-velocity confusion re-
ported for one-dimensional motion (Trowbridge and McDermott, 1980; Hestenes and
Wells, 1992). Prior work on linear kinematics documented a variety of confusions
between ~v and ~a among students (Trowbridge and McDermott, 1981; Shaffer and
McDermott, 2005). As mentioned before we devised items 7 to 11, 14 to 18 with the
aim of ferreting out their rotational counterparts. The former set concerns angular
velocity and the later set pertains to angular acceleration, both posed in the same
context of an oscillating simple pendulum. In addition to uncovering interesting
pitfalls concerning both the concepts we found an underlying pattern in students’
reasoning of ~α. The phrase ‘as ~ω behaves so does ~α’ succinctly captures the essence
of the pattern, which is illustrated through what follows. A majority of the students
and teachers correctly answered item 7 that angular velocity of the pendulum bob
is zero at the extreme position. But a significant number of candidates thought that
even the angular acceleration is zero at the point (item 14). The following remark
by a student illustrates this: At the extreme point, the pendulum is at rest for some
time. It does not move. That means the bob has no velocity or acceleration at that
point...for some time. The misconception that when velocity is zero, acceleration at
the point is also necessarily zero had been probed earlier in varying contexts (Reif
and Allen, 1992; Hestenes et al., 1992; Shaffer and McDermott, 2005). The case
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of a ball thrown vertically up is a popular example. The students are asked about
the velocity and acceleration at the point of maximum height. Our observation es-
tablishes that identical pitfalls exists in rotational kinematics as well. Questions 9
and 16 present another instance of candidates thinking that the angular acceleration
would mimick angular velocity in its behaviour. The items pertain to the directions
of ~ω and ~α as the pendulum swings from one extreme to the other. The correct
choice to item 9 is c which says that the vector ‘is perpendicular to the plane of
motion and remains the same’. The same but incorrect choice was made for ~α by a
significant majority (item 16).

Questions 10 and 17 provide a third illustration of the pattern concerning ~α

mentioned above. More than half of the candidates rightly answered item 10 that
ω first increases and then decreases as the pendulum bob moves from one extreme
position to the other. However, when it came to question 17, which asked about the
variation of α in the same context a majority of students as well as teachers wrongly
chose c. The distractor c is identical in words to the correct choice of question 10,
namely that ‘it first increases and then decreases’. One student who made this choice
explained: Initially the pendulum bob speeds up as it start moving from left end. It
comes to rest at the right end. So after the mid point speed will decrease. If speed
is increasing that means acceleration is increasing.....if speed decreases acceleration
decreases. It is tempting to think that an increasing/decreasing angular velocity
always implies a similarly varying angular acceleration. But as illustrated by the
motion of the pendulum bob ω may increase while α is decreasing or vice versa. A
related pitfall has been reported in the case of linear acceleration (Shaffer and Mc-
Dermott, 2005). The last of our patterns indicating confusion between the behaviour
of ~α with that of ~ω is revealed by responses to items 11 and 18. Question 11 probes
the angular velocities of the pendulum bob at an intermediate point as it oscillates
to and fro. About 60 % of the candidates correctly answered that angular velocities
‘remain equal in magnitude but differ in direction’(choice a). The remark made by
a student illustrates this reasoning: When the pendulum oscillates back from right
to left..... the orientation of motion changes....it is now anti-clockwise....so angular
velocity and angular acceleration will change their direction....by right hand thumb
rule. The angular accelerations (item 18) however remain same in both magnitude
and direction. The actual performance was not satisfactory. More than half the
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candidates wrongly chose a which once again revealed the existence of erroneous
notion that ~α always tracks ~ω.

3.4 Concluding remarks

The fact that there exists no significant difference between the performance of S1
group and the teachers is alarming. We have described the teacher group in section
2.7 of chapter 2. It may be recalled that the teachers were mainly from district
towns and block level schools or colleges. Lack of meaningful teacher training pro-
grams in the country is one of the plausible reasons for their low scores. In addition
the prevalent evaluation system is unimaginative and fosters rote learning exercises.
Consequently teachers are pressurized into ‘teaching to tests’ that hardly assess con-
ceptual knowledge or genuine problem solving skills. This over a period of time has
blunted their abilities to tackle physics problems. When asked about the reason for
their low scores some of the experienced teachers said that they could have answered
these questions better in the earlier phases of their career. But now the pressure of
teaching to tests that form the basis for grades and socio economic issues such as
managing family, school and health have blunted their faculties for physics. Coming
to implications for instruction, we have to accept that acquisition of even elemen-
tary concepts takes an extended period of time (Trowbridge and McDermott, 1980).
It is important that the student be exposed to the same concept in a variety of
physical contexts. Further, we suggest explicit emphasis on operational definitions
and accompanying procedures. This has been repeatedly emphasised earlier, par-
ticularly in the case of linear kinematics (Arons, 1990; Reif and Allen, 1992; Shaffer
and McDermott, 2005; Reif, 2008). Since one of the most important aspect of un-
derstanding rotational kinematics is proficiency with vectors, stressing operational
definitions may help significantly.

Summarising, we find that rotational kinematics of a particle poses difficulties
to higher secondary students as well as teachers. The topic has not yet received
the attention it deserves from the PER community and is inadequately dealt with
in most text books (Mashood and Singh, 2012c). We developed and administered
an inventory on ~ω and ~α of a particle to groups of teachers as well as students.
We described how items and distractors were constructed. The response pattern
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shown in table 3.2 was analysed. Areas of difficulties and probable pitfalls were
identified. Some of the misconceptions uncovered parallel those reported earlier in
linear kinematics. Instances corresponding to indiscriminate usages of equations
were found. Fixations with prototypes resulting in errors were another significant
observation.
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Chapter 4

Rotational kinematics of a particle
in rectilinear motion

4.1 Introduction

Motion of a particle along a straight line with constant velocity is the simplest
situation in mechanics that one can envisage. One may however obtain pedagogically
relevant insights if one consider its rotational kinematics about a point which does
not lie on the path of motion (see figure 4.1). A student may be tempted to conclude
that the concepts of rotational motion are irrelevant in this situation. Close and
Heron (2011) have recently investigated the widespread tendency among students to
ascribe zero angular momentum to particle moving in a straight line. This difficulty
of associating angular momentum (~L) and related quantities with linear motion
has been observed earlier (Palmieri and Strauch, 1963; Williamson et al., 2000).
Physical intuition is not infallible (Singh, 2002). In this chapter we discuss the
angular velocity of the particle (~ω) and its variation as the particle moves from P,
away from the origin O (see figure 4.1). The case represents an interesting situation
where there exists an angular acceleration (~α) despite zero torque (~τ), which also
implies that the often employed relation ~τ = I~α does not hold (here I is the particle’s
moment of inertia).

In section 4.2 we describe the rotational kinematics of a particle in rectilinear
motion with constant velocity. It serves not only as a recapitulation for experts
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Figure 4.1: A particle of mass m is moving in a straight path PABN with constant
speed V . The origin O is not on the path. The particle travels from A to B in time
∆t.

but sets the tone for discussions in later sections. In section 4.3 we describe the
content evolution of items constituting the inventory. The development was done
with inputs from experts, teachers as well as novice students. The systematic and
iterative character of the process of development have been described in chapter 2.
Not only the students but even experienced teachers fell prey to some of the naive
notions regarding angular velocity and angular acceleration of a particle in rectilin-
ear motion. This was evident from the response patterns to diagnostic questions
addressed to groups of higher secondary school students and a set of teachers. The
administration and analysis of the inventory is discussed in section 4.4. Discussion
of the pattern of errors and some immediate instructional implications are contained
in section 4.5.

4.2 Rotational kinematics of a particle moving in
a straight line

A particle in rectilinear motion has zero angular velocity only in the special case
when the origin is located on the line of motion. As illustrated in figure 4.1, the
magnitude of angular velocity of a particle is given by ω = ∆θ/∆t where ∆θ is the
angle traced in time ∆t by the position vector of the particle with respect to the
specified origin O . In other words, whenever the direction of the position vector of
a particle changes there exists an angular velocity.

As the particle moves away from the origin ω starts decreasing. The decreasing
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angular speed can be inferred from the following consideration. From figure 4.1 we
have

x = yotanθ. (4.1)

Differentiating Eq. (4.1) with respect to time and noting that ẋ = V yields

ω = V cos2θ/yo, (4.2)

where yo is the perpendicular distance from the origin O to the line of motion. It
may be noted that dot implies derivative. Substituting cosθ = yo/r (here r is the
distance of the particle from the origin) in Eq. (4.2) we obtain

ω = V yo/r2, (4.3)

which implies that ω decreases as the particle moves. It follows from Eq. (4.3) that

mr2ω = mV yo, (4.4)

a constant which is the magnitude of the angular momentum (L) of the particle.
This point was made by Close and Heron (2011) also.

Let us take a brief look at the dynamics. A changing angular velocity implies
an angular acceleration (α = ω̇), but there is no torque! Zero linear acceleration
and the corresponding absence of any force implies zero torque (~τ = ~r × ~F ).

One can show the variation of the magnitude of angular acceleration by differ-
entiating Eq. (4.2) with respect to time and employing Eq. (4.3), which yields

α = −V 2sin2θ/r2. (4.5)

Thus in contrast to the relation that we often encounter in physics here we have
a case where

τ 6= Iα. (4.6)

The reason is that for a particle moving in a straight line about a fixed origin,
the moment of inertia is not constant but changes with time. Succinctly put, τ = Iα
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is not a basic equation. The more basic equation is τ = L̇ (Chabay and Sherwood,
2011). For the particle in our case it follows from Eq. (4.4) that L = mr2ω . When
we associate I = mr2 we obtain

τ = Iα + ωİ. (4.7)

The rhs can be shown to be zero. Note the analogy with F = ṗ = mV̇ + V ṁ

(Newton’s second law) when mass is not a constant.

4.3 Content development of items

The seemingly non-intuitive aspects of rectilinear motion outlined in section 4.2
prompted us to develop an inventory. In this section we provide some detail about
how the interactions with students and teachers helped to frame and modify the
questions as well as the distractors. We observed a tendency, mostly among novices,
to reject outright the relevance of rotational motion concepts because the motion
of the particle is in a straight line. As such, we incorporated this element in the
distractors to all questions (the questions 19-25 are listed in appendix A ). As an
illustration of how distractors are modified after the pilot tests, consider question 19
where initially the distractors probed only relative magnitudes of angular speeds at
two distinct points on the trajectory. We found from interviews that many students
selected the correct choice but employed incorrect reasoning; they used the relation
v = ωr, which is valid only for circular motion. As a result of this interaction, we
reframed the distractors so that this error was explicitly addressed.

Question 20 relates to our experience that the direction of angular velocity is
one of the first hurdles that a student encounters when learning rotational motion.
Question 21 probes the concept of angular acceleration. The distractors are delib-
erately restricted to kinematics so that this item is consistent with questions 19 and
20. The variation of angular acceleration dealt with in question 22 is a reasonably
difficult topic even for experts; algebraic manipulations and/or asymptotic reason-
ing are necessary. Question 23 is intended to probe the relation between torque and
angular acceleration. Most students strongly hold the view that an angular acceler-
ation should always imply a torque. The influence of the analogy that acceleration is
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impossible without a net force (when mass remains constant) was evident. Another
interesting finding was that people employed the invalid relation τ = Iα along with
the wrong assumption that α is zero to arrive at the correct answer, namely, that
torque is zero, to question 23. We modified the initial version of the distractors so
that these pitfalls could be incorporated. Such an iterative process of interaction
and modification helped refine the inventory and honed it as a diagnostic tool.

Question 24 can serve as a check for internal consistency because a correct
response is meaningful only if some of the earlier items (e.g., 19, 20, and 21) are
answered correctly. Question 25 probes student understanding of how the radial and
azimuthal components of linear velocity change as the particle moves. A knowledge
of the component (radial and azimuthal) aspects of linear velocity and acceleration
is essential for a proper understanding of rotational kinematics. We emphasize once
again that the protocols outlined in chapter 2 were followed in the development of
items and distractors.

4.4 Administration and analysis

We administered the questions to two groups of HSS students and a set of 26 physics
teachers. These were the same groups, S1 (N=79), S2 (N=74) and T1 discussed in
the previous chapter. They are described in chapter 2. As one may recall, one of
the two groups of students were the olympiad aspirants (S2). Table 4.1 gives the
average of the number of questions correctly answered by candidates of each group.
The average performance in percentage is given in brackets. We also calculated
the corresponding standard deviations. As can be inferred from the average scores,
the performances of the S1 and T1 groups reveal misconceptions and pitfalls. Even
a section of S2 found the questions difficult as indicated by their drop in average
relative to the performance described in the previous chapter. As mentioned in
chapter 2 a subset of students were interviewed.

Despite being asked to answer all items, a few left some questions unanswered.
As can be inferred from the low values of difficulty level, the questions were de-
manding. The choices corresponding to the naive notion that angular velocity and
acceleration remain zero since the motion is linear are d, d, a and a respectively for
the first four questions (19-22). The number of students (both groups) and teachers
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Table 4.1: The average performance of candidates of each group and the associated
standard deviation. The corresponding percentage performances are in brackets.
Groups are described in chapter 2. Total number of questions was 7 for students
and 5 for teachers.

S1 (N=79) T1 (N=26) S2 (N=74)
Average 1.29 (18.43 %) 1.19 (23.8 %) 4.62 (66 %)

Standard deviation 1.44 1.49 1.70
Average Difficulty Level 0.19 0.24 0.67

Table 4.2: Boldfaced numbers indicate the correct choice. Questions 24 and 25 were
not administered to the teachers because it was in the developmental stage at the
time of administration. Some of the participants left a few questions unanswered
despite being requested otherwise. The numbering of the questions is in accordance
with appendix A.

S1 (N=79) T1 (N=26) S2 (N=74)
Q. No. a b c d DL a b c d DL a b c d DL

19 22 11 15 31 .14 9 5 2 10 .19 4 45 2 21 .63
20 21 9 27 22 .34 1 5 12 8 .46 0 0 72 1 .99
21 43 11 12 13 .22 12 4 4 5 .17 23 0 50 0 .68
22 39 20 7 13 .16 14 3 5 2 .08 27 6 4 36 .49
23 10 21 29 19 .13 8 2 13 2 .32 38 18 17 1 .51
24 24 27 11 17 .14 22 3 43 6 .58
25 18 3 28 30 .23 58 7 5 4 .78

who chose them are significantly high as we can see from the table 4.2. The follow-
ing statement from a student was typical of the perception of many students: The
particle is in linear motion. It is not rotating.... angular velocity....angular accel-
eration... are for rotational motion. The surprisingly odd higher success rate for
question 20 arises probably from mere recall of the often repeated phrase ‘angular
velocity is perpendicular to the plane of motion’. Another interesting observation is
the number of students from S1 and teachers who chose a as the answer for item
19 wrongly assuming that the equation v = ωr is valid. A student who chose a
explained: The particle has an angular velocity. We have the equation v = ωr.
Angular velocity is given by ω = v/r .....v is constant and there is an r which is
increasing. Similarly for question 23 a significant percent from all groups chose c
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which is incorrect because the relation τ = Iα is not valid. A student from S2
correctly identified that τ = Iα is invalid because moment of inertia I is varying.
She also said that: I have learnt about changing moment of inertia in rigid body ro-
tation... like a rotating dancer folding her arms....τ = Iα does not hold there.....also
this is similar to rocket motion where mass varies as it moves.

Distractor a for item 24 which say ~α is undefined since its magnitude is zero
was chosen by 30 % of both groups of students. One student stated: The particle
is moving in a straight line... It does not have any angular acceleration.....how
can there be any direction for zero angular acceleration. The response pattern to
question 25 indicates that the popular distractors are c and d chosen by about 73
% of S1 (N=79). The distactors incorrectly states that one (radial) or both of the
components of the velocity remains constant as the particle moves. The typical
explanation given was: the velocity of the particle is constant...it is given.....if the
total velocity is constant, the components also remain constant, as said by a student.
The performance of S2 students to the item however is satisfactory with a DL of
0.78.

4.5 Concluding remarks

Incorrect reasoning based on recall of memory fragments or by comparison with
an inappropriate prototypical situation has been reported in other contexts as well
(Reif and Allen, 1992; Shaffer and McDermott, 2005). Emphasizing operational def-
initions and procedural specifications with the formal statements is an immediate
corrective measure (Arons, 1990; Shaffer and McDermott, 2005; Reif, 2008). Ad-
dressing specifically the problem of angular velocity of a point particle we suggest
the following operational definition.

A particle has an angular velocity about an origin if the position
vector of the particle with respect to the same origin changes in direction
with time.

Procedurally

• Draw the position vector ~r(t) of the particle with respect to a specified origin
at some instant t.
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• Draw the position vector ~r(t+dt) of the particle with respect to the same
origin after some time, say t+dt.

• If ~r(t) and ~r(t+dt) differ in direction then the particle has an angular velocity.

The distractors to an item were deliberately designed to create cognitive conflicts
so that people would employ more than one argument for verification. Nevertheless,
except for a few experts, candidates rarely checked the consistency by arguing in
different ways. Expert argumentation at times even generated interesting and novel
approaches. For example, in question 19 one of the experts argued that: straight line
motion is a special case of planetary motion with zero central force. From Kepler’s
second law, equal areas (r2∆θ/2) are swept in equal times ∆t. Thus r2ω is a constant
and therefore ω should keep decreasing. The ability to identify structural similarity
between problems is an expert characteristic that ensures efficient problem solving
(Singh, 2008).

Another interesting observation was the visual appraisal of problems by experts.
Most of them answered item 19 by simple inspection of the figure; in fixed time ∆t,
∆θ decreases as the particle moves away from P. Deployment of asymptotic reasoning
was another observed striking expert characteristic. Question 25 was answered by
inspection of the motion at extreme points P and N. At P the radial component of
velocity is zero and the tangential component is maximum. At infinity the tangential
component vanishes and the velocity is purely radial. Asymptotic arguments were
employed in answering questions 19 and 22 too. It was argued that at large r the
angle traced by the position vector of the particle will be small, decreasing for an
interval of time.
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Chapter 5

Variation of angular velocity and
angular acceleration of a particle
in rectilinear motion

5.1 Introduction

In this chapter we discuss the angular velocity (~ω) and angular acceleration (~α) asso-
ciated with a particle in rectilinear motion with constant acceleration. The work was
motivated by an observation that students and even teachers have difficulty in as-
cribing rotational motion concepts to a particle when the trajectory is a straight line
as discussed in chapter 4. Contrary to (naive) expectations, the particle possesses
an angular velocity(~ω), angular acceleration (~α) and angular momentum (~L) if one
considers the origin outside the line of motion (see figure 5.1). A formal derivation
of ω and α is presented which reveals ‘surprising’ and non intuitive aspects, namely
non monotonous behavior with associated extremum. The special case of constant
velocity is studied and we find that the angular acceleration associated with it also
has an extremum.

In section 5.2 we discuss the variation of angular velocity as the particle moves
away from A. We present a formal derivation and also numerically trace ω. While it
is possible to visualize the fall in ω with r (distance of the particle from the origin)
for the constant velocity case, the maximum in ω for constant acceleration (a) comes
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as a surprise. In section 5.3 we discuss the variation of α. Once again numerical plots
are preceded by formal results. Here one is confronted with non monotonic behavior
for both cases, zero and constant acceleration. Thus a seemingly monotonous system
as a particle in straight line motion exhibits surprising features.

.

θ
yo

O

r

A m B C

Figure 5.1: A particle of mass m is moving in a straight path ABC. The origin
O is not on the path. B and C are two distinct points on the trajectory. The
perpendicular distance from origin to the line of motion is yo.

5.2 Variation of angular velocity

The position vector of the particle is given by

~r = rr̂. (5.1)

Differentiating equation (5.1) with respect to time we obtain the velocity,

~v = ṙr̂ + ωrθ̂, (5.2)

as ˙̂r = ωθ̂ where r̂ is the radial unit vector and θ̂ is the tangential unit vector. It
may be noted that dot denotes differentiation.

The angular momentum of the particle at any instant is

~L = ~r×(m~v), (5.3)

which directly yields L = mvyo. Equation (5.2) in equation (5.3) yields L =
mr2ω. Comparing the two expressions for the magnitude of angular momentum we
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obtain the variation of ω with r,

ω = vyo/r2. (5.4)

Note that the angular velocity of a particle depends on the choice of origin.
When yo = 0 we have ω = 0.

To express ω as a function of single variable r consider the equation of motion

v2 = vo
2 + 2ax, (5.5)

where vo is the velocity of the particle at A (at time t = 0) and x is the distance
traveled in time t.

Equation (5.5) in equation (5.4) along with x =
√

r2 − yo
2 yields

ω =
yo

√
vo

2 + 2a
√

r2 − yo
2

r2 , (5.6)

which shows the variation of ω with r of a particle moving with constant acceleration.
As r→yo, ω approaches vo/yo. At infinity ω vanishes as r−3/2.

To obtain the variation of ω for the constant velocity case insert a = 0 in
equation (5.6). The equation reduces to

ω = yovo/r2. (5.7)

We can see from equation (5.7) that ω decreases monotonously as 1/r2 as shown
in the inset of figure 5.2. It may be noted that we have taken unit values for yo,
vo and a (i.e. yo=vo=a=1 in numerical terms) while plotting all the graphs and
calculating extrema. The decrease in ω can also be inferred by visual inspection of
figure 5.1. Since the velocity of the particle is a constant the angle traced by the
position vector in equal intervals of time keeps decreasing as the particle moves away.
Yet another approach to understanding the behavior is by asymptotic arguments.
At A the linear velocity (~v) is purely tangential and thereby angular velocity is
maximum while at infinity ~v is purely radial and ω vanishes.

But when the particle is moving with a constant acceleration ω increases initially
and then decreases as shown in figure 5.2. The behavior is non intuitive. That the
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Figure 5.2: Variation of ω with r when the particle is moving with constant accel-
eration. The inset shows the special case of constant velocity. See text for details.

angular variables will vanish at infinity can be understood by the fact that the
motion will approach linearity as the distance from origin increases. In the next
section we argue the existence of an extremum in ω, but meanwhile we obtain this
maximum by differentiating equation (5.6) with respect to r which yields

3r2 + 2
√

r2 − 1 − 4 = 0 (5.8)

To solve the equation make the substitution r2 − 1 = x2 where x > 0, which
yields the maximum at r =

√
10/3.

5.3 Variation of angular acceleration

The variation of angular acceleration is obtained by differentiating equation (5.6)
with respect to time. We get ṙ in terms of r by squaring equation (5.2) and substi-
tuting for v from equation (5.4), which implies

ṙ = (ωr
√

r2 − yo
2)/yo. (5.9)

The magnitude of angular acceleration for the case of constant linear accelera-
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tion is thus obtained as

α = ayo(4yo
2/r2 − 3)
r2 − 2yovo

2√r2 − yo
2

r4 . (5.10)

When a = 0 we have
α = −2yovo

2√r2 − yo
2

r4 , (5.11)

which is the variation of angular acceleration of a particle in rectilinear motion with
constant velocity.

Angular acceleration α initially decreases with r and then increases in cases of
both constant velocity (see inset) and constant acceleration as shown in figure 5.3.
Like the non monotonous behavior of ω in the previous section the variation in α

is not obvious. Nevertheless, one can get some insights by visual inspection and
asymptotic arguments. For the constant velocity case when r = yo we have α = 0
(see equation (5.11)). At large r, α is negative and approaches zero as 1/r3. Thus α

will possess a minimum and this minimum can be obtained by taking dα/dr = 0 in
equation (5.11). As mentioned earlier we take yo=vo=a=1 in numerical terms. The
minima lies at r = 2/

√
3 which gives θ = π/6 rad. The case of particle moving with

constant velocity also presents us with a simple context to introduce the concept
of angular jerk, which is obtained by differentiating equation (5.11) with respect to
time (Tan and Edwards, 2011).

We also note the asymptotic behavior of α when a is a constant. As r → yo,
an inspection of equation (5.10) suggests that α is positive. One can also verify by
substitution that α = 0 at r =

√
10/3. This helps us understand the behaviour of

ω in figure 5.2. For r∈[yo = 1,
√

10/3], ω increases and thereafter it decreases. Also
note that as r → ∞, α approaches zero from the negative side.

The minimum for the constant acceleration case is obtained by taking dα/dr = 0
in equation (5.10), which yields

3r2√r2 − 1 + 3r2 − 8
√

r2 − 1 − 4 = 0 (5.12)

The real solution for above cubic equation can be readily obtained by the substitu-
tion r2 − 1 = x2 where x > 0. The solution is x = 1 which implies that the point of
minima is at r =

√
2. The corresponding value of θ is π/4 rad.
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Figure 5.3: Variation of α with r when the particle is moving with constant accel-
eration. The inset shows the special case of constant velocity. See text for details.

5.4 Concluding remarks

A physical context for the problem discussed in this chapter can easily be con-
structed. Consider a vehicle moving on a straight horizontal road at dusk. A person
standing at some distance away from the road can switch on her laser flashlight and
follow the trajectory of this vehicle. The angular speed of the light beam would
decrease monotonously with time. In contrast, were the flashlight turned skywards,
the beam would have a constant angular speed if the person follows the trajectory
of a satellite orbiting with constant speed. The switch from a straight road to a
circular trajectory is responsible for the change from a monotonously decreasing
angular speed to a constant angular speed.

Summarizing, contrary to common misconceptions, a particle in rectilinear mo-
tion has an angular velocity, angular acceleration and angular momentum if we chose
the origin outside the line of motion. Angular velocity decreases monotonously as
the inverse square of the distance from the origin when the particle is moving with a
constant velocity. However, when the particle has a constant acceleration, ω initially
increases and then decreases. The point of maximum lies at r =

√
10/3. Whereas

angular acceleration of the particle decreases initially and then increases for particle
moving with both zero and constant linear acceleration. The minimum in the con-
stant velocity case lies at r = 2/

√
3 which gives θ = π/6 rad. While in the constant
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acceleration case the minimum shifts further to r =
√

2 or θ = π/4 rad.
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Chapter 6

Rotational kinematics of a rigid
body about a fixed axis

6.1 Introduction

As discussed in chapters 3 and 4, we carried out studies to probe students as well
as teachers understanding of angular velocity and angular acceleration of a parti-
cle. We identified misconceptions and pitfalls in reasoning (Mashood and Singh,
2012a, 2012b). Some of them parallel those found earlier in linear kinematics while
others were peculiar to rotational motion. The present investigation on rotational
kinematics of a rigid body is a natural progression of our earlier work on a single
particle.

In this chapter we present the development, administration and analysis of the
third part of our inventory on rotational kinematics of a rigid body about a fixed
axis. This part of the inventory comprises of 13 items which are listed in appendix
A (items 26-38). In section 6.2 we discuss the content development of these items.
This is followed by a discussion of administration and analysis in section 6.3. The
systematically and iteratively constructed questions were validated and adminis-
tered to a set of teachers T2 (N = 25) and two groups of pre-university students
S2 (N = 74) and S3 (N=905) in India. The samples are described in chapter 2.
A subset of the students were interviewed. Students, as well as teachers, exhibit
difficulties in applying the operational definition of the angular velocity to a rigid
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body. Many erroneously assume that an angular acceleration cannot exist without a
net torque. Patterns of reasoning resulting in errors were identified and categorized
under broader themes. The inventory was also administered to introductory level
students, S4 (N = 384) at the University of Washington. Popular distractors to
most items remained similar to the Indian students. It may be recalled that the
terms items and questions are used interchangeably.

6.2 Content development of items

The general protocols followed in the construction of items and distractors have
been described in chapter 2. In this section we discuss how our interactions with
students and teachers contributed to the content development of the items (26-38
listed in appendix A). During this study we observed that many students had
difficulty with the concept of the angular velocity of a rigid body. Questions 26
and 27 were devised to probe student understanding of the operational definition of
angular velocity. Item 26 was designed to investigate whether students could identify
the angle ∆θ in the definition ω = ∆θ/∆t. Although the students were familiar with
the idea of an angle being traced in case of a single particle, some seemed confused
in the case of rigid body motion. We found a tendency among students to reduce
the analysis to that of a single particle. Often this particle was the center of mass.
The notion that the center of mass acts like a representative point for a rigid body
is often useful in physics. However, this notion, along with the idea that an angle
is traced by position vector of some particle, led many to incorrectly think that
∆θ in ω = ∆θ/∆t is the angle traced by the position vector of the center of mass.
We incorporated this notion as a distractor for question 26. Another related but
erroneous idea was that ∆θ is traced by the position vector of any particle with
respect to a specified origin, which led to a second distractor to the first question.
In the development of question 26 we also identified a tendency of students to treat
the angular velocity of a body as the sum of the angular velocities of the parts
(similar to how torque, angular momentum and rotational kinetic energy etc. of a
rigid body is obtained by summing the respective quantity over all particles). This
error was probed by question 27, in the context of a rotating pulley.

Simple visualizations are integral to understanding rotational motion. Question
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28 probes student understanding of the trajectory of an arbitrary particle lying on a
rigid body rotating about a fixed axis. In addition to the correct answer (‘circle with
center on the axis’), the distractors included ‘spiral’ as well as ‘some complex curve’.
As in question 26, we noted another variant of the misconception associated with
the notion of the center of mass. Some students seem to think that the trajectory of
a particle is circular only when the axis passes through the center of mass. This idea
appears as the fourth distractor to the question. The point that angular velocity is
the same for all particles on a rotating rigid body is very important. Nevertheless
our interactions revealed that some students think angular velocity is distinct for
each particle similar to its linear counterpart for a rotating body. The latter idea
constitutes the subject of questions 29 and 30. We also observed as we developed
the inventory that some students think that a particle closer to the axis moves faster
than a particle far from the axis. The closer particle thus has greater linear and
angular speeds. Some of the distractors for question 30 incorporated these aspects
of student reasoning.

As described in chapter 3, we found that students had considerable difficulty in
understanding the direction of angular velocity and angular acceleration of a particle
(Mashood and Singh, 2012a). The same difficulty was observed in the case of a rigid
body. We probed this partly through question 31 which also examines understanding
of the variation of the magnitude and the direction of the angular velocity of a
rigid body. Question 32 probes student thinking about the direction of the angular
acceleration. Specifically, we investigated how the directions of the angular velocity
and the angular acceleration are related when the former is decreasing. The potter’s
wheel, which is a familiar artifact in India serves as the context for the items 30, 31
and 32.

We discussed in chapter 4 that students find the idea that an angular acceler-
ation can exist despite zero torque surprising (for a particle in rectilinear motion).
Many were convinced by a kinematic analysis that an angular acceleration exists in
case of the particle in rectilinear motion with constant velocity when the origin is
not on the path. Simultaneously they also knew that the torque is zero as there
is no force. A cognitive conflict ensued as to whether an angular acceleration ex-
isted. We observed a similar confusion in the case of rigid bodies as well. Item 33
addresses this confusion. One distractor incorporates a case of indiscriminate usage
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of the equation τ = Iα as well (Mashood and Singh, 2012b). Most students are
unaware of the fact that this equation is invalid if the moment of inertia varies with
time. Another important distinction that has to be kept in mind regarding angular
velocity of a particle and a rigid body is the origin dependence, which is the theme
of question 34. While the angular velocity of a particle varies with the origin, that
of a rigid body is independent of any specified origin. The concept of origin is more
or less insignificant as far as rigid body is concerned. Here the axis of rotation plays
a key role.

A poorly differentiated understanding of linear kinematics was apparent in our
interactions with the students. This finding has been repeatedly documented (Trow-
bridge and McDermott, 1980, 1981; Hestenes et al., 1992; Reif and Allen, 1992;
Shaffer and McDermott, 2005). We consider here a few aspects that are relevant to
rotational kinematics, such as student understanding of the relation between linear
and angular kinematic variables. Some students think that linear acceleration (~a)
and angular acceleration (~α) are independent of each other. We incorporated this
incorrect idea into items 35 and 36. The students who knew that these quantities
are related based their understanding on the equation a = αr (here r is the radius).
However many of them seemed to be unaware of the fact that a in the equation refers
only to the tangential component of the acceleration. Questions 35 and 36 address
these ideas as well. Items 37 and 38 were designed to probe student understanding
of the components of linear acceleration, namely centripetal and tangential acceler-
ation. Question 37 was posed in the context of a spinning wheel and question 38
in the context of a rotating giant wheel. The content of item 38 has been explored
earlier in the context of a simple pendulum (Reif and Allen, 1992). All the items
were validated as described in chapter 2. Face validity was carried out by students
ensuring that the questions are interpreted as intended. Content validity was carried
out by faculty who taught physics at the university level.

6.3 Administration and analysis

The validated items were administered to groups T2, S2 and S3. We discuss the
administration to the S4 group in the next section. As mentioned earlier an item
was gauged by awarding one mark to the correct choice. There were no negative
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marks for wrong choices. Participants were asked to attempt all the questions.
Items 35, 36 and 37 were not administered to the T2 since the questions were in the
developmental stage at the time of administration. Items 33 and 34 were not posed
to S2 for the same reason. Table 6.1 shows the average performance, associated
standard deviations and the average difficulty level for all the three groups. Similar
to the response to part one of our inventory average score and the difficulty level
of S2 is high indicating expertise. As such the focus of our analysis in what follows
will be mainly on T2 and S3. In the remainder of our discussion, student refers to
S3 unless mentioned otherwise.

Table 6.1: The average performance of each group along with their corresponding
standard deviation and average difficulty level. Performance in percentages are given
in parentheses. Total number of questions was 10 for T2, 11 for S2 and 13 for S3.

T2 (N=25) S2 (N=74) S3 (N=905)
Average score 3.08 (30.80 %) 9.72 (88.36 %) 6.28 (48.1 %)

Standard deviation 1.75 1.37 3.87
Average difficulty level 0.31 0.88 0.48

Table 6.2 shows the number of candidates who chose each of the four choices
for every question. From the responses we calculated a difficulty level (DL) for each
item for all the groups. It may be recalled that the DL index is defined as the
ratio of the number of correct responses to the total number of responses for an
item. An analysis of the DL indices given in table 6.2 shows that the performance
of the S2 group is significantly better. All items apart from questions 26 and 38 had
a difficulty level of about 0.9. This indicates that this group of students possesses
expertise in the topic. Analysis of the detailed response patterns of T2 and S3 based
on the frequency with which distractors to each items were chosen indicate pitfalls
and reasoning errors. The DL indices for the teachers are mostly between .25 and
.55. There are also cases of extreme concern with the DL dropping to less than 0.1
(items 26 and 32). Further analyses of the response pattern of S3, aided by insights
from interviews indicate that most of them could be categorized under the following
four broad themes:
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Table 6.2: Boldfaced numbers indicate the correct choice. The questions are listed
in appendix A. Blank rows indicate questions which were not administered to the
group since the questions were in the developmental stage. Some of the participants
left a few questions unanswered despite being requested to do otherwise.

T2(N = 25) S2 (N=74) S3 (N=905)
Q. No. a b c d DL a b c d DL a b c d DL

26 6 16 2 1 .08 9 27 34 4 .46 159 350 271 101 .31
27 6 0 9 10 .36 1 0 71 2 .96 171 106 457 151 .52
28 14 2 2 7 .56 68 0 0 6 .92 526 78 101 186 .59
29 2 14 4 5 .56 1 70 2 1 .95 99 529 146 136 .58
30 5 7 2 11 .44 0 1 4 69 .93 206 151 104 436 .48
31 7 2 12 4 .28 68 2 2 2 .92 507 145 168 74 .57
32 12 2 6 5 .08 1 71 2 0 .96 171 439 182 98 .49
33 7 2 8 9 .32 137 114 320 316 .36
34 6 9 7 3 .24 333 164 255 127 .38
35 68 4 2 0 .92 567 110 115 114 .62
36 2 70 0 2 .95 242 423 94 135 .47
37 0 71 2 1 .96 90 504 240 69 .56
38 2 15 3 4 .17 0 11 59 4 .80 95 352 374 67 .42

6.3.1 Inappropriate extension of familiar procedural prac-
tices

Repeated application of procedural practices in a topic can result in students be-
coming habituated to them. This acquired familiarity can at times lead to their
extending these procedures to contexts in which they are inappropriate. In the
present study on rigid bodies, such practices can be traced to basic mechanics or
rotational kinematics of a particle. For example consider the operational definition
for ~ω of a rigid body. The identification of ~ω in the case of a single point particle
involves the angle ∆θ traced by its position vector. Many students seem to think
that ~ω for a rigid body is identified similarly. For instance, one student said: An
angle is always traced by a position vector. For rigid body also I think it would be
similar. The distractor b to item 26 incorporated this notion. It states that ∆θ in
the case of ~ω of a rigid body rotating about a fixed axis is traced by the position
vector of any particle on the body with respect to a specified origin. This answer



6.3: Administration and analysis 73

was chosen by around 39% of the students. The correct answer, choice c, is that ∆θ

is the angle traced by a line perpendicular to the axis from any particle. Another
instance of an inappropriate extension of familiar procedure is illustrated by the
responses to item 27. This question pertains to the identification of the angular
velocity of a rotating pulley. The incorrect choice a was selected by 19%percentage
of students. This choice states that ~ω of the pulley is ‘the vector sum of the angular
velocities of all the particles constituting the pulley’. A student who chose a noted:
To obtain momentum, kinetic energy, moment of inertia, angular momentum etc.
of rigid body, sum of all particles is taken....isn’t it..... Now every particle has an
angular velocity.....We should take the sum of all of them. The practice of summing
a quantity over all particles is appropriate only for dynamical quantities like energy,
momentum, rotational kinetic energy, angular momentum etc. Extending it to an-
gular velocity is inappropriate. This tendency to extend a familiar practice to an
unfamiliar or inappropriate situation is perhaps a variant of ‘conceptual minimalism’
that characterizes the thinking of novice students (Close and Heron, 2011).

6.3.2 Reasoning cued by primitive elements in thought

Concepts or ideas which resonate with more primitive ideas can influence our rea-
soning. Close and Heron (2011) describe an example of such a case where ‘energy
conservation appears to take a higher status in student thinking over other conser-
vation laws’. We have independently observed instances of the same among Indian
students. In our present study on rigid body motion we found a similar pattern
wherein students ascribe a special status to the concept of center of mass (CoM).
A student remarked: CoM of a body can be at a point where there is no mass...
I find this very interesting.....It was surprising when I first learnt it..... Students
extrapolate the notion of CoM as a representative point beyond what is warranted
by physics. The special status of CoM seems to have influenced their answers to our
questions. For item 26 the second most widely chosen distractor by all the three
groups is a (the option that incorrectly states that ∆θ appearing in ~ω of a rigid body
is the angle traced by the position vector of the center of mass of the body). About
18 % of the students made this choice. One of the students who made this choice
said: The angle has to be traced by some position vector. Only CoM represents the



74 Chapter 6. Rotational kinematics of a rigid body about a fixed axis

whole body. The choice could also have been made to circumvent the difficulty in an-
alyzing a rigid body by reducing it to a more comfortable choice of a single particle
(CoM) (Ortiz et al., 2005).

The more striking case is question 27. Here one can easily see that the center
of mass of the pulley is its geometric center and it is at rest. Nonetheless, around
17 % of the students stated that the angular velocity of the pulley is equal to the
angular velocity of its CoM. Another instance of the apparent cuing influence of the
concept of CoM is given by the response pattern to question 28. The most popular
distractor is c, which states that the trajectory of an arbitrary particle on a rotating
rigid body is circular only if the axis ‘passes through the center of mass’. About 11
% of the students chose this option. One student gave the following argument for
her choice: The trajectory.....to be circular....everything has to be symmetric....that
is possible only when axis passes through CoM.

6.3.3 Lack of differentiation between related but distinct
concepts

Novice thinking is often characterized by a failure to differentiate between related but
distinct concepts. The case of velocity (~v) and acceleration (~a) is a well-documented
illustrative example (Trowbridge and McDermott, 1981; Shaffer and McDermott,
2005). In the case of rigid body motion we find similar confusion between ~v and ~ω.
Responses to questions 29 and 30 indicate that a significant majority of students
fail to understand rigid body rotation in terms of the constituent particles. On
question 29, the distractor chosen by around 16 % of the students was choice c
which states that all particles on a rotating ceiling fan have the same ~v as well as
the same ~ω. Their arguments were highly incoherent and confused. They do not
realize that only the angular velocity is same for all the particles as encapsulated
by the correct choice b. Distractor d to question 29 which conveys the idea that
different particles have different ~v and ~ω was also chosen by a considerable fraction
of students (15 %). For question 30 the most popular distractors are a and b (the
angular velocity of a particle closer to the axis is greater and vice versa, respectively).
These choices along with the previously described distractor d to question 29 indicate
that many think that each particle on a rotating rigid body has a distinct ~ω like ~v.
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The following explanation from a student illustrates this notion: Angular velocity
is another velocity like linear velocity....it is used when body is rotating....It shows
which way particle moves as body rotates and how fast... All particles on the body are
different....each will have its angular velocity. The student conception that angular
velocity has characteristics similar to linear velocity has been pointed out previously
in chapter 3 (Mashood and Singh, 2012a). A notable example is the persistent notion
that direction of ~ω of a particle is in the plane of motion, like ~v.

Around 19 % of the students chose c for question 31. These distractors include
the ideas that both the magnitude and direction of ~ω of a slowing down potter’s
wheel change with time. In fact this is true only for ~v of each particle. In question
32 the most popular incorrect choice was c chosen by 20 % of the students. This
distractor states that the direction of the angular acceleration of the potter’s wheel
is perpendicular to the axis of rotation. Note that it is the linear accelerations of
particles constituting the rigid body which lie in planes perpendicular to the axis of
rotation. Questions 31 and 32 thus reveals confusion about ~ω. A closer look at the
erroneous distractors to these items discussed above indicates a tendency to ascribe
aspects of ~v to ~ω.

6.3.4 Indiscriminate use of equations

Often students chose to rely on equations when confronted by a physics problem.
This approach can be efficient provided the student is aware of the validity condi-
tions associated with the equation at hand. Novices however often employ equations
indiscriminately (Reif and Allen, 1992). An interesting illustration is given by ques-
tion 33 which provides a case wherein there exists an angular acceleration without
a torque. About 35 % of the students incorrectly answered this question relying on
the relation ~τ = I~α (here I denotes the moment of inertia). As indicated by the
frequency with which students chose distractor c many think that a ‘torque acts on
the particle resulting in angular acceleration as per ~τ = I~α’. One student who opted
c said: If angular acceleration is there ...there will be a torque... it follows from
τ = Iα. The fact that the spinning girl folding her arms represents a case of varying
I and that the above equation holds only when I is a constant was not appreciated.

Items 35 and 36 give another illustration of indiscriminate use of equations.
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About 63 % of the students correctly answered that the tangential acceleration
remains constant for a particle on a wheel rotating with constant ~α. During our
interactions we observed that the relation between ~a and ~α is not well understood
by students. Many tend to resort to the relation a = αr (here r is the radius).
They often do not recognize that the term ‘a’ in the relation stands only for the
tangential component of ~a. On question 36, the most popular choice is a similar
to question 35. This distractor incorrectly states that the centripetal acceleration
is also constant for the particle under consideration. The following explanation
from a student illustrates this further as a case of indiscriminate use of equations:
Centripetal acceleration is constant because a = αr.....for the wheel both r and α are
constants.

Some of the difficulties we observed in the study could not be incorporated into
any of the above four themes. In addition to the errors that can be attributed to the
indiscriminate use of equations that relate ~a and ~α, we noted the following error. A
significant majority, as indicated by the choice of distractor d to both questions 35
and 36, seemed to think that ~a and ~α are unrelated. Their responses to question
37 reveal another incorrect idea. Many students seemed to think that both the
tangential and the centripetal acceleration exist for a particle on a wheel moving
with zero angular acceleration. The corresponding distractor c was chosen by about
27 % of the students.

Finally we address the issue of the origin dependence of ~ω of a particle and a
rigid body that was probed in question 34. The origin dependence of ~ω of a particle
was illustrated previously, chapter 4, in the context of a particle in rectilinear motion
(Mashood and Singh, 2012b). But as indicated by the response pattern to question
34 most of the students did not realize that choice of origin is irrelevant for ~ω

of a rigid body rotating about a fixed axis. The corresponding distractor b was
incorrectly chosen by 18% of students. Around 28 % of the students seemed to
think that the choice of origin is significant for both the particle and the rigid body
as encompassed by the incorrect option c.
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Table 6.3: Boldfaced numbers indicate the correct choice. The questions are listed
in Appendix A. DL denotes the difficulty level. The sample (S4) was described in
chapter 2.

S4 (N = 384)
Q. No. a b c d DL

26 108 160 51 57 .14
27 68 40 191 82 .50
28 242 29 26 77 .63
29 49 270 29 27 .72
30 46 44 56 234 .62
31 196 73 70 41 .52
32 48 118 84 130 .31
33 60 41 203 71 .19
34 57 82 179 61 .15
35 203 99 54 23 .54
36 148 166 22 41 .44
37 38 229 78 33 .61
38 18 147 133 77 .35

6.4 Administration and analysis - University of
Washington sample

We administered the questions to 384 calculus based introductory level physics stu-
dents at the University of Washington (UW). The questions were given as an online
test after the lectures on rotational motion. They did not undergo tutorials on ro-
tational motion (McDermott et al., 2002). The frequency with which distractors
to each item were chosen is shown in table 6.3. It can be seen that the popular
distractors to most items are similar to the Indian population. For example con-
sider question 26. The most popular distractor is b followed by a for both American
and Indian students. Such similarities can be seen for items 27, 28, 31, 33, 34, 35,
36, 37 and 38 as well. Consider item 38 as the second example. Choice b was the
overwhelmingly popular distractor for the UW sample. Same was the case with the
Indian students. These similarities hint that most of the difficulties identified in
Indian students may also exist among American students.

However there exist some significant differences between the Indian and the
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Figure 6.1: Schematic of a merry-go-round as viewed from above.

American students on questions 29, 30 and 32. The questions 29 and 30 investigate
whether students can differentiate between linear and angular variables. The UW
students seems to differentiate angular velocity from linear velocity as suggested
by their high DL indices to these items. This may be because they have undergone
tutorials in linear mechanics which address similar pitfalls (McDermott et al., 2002).
Question 32 pertains to the direction of angular acceleration. Indian students tended
to ascribe aspects of linear velocity to angular velocity. When it comes to the
direction of the angular velocity, however a significant majority of the UW students
consider it to be clockwise or counter-clockwise. This was revealed by the response
to the following question, administered later to the same set of students.

1. Two students are pushing a merry-go-round so that it is spinning clockwise
(when viewed from above, as depicted in figure 6.1) with uniform speed. Which
of the following options describe the direction of the angular velocity of the
merry-go-round ?

(a) Vertically upward (out of the plane of the paper).

(b) Vertically downward (into the plane of the paper).

(c) Clockwise.

(d) Counter-clockwise

Out of 378 students, 58 % chose c which states that the direction of the angular
velocity of a merry-go-round is clockwise in contrast to the 27 % opting the correct
choice b. Such a response from the students may result from a tendency of instruction
(in high school and, even at the introductory level) to gloss over the vector nature
of the angular velocity. There is a tendency for introductory physics instruction to
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describe rotation as being either clockwise or counter-clockwise, without reference
to direction.

6.5 Concluding remarks

An inventory comprising 13 items on rotational kinematics of rigid body about a
fixed axis was developed. The development of the inventory was based on insights
from verbal data collected from the students, which helped in the construction of
appropriate items and distractors. In the pilot studies we also sought brief explana-
tions. These processes were described in chapter 2. The inventory after validation
was administered to a set of teachers and two groups of students in India. The un-
satisfactory performance of the teachers is alarming. Plausible causes include lack of
meaningful teacher training programs, unimaginative evaluation systems and other
socio economic issues (Mashood and Singh, 2012c). Moreover science education re-
search has in general not yet percolated to the Indian educational system and thus
has had limited impact. As described earlier the teachers were mainly from district
and block level schools or colleges. The above mentioned problems are more acute
in their case as compared to urban teachers.

The response patterns of the students were analyzed in detail. We identified
difficulties and pitfalls in reasoning. Aided by interviews with students they were
categorized into four broad themes. These include inappropriate extensions of fa-
miliar procedural practices, reasoning cued by primitive elements in thought, lack of
differentiation between related but distinct concepts and indiscriminate use of equa-
tions. The difficulty level was calculated for each item. Response pattern of the
introductory level students at UW exhibit similarities with that of Indian students.
Popular distractors to most of the items were same. This suggests that further re-
search into the cross-cultural characteristics of the difficulties represented by these
distractors would be fruitful.
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Chapter 7

Evaluating the inventory on
rotational kinematics

7.1 Introduction

Inventory construction is a systematic and iterative process. The general proto-
cols and methodologies involved in the development of the inventory were discussed
in chapter 2. The content evolution of items constituting the three parts of the
inventory were described in the subsequent chapters 3, 5 and 6. The first phase
of administration discussed in these chapters yielded interesting results. The ad-
ministration was followed by interactions with a subset of students. The insights
obtained from the interactions helped in the analysis of the response patterns of
students. They also fed into refinement of the inventory. Some of the items and
distractors underwent minor modifications. A new item was added which brought
the total number of items to 39.

It is important to administer the test to larger and varying samples. This helps
in the evaluation of the inventory as a diagnostic and assessment tool. Keeping
this in mind we administered the inventory to over nine hundred higher secondary
school students from different parts of India. The sample S3 (N=905) was described
in chapter 2. This constituted the second phase of administration of the inventory.
Like the first phase, interviews with a subset of students (N=35) were carried out.
The aims included verification of the inferences we made by analyzing the response



82 Chapter 7. Evaluating the inventory on rotational kinematics

patterns of students in phase 1, which were discussed in chapters 3, 4 and 6. They
also served as further validation interviews for the items. It may be recalled that
in addition to face validation by students, the inventory was content validated by
experts.

The average performance and the difficulty level of each item for the first phase
of administration have been tabulated in chapters 3, 5 and 6. However the large
sample size (S3, N=905) enables us to carry out a detailed analysis. This will help
us to gauge the strengths and weaknesses of the inventory, both locally (item wise)
and globally (whole test). It is also important that reliability of the inventory needs
to be established. The administration of part of the inventory to students at the
University of Washington revealed the consistency of the response patterns with
varying samples (see chapter 6). This reproducibility of the results for the third
part of the inventory indicates reliability. We considered it important to investigate
reliability of the whole test using commonly employed statistical indices like the
Kuder Richardson reliability index (Ding et al., 2006; Ding and Beichner, 2009). In
addition we decided to perform other item-wise and whole test statistical analyses.
These analyses constitute the theme of this chapter.

Section 7.2 briefly describes the sample and the inventory. It is followed by a
discussion of the difficulty level, index of discrimination, point-biserial coefficient,
Ferguson’s delta and Kuder-Richardson reliability index for the inventory (Ding et
al., 2006; Ding and Beichner, 2009). The difficulty level, index of discrimination,
point-biserial coefficient are calculted for each item. We have discussed difficulty
level earlier. The index of discrimination and point-biserial coefficient measures the
extend to which an item can discriminate between low and high scoring students.
In contrast Ferguson’s delta measures the discriminatory power of the whole test.

Item response curve (IRC) analysis is described in section 7.3. Item response
curves are visually rich and versatile (Morris et al., 2006). They provide information
about items and samples which the statistical indices mentioned above does not.
Sections 7.2 and 7.3 also include a detailed discussion of a few representative items
along with insights obtained from the interviews with the students. Section 7.4
constitutes a brief conclusion.
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7.2 Statistical analyses

The sample for the first phase (discussed in chapters 3, 4 and 6) of administration
was mainly from schools in the Mumbai region. For the second phase we decided
to carry out a pan Indian administration involving a large number of students. The
inventory was administered to a total of 905 students from Jaipur, Patna, Mumbai,
Hyderabad and Bangalore. Details of this sample S3 are described in chapter 2. The
inventory was administered in English. All the students had been taught rotational
motion. There was no strict time restriction imposed on the students.

The inventory had 39 items. It may be recalled that the items broadly fell
under three categories namely rotational kinematics of a particle (19 questions),
rotational kinematics of a particle in rectilinear motion (7 questions) and of a rigid
body rotating about a fixed axis (13 questions). The items are listed in appendix A.
There were 4 choices to each item with only one correct answer. Students were asked
to answer all items by selecting the most appropriate choice to each. Some of them
left a few items unanswered despite the request. Evaluation was done by assigning
one mark to the correct choice to each item. There was no negative marking for
the wrong choice. Administration was followed by semi-structured interviews with a
group of students. In total around 35 students participated in the interviews. They
were done individually or in small groups of 2-3 students. The items were validated
once again by the student interviews. It ensured that the items and distractors were
interpreted as intended. Some insights from the interviews are discussed in this
section and the next.

The average score of the students was 18.4 (47.18 %). The standard deviation σx

= 10.1 (see table 7.1). This is high and may be attributed to the broad distribution
of the total scores among the student population. This distribution of scores is
depicted in figure 7.1. The graph has a dominant peak at the lower end centered
around the score of 10. It is followed by a relatively flat region in the score range 16
to 22. Note that the average lies in this flat region. There are intermittent peaks to
the right. The distribution indicates a broad underlying bimodality. There were 35
students with the median score of 15 with 441 students below and 429 above it. The
number of students with a total score of 4 or below was 15 (1.7 %). The number
of students with a total score of 35 or above was 81 (9 %) and is large. The peak
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above the score of 35 in figure 7.1 attests to this.
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Figure 7.1: Distribution of scores of students (N=905) in the inventory. The short
and the long arrows indicate the median (15) and the average (18.4) respectively.

The other whole test statistics we calculated include Ferguson’s delta and Kuder
Richardson reliability index which are given in table 7.1. Ferguson’s delta (δ) is given
by

δ = N2 − Σfi
2

N2 − N2/(K + 1)
. (7.1)

Here N denotes the number of students in the sample, fi is the frequency of each
of the total score (0 to 39 in our case) and K is the total number of items in the
inventory. The index is a measure of the discriminatory power of the whole test.
Kuder Richardson reliability index (rtest) is given by

rtest = K

K − 1
(1 − ΣPi(1 − Pi)

σx
2 ). (7.2)

Here K is the total number of items in the inventory, Pi is the difficulty level (DL)
of the item i and σx is the standard deviation of the total score. The index mea-
sures the self-consistency of the test. A detailed description of these indices and
their theoretical underpinnings can be found elsewhere (Ding et al., 2006, Ding and
Beichner, 2009). The value of δ for the test is 0.99 while the desired value should be
≥ 0.9. The rtest index was obtained to be 0.93 which also is well above the desired
value of ≥ 0.8. Thus the test did well on these indices. Note that the average was
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around 50 % which is optimal.

Table 7.1: The average score, associated standard deviation, median, Ferguson’s
delta and Kuder Richardson reliability index for the whole inventory. There were
39 items. Evaluation was done by giving 1 mark to the correct answer and there
was no penalty for wrong choices. The total number of students in this sample (S3)
was N=905.

Test statistics value
Average score 18.40 (47.18 %)

Standard deviation 10.01
Median 15

Ferguson’s delta 0.99 (desired value, ≥ 0.9)
Kuder Richardson reliability index 0.93 (desired value, ≥ 0.8)

The detailed response pattern of the students is given in tables 7.2 and 7.3. It
may be noted that the response pattern to items 26-38 was also given in chapter
6. It is repeated for completeness and for an extended discussion in this chapter
along with the rest of the inventory. The frequency of choice of distractors to
all items is provided. In the first phase of administration we made our inferences
partly based on the frequency with which particular distractors were chosen. For
example, to question 6 the distractor a was crafted to incorporate an instance of
indiscriminate use of equations which we observed during the developmental phase.
A significant number of students selected this choice which indicates that this is
indeed a recurring pattern. It may be noted that all items were validated by student
interviews. Broadly the response pattern of students depicted in tables 7.2 and 7.3
is consistent with those observed during phase one. However the percentage of
students getting the answers right has gone up for most of the questions. This can
be inferred directly by comparing the values of difficulty level for phase 1 and phase
2. Difficulty level (DL or P) is defined as the ratio of the number of correct respons
to the total number of students who attempted the question (Ding et al., 2006;
Ding and Beichner, 2009). Note that the term is a misnomer and the value actually
indicates the easiness level. The index can also be construed as the average score on
the item. Observation of tables 7.2 and 7.3 makes clear the increase in P value for
all items in phase 2. For example to question 1 the difficulty level increased to 0.64
compared to 0.53 in phase 1. The difficulty level of question 2 increased similarly to
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0.38 from 0.27. The value of P for all items except 22 and 39 are above the desired
value of 0.3. For these two items the P indices are 0.25 and 0.26 indicating that
they are of relatively high difficulty. The difficulty level averaged over all items is
0.48.

Apart from the difficulty level (P) we also calculated the discrimination index
(D) and the point biserial coefficient (rpbs) for each item (see tables 7.2 and 7.3) The
item discrimination index is given by

D = NH − NL

N27
. (7.3)

Here NH denotes the number of correct responses to the item from the top 27 %, NL

the number of correct responses to the item from the bottom 27 % and N27 is the
number of students constituting 27 % of the sample. In our case N27 = 27N/100 =
244 (N=905). The index D measures the extend to which an item can discriminate
between low and high scoring students (Ding et al., 2006; Ding and Beichner, 2009).
The desired range for D is 0.3 to 1. For all items except 6 the values are above 0.3
as can be seen from tables 7.2 and 7.3. The average value of D for all items is 0.65.
The point biserial coefficient of an item is given by

rpbs = X̄1 − X̄0

σX

√
P (1 − P ) (7.4)

where X̄1 is the average of the total scores of those students who have correctly
answered the item, X̄0 is the average total score of all the students who have incor-
rectly answered the item, σX is the standard deviation of the total scores and P is
the difficulty level of the item. The index is a measure of correlation of students’
score on the item and score in the test (Ding et al., 2006; Ding and Beichner, 2009).
High rpbs for an item implies that students whose total scores are high are more
likely to get it correct. The desired value for rpbs is ≥ 0.2. As can be seen from
tables 7.2 and 7.3 the value of rpbs for all the items except 6 are above the desired
value. The average value of rpbs is 0.53. Item 6 will be subjected to further analysis
based on the IRCs in the next section.

Let us make a few observations about the pattern of frequency of distractors
given in tables 7.2 and 7.3. The items are listed in the appendix A. As mentioned
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Table 7.2: Boldfaced numbers indicate the correct choice. The sample size is N=905
for S3. Some candidates left a few questions unanswered despite being requested
otherwise. The desired values for difficulty level (DL or P), item discrimination index
(D) and point biserial coefficient (rpbs) are ≥ 0.3, ≥ 0.3 and ≥ 0.2 respectively. The
difficulty level (DL or P) in parenthesis is the value from phase one of administration
for S1 which had N=79.

Q. No. a b c d DL or P D rpbs

1 153 108 579 65 0.64 (0.53) 0.65 0.50
2 55 239 264 342 0.38 (0.27) 0.61 0.48
3 503 104 143 142 0.56 (0.44) 0.58 0.42
4 412 159 197 134 0.46 (0.37) 0.79 0.63
5 96 98 259 446 0.50 (0.28) 0.88 0.72
6 312 192 279 102 0.31 (0.41) 0.19 0.12
7 585 99 69 151 0.65 (0.52) 0.52 0.42
8 45 124 598 142 0.66 0.65 0.51
9 80 220 377 223 0.42 (0.32) 0.70 0.55
10 95 43 692 73 0.77 (0.56) 0.53 0.45
11 624 82 147 47 0.69 (0.58) 0.64 0.52
12 62 155 441 246 0.49 (0.37) 0.78 0.64
13 168 487 185 57 0.54 (0.41) 0.70 0.56
14 194 98 96 510 0.57 (0.43) 0.75 0.59
15 91 497 187 126 0.55 (0.37) 0.71 0.54
16 99 224 164 408 0.46 (0.35) 0.70 0.57
17 133 89 237 430 0.48 (0.15) 0.82 0.65
18 323 95 149 326 0.37 (0.13) 0.78 0.65

earlier they are broadly consistent with the response of group S1 in the first phase.
For instance consider item 1. The item probes student understanding of the angular
speeds of two points on the seconds hand and a point on the minute hand of a
clock. The popular distractors to the item were a and b in phase 1. Distractor a
incorporates the notion that angular speeds are different for all points like linear
speeds. While distractor b states that angular speeds are equal for all points similar
to that on a rigid body rotating about a fixed axis. The distractors a and b remained
the most popular choices in phase 2 as well. The percentage of population making
the choices however varied compared to the earlier phase. For this item 20.3 %
chose a in phase 1 while it decreased to 16.9 % in phase 2. Similarly choice b
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Table 7.3: Boldfaced numbers indicate the correct choice. The sample (S3) size
N=905. Some candidates left a few questions unanswered despite being requested
otherwise. The desired values for difficulty level (DL or P), item discrimination index
(D) and point biserial coefficient (rpbs) are ≥ 0.3, ≥ 0.3 and ≥ 0.2 respectively. The
difficulty level (DL or P) in parenthesis is the value from phase one of administration
for S1 which had N=79.

Q. No. a b c d DL or P D rpbs

19 221 320 216 143 0.36 (0.14) 0.40 0.32
20 141 117 522 122 0.58 (0.34) 0.81 0.64
21 366 101 312 124 0.34 (0.22) 0.62 0.51
22 306 212 146 226 0.25 (0.16) 0.40 0.38
23 301 251 247 100 0.33 (0.13) 0.42 0.36
24 244 209 274 162 0.31 (0.14) 0.54 0.43
25 326 151 245 164 0.37 (0.23) 0.64 0.49
26 159 350 271 101 0.31 0.34 0.27
27 171 106 457 151 0.52 0.84 0.70
28 526 78 101 186 0.59 0.74 0.61
29 90 529 146 136 0.59 0.78 0.64
30 206 151 104 436 0.48 0.85 0.70
31 507 145 168 74 0.57 0.77 0.61
32 171 439 182 98 0.49 0.81 0.66
33 137 114 320 316 0.36 0.67 0.57
34 333 164 255 127 0.38 0.46 0.39
35 567 110 110 114 0.63 0.69 0.53
36 242 423 94 135 0.47 0.76 0.63
37 90 504 240 69 0.56 0.72 0.57
38 95 352 374 67 0.42 0.57 0.48
39 270 248 133 231 0.26 (0.11) 0.50 0.50
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registered a decrease from 17.7 % to 11.9 %. This decrease can be attributed partly
to the increase in percentage of the correct choice in second phase. Because of
the large and varied sample size phase 2 the inferences based on phase 2 have
a greater authenticity. Some of the candidates who chose a and b were among
those who were interviewed. About six students who chose a displayed a poor
understanding and high level of confusion with regard to angular velocity (~ω) and
angular acceleration (~α). They were unable to articulate the difference between
linear and angular velocity. Around 8 interviewed students who chose b showed
some understanding about ~ω and ~α. They knew that these quantities were distinct
from linear variables and had vague notions about the concepts. They said they
chose b because they had learnt that all particles on the rigid body have same ~ω

and the hands of the wall clock are rigid bodies.
As another illustration consider item 14. The question probes the angular ac-

celeration of a pendulum bob at an extreme position when its velocity is zero. The
most popular distractor was a in phase 1. It states that the angular acceleration at
the point is zero. This pitfall is similar to one observed in linear kinematics where
students erroneously think that the linear acceleration of the bob at the extreme
position is zero since its linear velocity is zero. In phase 2 a remained the most pop-
ular distractor indicating the consistency of the pattern. The percentage of students
selecting the choice however dropped from 31.6 to 21.4 in phase 2. This aspect was
verified in the interviews. Those who opted a to the item were asked about the linear
acceleration at the point of maximum height of a ball thrown vertically upwards.
They all said that linear acceleration at that point was zero.

For a few items though the popular distractors remained same but the order of
their preference changed. Item 2 is an example. The item probes students’ ability to
visualize the motion (clockwise - anticlockwise) of the second hand of a transparent
clock from the front and rear side and also to ascertain the direction of angular
velocity of the tip of the clock hand. The popular choices in phase 1 were b (42
%) and c (25 %). Distractor b states that the seconds hand moves clockwise when
viewed from the front side and the direction of angular velocity of its tip is out
of the plane of the clock. On the other hand distractor c states that the seconds
hand moves anticlockwise when viewed from the rear side. The second part of the
distractor is identical to that of b. This serves to elicit the incorrect notion that the
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direction of angular velocity of the tip of clock hand changes with the orientation
of motion (clockwise - anticlockwise) depending on whether we view the clock from
the front or the rear. Unlike phase 1, in phase 2 choice c (29 %) was slightly more
popular than b (26 %).

Another interesting observation from tables 7.2 and 7.3 is that the second phase
of administration ferreted out certain distractors chosen by an overwhelming ma-
jority. Example includes distractor a to item 21. This choice was selected by 366
students (40.4 %) which is greater than the percentage of students who correctly
answered the item (34 %). The distractor corresponds to the incorrect notion that
angular acceleration of a particle moving in a straight line is zero (origin not on the
line of motion). A second example is option c to item 33 which was chosen by 320
candidates (35.4 %). The distractor corresponds to a popular misconception that an
angular acceleration always implies a torque. The large sample size implies that such
a notion is indeed widespread. The overwhelming appeal of these distractors were
mirrored in the interviews as well. There are cases where all the three distractors
were chosen in nearly equal proportions. Item 27 serves as an illustration. The item
probes student understanding of the operational definition of the angular velocity
of a rotating pulley. Distractors a, b and d were chosen by 171 (18.9 %), 106 (11.7
%) and 151 (16.7 %) candidates respectively. Distractor a states that the angular
velocity is the vector sum of angular velocities of all the particles constituting the
body. Choice b similarly states that it is the scalar sum of the magnitude of angular
velocities of all the particles. Distractor d maintains that angular velocity of the
pulley is equal to the angular velocity of the center of mass of the pulley. Some
other examples are items 3, 20, 29 and 35.

7.3 IRC analysis

An item response curve (IRC) is a visually rich versatile tool for analyzing student
responses. IRC involves a plot of the percentage of students Pi(θ) selecting a choice
i to an item vis-a-vis their ability θ. In our case there are four choices and i is a, b,
c or d. We considered the total score of the students in the test to represent their
ability level θ. A detailed description of the technique, its merits and theoretical
underpinnings can be found elsewhere (Morris et al., 2006; Ding et al., 2006; Ding
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and Beichner,2009; Singh, 2009). The IRCs to all 39 items in our inventory were
plotted (see figures 7.2 to 7.40). These items are listed in appendix A. We now
discuss a few items in detail to illustrate how we can gainfully learn from IRCs. To
begin with consider item 2 which was discussed in the previous section. Figure 7.3
depicts the IRCs plotted for all choices to the item. Fluctuations apart, the correct
choice d to the item correlates positively with the ability level as can be seen. To
facilitate a clear interpretation we modeled it by the logistic response function given
by

Pd(θ) = s + (100 − s)
1 + exp[−(θ − m)/w]

. (7.5)

Here s indicates the percentage of students with low ability who will respond cor-
rectly to the item. Note that for θ << m, Pd(θ) → s. The parameter m refers to the
ability level corresponding to the inflection point Pd(θ = m) = 50 + s/2. Students
with ability level higher than m are more likely to pick the correct choice. The
factor 1/w gives the slope of the curve at m. Smaller the w steeper is the slope and
the curve approaches a step function. A steeper slope means that the item sharply
segregates low ability (θ < m) students from high ability (θ > m). The fit to the
correct choice d to item 2 is a sigmoid (m=28.41, s=21.53, 1/w =.25) which remains
flat till the ability level θ = 18 . The percentage of students opting d steadily in-
creases after that. The slope starts decreasing after a score of 34. The choice a is
insignificant as can be inferred from the low lying curve close to the x-axis. A closer
look at the item response curves to the distractors reveals that b and c constitute
the prominent wrong choices. However IRCs help us to meaningfully distinguish
between these two distractors. IRC of distractor b is prominent in the ability range
[3:15] while that of c is more popular among ability levels greater than 17. Thus the
distractors b and c exhibit discriminatory power. Analysis of the content of these
distractors reveals that choice c is proximate to the correct answer than b. Choice
c demands visualization of movement of the hand of a transparent clock from the
rear side and also ascertain the direction of its angular velocity. On the other hand
b requires the same analysis by looking at the clock directly. Item 28 constitutes
another instance where aspects of visualization are probed.

As illustrated above the discussion of IRCs give perspectives on student diffi-
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culties not provided by tables 7.2 and 7.3. It also allows us to gauge the quality of
the items. Consider item 5 as the second example. The item probes the direction
of angular velocity of a planet at a point on its elliptical trajectory (see appendix
A). The indices for the item are good with optimal difficulty level of 0.5 and high
values of D and rpbs indicating discrimination. This is mirrored in the IRC for
the correct choice d which is an excellent sigmoid (m=17.6, s=8 and 1/w=.24) as
can be seen from figure 7.6. The phase 1 analysis revealed that all three incorrect
options a, b and c are chosen by a significant number of students. Effectively all
these options convey that the direction of angular velocity is in the plane of motion,
with varying orientation. Data from the second phase of administration in table
7.2 however indicates an overwhelming appeal for distractor c. This aspect is made
visually vivid by the peak characterizing choice c in the lower ability range from 2
to 16. The curves for a and b are overlapping and lie low across the full range from
score 3 to 33. It may be noted that the distractor c states that the direction of
angular velocity at the point on the trajectory is tangential to the point. All three
distractors together would indicate fixation with the inappropriate prototype that
direction of angular velocity should be in the plane of motion. Distractor c alone is
more specific in that it brings out the case where angular velocity (~ω) direction is
confused with the direction of linear velocity (~v). As such this is also an instance of
lack of differentiation between related but distinct concepts (~ω and ~v). Other items
which reveal this pattern include items 29, 30, 31 and 32.

Item 6 is another example which is posed in the same context as item 5 (see
appendix A). The item probes student understanding of the equation ~v = ~ω ×~r and
its validity conditions (here ~r is the position vector). While discussing the indices
in table 7.2 earlier we mentioned that the discrimination index D and point biserial
coefficient rtest to this item are below the desired values. This is because of the high
difficulty of the item as evident from the difficulty level (P=0.31). The IRCs given
by figure 7.7 clarifies this difficulty aspect distinctly. Figure 7.7 clearly shows that
only those above the score 37 consistently gave the correct response to this item.
The IRC for the correct answer is a sigmoid (m=37.4, s=33.5 and 1/w=2.8) with
a long flat tail and a high slope near the right extreme. This abnormal shape and
the low indices are not in anyway due to errors in the content matter of the item.
One can see that a and b are the widely chosen distractors. As per distractor a



7.3: IRC analysis 93

the equation holds for a planet moving in an elliptical orbit and follows from the
definition of angular velocity. While distractor b simply states that the equation
is true because the planet is in rotational motion. The IRCs however reveal that
the population choosing them are relatively distinct. Choice a has more appeal to
higher ability students as evident from the imposing peak of its IRC in the range
[27:37]. The curve to choice b has a relatively smaller peak in the range [6:17].
The choices are indicative of lack of knowledge of validity condition associated with
the equation under consideration. The equation is valid only for circular motion.
During interviews we found that most of the students had learnt the equation by
rote without understanding its derivation. The basis of an equation and its validity
is often made clear by understanding its derivation. The interviews revealed that
students who were incorrect about the equation ~v = ~ω × ~r also got item 39 wrong.
Item 39 probed student understanding of the relation ~a = ~α × ~r. Items 19, 23 and
36 also reveal similar patterns of indiscriminate use of equations.

Item 14 was discussed in the previous section as revealing an instance of a pitfall
paralleling those found earlier in linear kinematics. The incorrect notion was that
acceleration of the pendulum bob is zero at the extreme position when its velocity
is zero. The IRC of the corresponding distractor a being significant in the region
[5:17] is a visual confirmation of this (see figure 7.15). In addition to the visual
display, it may once again be noted that IRC provides the ability range of students
harboring this notion. This information is not provided by table 7.2. The other
distractors b and c are relatively insignificant as revealed by their IRCs. The curves
are overlapping, almost flat and close to the x-axis throughout the range from 2 to
35. Distractor b states that the angular acceleration at a single instant is undefined
while c states that the angular acceleration at a single position is undefined. The
curve corresponding to the correct choice d follows a sigmoid (m=19, s=20 and
1/w=.22). The sigmoid is flat till the score 10 and then steadily rises till 30. The
slope of the curve is indicative of its relatively good discriminatory power. After
score 30 the slope decreases and the curve once again turns flat. Items 3, 7-11 and
15-18 reveal some other instances of pitfalls paralleling those found earlier in linear
kinematics.

Item 19 constitutes another interesting example. The item probes student un-
derstanding of the angular speed of a particle moving in a straight line with constant
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velocity. The origin is not on the line of motion. The item is relatively difficult with
a P value of 0.36. The IRC to the correct choice b in figure 7.20 displays this aspect
clearly. Choice b maintains that the angular speed decreases as one moves away from
the origin because of a corresponding decrease in the angular displacement. The fit
to b is a sigmoid (m=33, s=24 and 1/w=.94) and has a long tail parallel to x-axis
till the score 30. The IRC then rises sharply in the range 30 to 35 and remains flat
further ahead. The high difficulty of the item is thus displayed vividly by the steep
slope of the curve in the range 30 to 35. One can further see from figure 7.20 that
IRCs to all the distractors have peaks significantly above the tail of the sigmoid.
Clearly all the three incorrect choices a, c and d represent important pitfalls in un-
derstanding among students. Distractor a correctly states that the angular speed
is decreasing but bases the argument on the equation v = ωr which is not valid in
the context. IRC to a has its peak from score 15 to 30. Distractor c states that the
angular speeds at two points on the line of motion are equal since the particle has no
linear acceleration. Students erroneously think that zero linear acceleration implies
zero angular acceleration for this situation. The IRC to c almost overlaps with that
of a. However the peak of c is higher and extends till the score of 34. Choice d
states that the angular speed of the particle is zero because the motion is linear.
The choice appealed mainly to lower ability students in the range 2 to 18. The
reluctance to ascribe angular quantities to a particle in linear motion is indicative
of fixation to the prototype that rotational motion is necessarily circular. In our
interviews we found that many students were emphatic against associating angular
quantities with a particle in linear motion. Some persisted in this notion even after
we gave hints that they may be wrong. They said that linear and circular motion
are two distinct kinds of motion. Some other patterns of fixation with inappropriate
prototypes are revealed by items 4, 5, 12, 13 and 21.

Item 26 investigates student understanding of the operational definition of the
magnitude of angular velocity of a rigid body rotating about a fixed axis. In other
words how the angle ∆θ in the relation ω = ∆θ/∆t is identified. The answer to
the item is given in the choice c which states that the angle ∆θ is traced by a line
perpendicular to the axis from any particle on the body. IRC to c given by figure
7.27 however makes it clear that the question was difficult for a majority of the
students. This is indicated by the long tail to the fit (m=34, s=20 and 1/w=.4) till
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the score of 28 and the subsequent rise thereafter. The most popular distractor is
b. IRC for this is a curve spanning the entire range. The peak lies between scores
15 and 35. The choice states that the angle ∆θ is traced by the position vector
of any particle on the body from a specified origin. It may be recalled that this is
how angles are often traced. As such the choice b represents a case of a familiar
procedural practice extended to a context where they are inappropriate (another
instance of this pattern is illustrated by item 27). The other distractors a and d
are chosen mainly by students in the lower ability range. Distractor a states that
the angle ∆θ is the angle traced by the position vector of the center of mass of the
rigid body. While according to choice d, ∆θ is traced by a line perpendicular to the
axis from the center of mass only. Both choices signify the role of center of mass
as a representative point for the rigid body. We found during our interactions with
them that they are cued by the idea of center of mass being a representative point
which resonates with certain primitive notions in their thinking. Instances of the
same pattern are illustrated by items 27 and 28 as well.

One feature about the IRCs which we wish to draw attention are fluctuations.
For the correct response, usually given by a sigmoid, one notices that the fluctuations
are often prominent in the mid-ability range. For example consider IRCs to the items
13 and 14 which are of similar difficulty levels. In figure 7.14 of item 13 one can
see a dip in the IRC to the correct answer b at the ability level θ = 24. However
in item 14 the IRC to the correct choice registers a peak at the same ability level
(θ = 24). Items 33 and 34 constitute another example. These items are also of
similar difficulty levels. In figure 7.34 of item 33 one can see a peak in the IRC to
the correct answer d at the ability level θ = 24. However in item 34 the IRC to the
correct choice registers a dip at the same ability level. Consider items 20 and 35 as
a third example. Item 35 has a dip corresponding to the ability level 22 for IRC of
the correct choice a. While at the same ability level IRC of the correct choice c to
item 20 has a peak. These illustrations imply that students in the same ability may
get one item right and the next one wrong. This vacillation perhaps is indicative of
the confused thinking characteristic of students who are in a transition from novice
state towards expertise, a point made by Bao and Redish (2006) using different
arguments. It may be noted that the random noise decreases as one approaches
higher ability levels. It can also be seen that in the flat region above the ability level
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30 the fluctuations are often minimal (eg. items 1, 4, 5, 7, 8, 10, 11, 12, 14, 15, 16,
17, 18, 20, 21, 27, 28, 29, 30, 31, 32, 35, 36, 37).
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Figure 7.2: Item 1 - Item Response Curves
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Figure 7.3: Item 2 - Item Response Curves
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Figure 7.4: Item 3 - Item Response Curves
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Figure 7.5: Item 4 - Item Response Curves
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Figure 7.6: Item 5 - Item Response Curves
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Figure 7.7: Item 6 - Item Response Curves
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Figure 7.8: Item 7 - Item Response Curves
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Figure 7.9: Item 8 - Item Response Curves
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Figure 7.10: Item 9 - Item Response Curves
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Figure 7.11: Item 10 - Item Response Curves
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Figure 7.12: Item 11 - Item Response Curves
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Figure 7.13: Item 12 - Item Response Curves
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Figure 7.14: Item 13 - Item Response Curves
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Figure 7.15: Item 14 - Item Response Curves
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Figure 7.16: Item 15 - Item Response Curves
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Figure 7.17: Item 16 - Item Response Curves
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Figure 7.18: Item 17 - Item Response Curves
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Figure 7.19: Item 18 - Item Response Curves
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Figure 7.20: Item 19 - Item Response Curves
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Figure 7.21: Item 20 - Item Response Curves
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Figure 7.22: Item 21 - Item Response Curves
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Figure 7.23: Item 22 - Item Response Curves
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Figure 7.24: Item 23 - Item Response Curves
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Figure 7.25: Item 24 - Item Response Curves
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Figure 7.26: Item 25 - Item Response Curves
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Figure 7.27: Item 26 - Item Response Curves
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Figure 7.28: Item 27 - Item Response Curves
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Figure 7.29: Item 28 - Item Response Curves
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Figure 7.30: Item 29 - Item Response Curves
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Figure 7.31: Item 30 - Item Response Curves
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Figure 7.32: Item 31 - Item Response Curves
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Figure 7.33: Item 32 - Item Response Curves
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Figure 7.34: Item 33 - Item Response Curves

 20

 40

 60

 80

 100

 0  5  10  15  20  25  30  35  40

Pe
rc

en
ta

ge

Total score

A
B
C
D

Fit

Figure 7.35: Item 34 - Item Response Curves
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Figure 7.36: Item 35 - Item Response Curves
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Figure 7.37: Item 36 - Item Response Curves
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Figure 7.38: Item 37 - Item Response Curves

7.4 Concluding remarks

As may be recalled, the phase one sample was from schools in the Mumbai region.
The sample size was relatively small. A larger and varied sample has made a deeper
investigation of the items and the inventory as a whole possible. Consequently the
conclusions and inferences will have their basis on a firmer footing. This was our
motivation for undertaking the large scale administration in phase 2. The students
(N=905) were from around 12 schools from 5 urban centers spread across India.
They all had a course in rotational motion. The large sample size also enabled us
to perform the IRC analysis.

The interview with the subset of students (N=35) further validated the items.
We confirmed that the students interpreted the items and distractors as intended.
We did not observe right choices being made from wrong reasoning. Some of the
students displayed extremely poor understanding of rotational motion. For example
a few were not even aware that angular velocity is a distinct concept from linear ve-
locity. Such confused and vague understanding made the interview process difficult.
In many cases students were not able to give any proper reasoning for their choices.
They often based their choices on proximity to concepts of linear kinematics. Most
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Figure 7.39: Item 38 - Item Response Curves

of our items had such distractors.

The response pattern of the students in phase 2 is broadly consistent with that
of phase 1. It establishes the reproducibility of the broad patterns of thinking we
identified in phase 1. We have mentioned these patterns in section 7.3 on IRCs. To
recapitulate, these patterns include fixation with inappropriate prototypes (items
4, 5, 12, 13 and 19), indiscriminate use of equations (items 6, 19, 23, 36 and 37),
pitfalls paralleling those found earlier in linear kinematics (items 3, 7-11 and 14-
18) inappropriate extension of familiar procedural practices (items 26 and 27) ,
reasoning cued by primitive elements in thought (items 26, 27 and 28) and lack
of differentiation between distinct but related concepts (items 5, 29, 30, 31 and
32). The large sample size of phase 2 put these inferences on a more solid footing.
The interviews verified the existence of these patterns in student thinking. The
similarity in response patterns to some of the questions mentioned above with a
group of students at the University of Washington was discussed in chapter 6.

Phase 2 permitted comprehensive analysis of each item. The values of difficulty
level to items in phase 2 were found to be higher compared to phase 1. Tables 7.2
and 7.3 help one identify items according to their difficulty, discriminatory power or
consistency with the whole test based on the values P, D or rpbs respectively. For
example item 5 was moderately difficult (P=0.5), well discriminating (D=0.88) and
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Figure 7.40: Item 39 - Item Response Curves

highly consistent with the whole test (rpbs =0.72). The IRCs of the correct choice
to all items had positive slope. They were clear sigmoids except for a few items
(e. g., items 3, 7, 8, 10) Also most distractors are chosen by a significant portion
of students. IRCs provide a visual display of most of the attributes conveyed by
the indices P, D and rpbs. In addition IRCs help us to identify the ability range of
students to whom a particular distractor is appealing and this cannot be inferred
from tables 7.2 and 7.3.

Another instance where IRC supplemented the analysis based on indices was
with respect to items 6, 22 and 39. These items, as can be seen from tables 7.2 and
7.3 , have some of the indices below their desired values. However further analysis
of the items based on the IRCs indicated that they were useful. The curves to the
correct answers were sigmoids and the distractors were discriminating. Also there
was no error in the content matter of the items. Thus on the combined basis of
statistical and item response curve analysis we conclude that no items need to be
dropped. The values of Kuder Richardson reliability index (rtest) and Ferguson’s
delta (δ) further affirms the quality of the test. They are well above their respective
desired values.

Nevertheless, we provide the following suggestions for an instructor who wishes
to employ a shorter version of the inventory or would like to tailor the test for a
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particular student sample. Tables 7.2 and 7.3 and IRCs (figures 7.2 to 7.40) can
provide clear guidelines in this connection. For a class of moderate ability students
the instructor may drop highly difficult items like 6, 22, 23, 26 and 39. Note that
this includes items pertaining to the rotational kinematics of a particle in rectilinear
motion (items 19-25) which are relatively difficult. Similarly, easier questions like 1
and 35 may be excluded if the students are of high ability. In short since we have
delineated the characteristics of all items in detail instructors can choose the items
based on their needs. Another suggestion to reduce the number of items in the
inventory concerns items 7-11 and 14-18 which probe angular velocity and angular
acceleration separately in 5 identical contexts involving a simple pendulum. These
2 pairs of items can be clubbed together reducing the number of items from 10 to 5.
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Chapter 8

Conclusion

8.1 Summary

Rotational motion is arguably one of the most difficult topics in higher secondary
school level physics, both for students as well as teachers. Our numerous interactions
with students and teachers have confirmed this. Despite its difficult nature, it has
not attracted the attention of physics education research community for a long time.
Rimoldini and Singh (2005) initiated a systematic research on the topic with their
broad survey instrument . The work by Ortiz et al (2005) during the same period was
also a step in the same direction. Both these works reveal the conceptual richness
of the topic and the research potential it holds. Our own experience with students
as well as teachers laid bare an array of difficulties in this area. Our first impression
was that the difficulties lay in relatively advanced aspects like dynamics of rolling
motion. This led us to investigate student understanding of the direction of friction
on rolling bodies (Singh and Pathak, 2007). However, further interactions with
students revealed that the roots of the problem lay in a shaky foundation. We noted
that even elementary concepts like angular velocity (~ω) and angular acceleration (~α)
presented serious difficulties to students as well as teachers. This resulted in our
present work on rotational kinematics. We were led to develop an inventory focusing
on the concepts of angular velocity and angular acceleration.

Our decision to develop concept inventories (CI) was motivated by the need
to provide momentum to science education research in the country. There is a
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stark necessity for research driven reforms in all aspects spanning from assessment
to teacher professional development. We maintain that CIs can play a significant
role in efforts in these directions. Such a standpoint is supported by the enabling
impact inventories had on physics education research in US (Richardson, 2004; Hake,
2011). CIs hold potential beyond their direct utility as a ready use diagnostic and
assessment tool for instructors. The inventory items can serve as clicker questions
which constitute a key element of the Peer Instruction pedagogy (Mazur, 2007). It
may be noted that Peer Instruction is currently among the most popular research
driven pedagogies employed globally. CIs also have the potential to be a platform
for teacher professional development. This is best illustrated by looking into the
development of the Force Concept Inventory (FCI). It is seldom noticed that the
two authors of FCI besides Hestenes were high school instructors. Development of
FCI indicates one way in which the scientific community in our universities can play
a useful role in capacity building of teachers in schools and colleges. CIs can play a
crucial role in large scale science education reform initiatives as exemplified by the
Carl Wieman Science Education Initiative (Wieman, 2007; Adams and Wieman,
2010). Inventories facilitate an objective assessment of curricula and pedagogies. A
scientific approach to science education is enabled by reliable large scale assessments.

We expect that our modest effort towards construction of concept inventories,
in addition to their direct utility, is a positive step towards the greater possibilities
mentioned in the previous paragraph. Keeping this aspect in mind we ensured that
all the steps and salient features involved in the construction of our inventory were
documented (see chapter 2). The documentation can provide guidelines to others in-
terested in similar endeavors in Indian context. The systematic and iterative aspect
of the process of construction of inventories is to be particularly noted. The develop-
ment of our inventory began with a theoretical analysis of text book presentations of
rotational kinematics. Prototypical problems given at the end of the textbooks and
those employed in competitive examinations like the Indian Institute of Technology
- Joint Entrance Examination were reviewed. We carried out a cognitive analysis of
~ω and ~α akin to that carried out by Reif and Allen (1992) for linear acceleration.
These theoretical analyses were followed by extensive empirical studies. Questions
in the initial phases involved open ended and explanatory type among others. Verbal
data was collected using think aloud protocol, retrospective probing and interviews
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(Young, 2005; Rimoldini and Singh, 2006; Adams and Wieman, 2010). Interaction
with students, teachers and experts constituted the core of the development process.
Insights from these interactions fed into the construction of appropriate items and
distractors. The items were refined after pilot tests. Items and distractors were
successively modified to incorporate insights obtained from student responses. New
items were added to ensure that all aspects of the concepts were covered. In total
around 50 students participated in this initial phase of development of the inventory
(Mashood and Singh, 2013). The inventory was further pilot tested with a group of
undergraduate students (N=58). They were asked to write down brief explanations
for their answer choices.

Retrospectively, the inventory developed in three parts, namely rotational kine-
matics of a particle (see chapter 3), special case of a particle in rectilinear motion
(see chapter 4) and rotational kinematics of a rigid body about a fixed axis (see
chapter 6). The development followed the same order as mentioned. The test un-
derwent iterative cycles to evolve into the current form constituting 39 items. Most
of the items are qualitative. A few are semi-quantitative The knowledge of calculus
and algebraic manipulations required for answering the items, if any, are minimal.
Throughout the development of the inventory we have been careful in this respect. A
case in point is question 22 which dealt with the angular acceleration of a particle in
rectilinear motion. The magnitude of angular acceleration exhibits non-monotonic
behavior, increasing in the beginning, allowing a maximum and then decreasing.
This non-monotonic behavior was not probed in the inventory, since as apparent
from chapter 5, it involved considerable algebraic manipulations. We were careful
to limit ourselves to the case of large distance where angular acceleration decreases
monotonously. This could be understood purely on the basis of asymptotic reason-
ing.

The items were content validated by experts and face validated by teachers
and students throughout the process. The phase one of the administration of the
inventory constituted two groups of higher secondary school students (N=79 and 74)
and two groups of teachers (N = 26 and 25). One group among higher secondary
students (N=74) was the olympiad aspirants which represented a high ability group.
The teachers taught physics at the higher secondary or undergraduate level. They
hailed from different parts of the country. We asked the students to write brief



122 Chapter 8. Conclusion

explanations for their answer choices. Insights from this fed into the inventory. The
frequency with which distractors were chosen were analyzed. We made inferences
about the the patterns of thinking prevalent among students. The analysis was
supplemented by semi-structured interviews with a subset of the students (N=6).

The broad patterns of thinking among students we uncovered include fixation
with inappropriate prototypes, indiscriminate use of equations, pitfalls paralleling
those found earlier in linear kinematics, inappropriate extensions of familiar proce-
dural practices, reasoning cued by primitive elements in thought, and lack of differ-
entiation between related but distinct concepts. We connected these findings with
patterns of thinking identified by researchers in other topics and these are discussed
in detail in chapters 3, 4 and 6. An illustrative example is the instance indicating
reasoning cued by primitive elements in thought. Close and Heron (2011) found a
case of the pattern in the context of student thinking regarding the concept of en-
ergy. They observed that students in general tend to prefer conservation of energy
over other conservation laws because the former resonates with certain primitive
elements in their thinking. We noted a similar reasoning pattern among students
wherein the concept of center of mass enjoyed a special status in student minds. The
identifications of broader patterns of thinking like the one mentioned here is impor-
tant. This is because of the fact that it indicates that student errors share certain
general features spanning across topics. Administration of part of the inventory to
students (N=384) at the University of Washington, Seattle revealed that most of
the distractors indicative of these patterns were popular among American students
as well.

In order to verify the patterns of thinking we identified in phase 1, further vali-
date the items, and subject the test to detailed statistical scrutinies, we undertook a
large scale administration of the inventory (see chapter 7). The sample comprised of
higher secondary students (N=905) from 5 urban centers (Jaipur, Patna, Mumbai,
Hyderabad and Bangalore) spread across the country. A subset (N=35) of students
were interviewed. The interviews verified the patterns of thinking we uncovered
during earlier administrations. We carried out both item wise and whole test analy-
ses using widely employed statistical indices (Ding et al., 2006; Ding and Biechner,
2009). The item-wise statistics we calculated were the difficulty level, index of dis-
crimination and the point biserial coefficient. The values of these indices were well
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above their desired values for all items with few exceptions. This substantiates the
quality of the items. The average difficulty level, index of discrimination and point
biserial coefficient for the 39 items were 0.48, 0.65 and 0.63 respectively. In addi-
tion the indices provide clear guidelines about the level of difficulty of the items,
their discriminatory power and consistency with the whole test. This will enable
instructors to make an informed choice among the items based on their particular
needs.

As we have mentioned earlier the items were validated at various phases of the
study. Experts examined the content validity. Validation interviews with students
facilitated face validity. Equally important is to establish the reliability of the in-
ventory. Administration of part of the inventory at the University of Washington
and the subsequent consistency in student responses indicated the reproducibility
of some of our results. Nevertheless the importance of quantitatively establishing
reliability led us to calculate the Kuder Richardson reliability index for the inven-
tory. We also calculated the Ferguson’s delta. These are given in table 8.1. Both are
well above their desired values indicating the reliability and discriminatory power of
the test. In the large scale administration we also administered the Force Concept
Inventory (FCI) and the Conceptual Survey on Electricity and Magnetism (CSEM).
These inventories are standardized and prominent among inventories in PER. FCI
comprises of 30 items on basic mechanics. CSEM has 32 items on electricity and
magnetism. The CSEM was administered to a subset (N=554) of the larger sample
(S3, N=905) since only these students had been taught electricity and magnetism.
The Kuder Richardson reliability index and the Ferguson’s Delta were also calcu-
lated for FCI and CSEM. The values of the indices are given in table 8.1. As can
be seen the values for our inventory are consistent with those obtained for FCI and
CSEM.

In addition to the statistical analysis, we also carried out item response curve
(IRC) analysis. It may be noted that it was the large sample size (N=905) of phase
2 which made the IRC analysis possible. IRCs to all 39 items were plotted. The
curves to the correct choice to all items have positive slope and correlated positively
with the ability level. Most of the distractors were chosen by a significant section of
candidates indicated by peaks in their corresponding curves. IRCs provided a visual
confirmation of the insights obtained by the statistical analyses. The curves vividly
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Table 8.1: The average score (in percentage), Kuder Richardson reliability index
and Ferguson’s Delta for FCI, CSEM and our inventory on rotational kinematics
(RK), along with the sample size for each test.

Desired values FCI CSEM RK
Sample size (N) 915 554 905
Average score 51.36 % 46.06 % 47.18 %

Kuder Richardson reliability index ≥ 0.8 0.95 0.96 0.93
Ferguson’s delta ≥ 0.9 0.99 0.98 0.99

displayed the level of difficulty of the items and their discriminatory power. More
importantly they revealed insights provided neither by tabulation of the frequency
of choices to each item nor the statistical indices we employed. This was the range of
the ability level of students to whom particular distractors to an item appealed. IRCs
also helped us further investigate the quality of a few items for which the indices
were problematic. The IRCs to these items revealed their useful characteristics
which otherwise would have been dropped. Despite being highly informative it is
unfortunate that IRCs are used sparingly in PER. This is inspite of the fact that
they are no longer computationally demanding. The statistical and IRC analyses
delineated the characteristics of all items in detail. This should enable instructors
to choose the items based on their needs in classrooms.

The results from our studies were submitted to international peer reviewed jour-
nals in physics education research at appropriate stages of our study. The reviews
from the referees provided valuable insights and critical inputs. The publication
of the results ensured that the research was proceeding in the right direction. It
also situated our work in the broader discourse among the research community.
Other researchers have been pursuing studies closely related to our work. Notable
among them was the work by Close and Heron (2011) on angular momentum which
happened around the same period as our study. This study investigated student
understanding of angular momentum of a particle moving in a straight line.



8.2: Pedagogical implications 125

8.2 Pedagogical implications

We briefly discuss some of the pedagogical implications of our work. Our study
revealed that students as well as teachers experience an array of difficulties in ro-
tational kinematics of a particle. This may be because rotational kinematics of a
particle is inadequately dealt with in most text books (Mashood and Singh, 2012c).
We suggest emphasizing operational definitions and procedural specifications as im-
mediate corrective measures. We have provided an operational definition for angular
velocity of a particle (Mashood and Singh, 2012b). Our work as well as the ear-
lier study by Rimoldini and Singh (2005) indicates that part of the difficulties can
be traced to related difficulties in basic mechanics. This suggests that discussion
of linear and rotational concepts in the same context will help students to better
differentiate between them. The oscillating simple pendulum is a rich context for
such a purpose. Student understanding of linear velocity and acceleration in the
context of a simple pendulum had been probed earlier (Reif and Allen, 1992; Shaf-
fer and McDermott, 2005). Our inventory comprises of a set of five questions each
on angular velocity (~ω) and angular acceleration (~α) posed in the same context.
These concepts are probed with the bob at the extreme, mean and an intermediate
position. Two items concern the variation of ~ω and ~α as the pendulum swings.
With the help of these items we uncovered a range of pitfalls and misconceptions
harbored by students regarding ~ω and ~α. Details of our findings can be found in
chapter 3 (Mashood and Singh, 2012b). The fact that students can easily design a
real pendulum is an added educational advantage. Taking into account the peda-
gogical richness we suggest using simple pendulum as a context to teach both linear
and rotational kinematics. It may be noted that none of the popular textbooks has
such a discussion (Halliday et al., 2001; Young and Freedman, 2004; Giancoli, 2005;
NCERT, 2006).

We suggest another pedagogically rich context to discuss kinematics namely a
particle in rectilinear motion. The particle moving in a straight line with constant
velocity is perhaps the simplest type of motion. Our study revealed an array of
difficulties harbored by students pertaining to rotational kinematics in this context.
Details of our findings can be found in chapter 4 (Mashood and Singh, 2012b). Our
focus on linear kinematics in this context was limited to what is directly relevant
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to our discussion on rotation. We probed student understanding of the variation of
the radial and azimuthal components of linear velocity of the particle. The context
affords possibilities for probing other aspects of linear kinematics. In addition to
the analytical approach, we encourage use of graphs to approach these problems.
One of the major pre-requisites in dealing efficiently with kinematics (linear and
rotational) is familiarity with vector operations. Students can draw position vectors
of the particle on a graph for successive instants. They can then perform vector
subtraction and examine the behavior of the angular variable as the position vector
changes.

8.3 Limitations of concept inventories

We discuss some of the concerns raised by concept inventories. First among them
is the ability of multiple choice questions to accommodate conceptual nuances and
intricacies. The extend to which they can be covered by a limited number of simple
statements (the distractors) is debatable. Further, the items are closed-ended (Smith
and Tanner, 2010). Students are forced to choose one among the four or five options
available. If all possible modes of responses are not represented by the distractors
the test may be imposing an answer on the student. Students may also answer by
resorting to logical tricks without engaging with the subject content. There can be
cases of false negatives and false positives (Hestenes and Halloun, 1995). Another
limitation is that we do not know a students’ thinking in detail while she is making
an answer choice to an item. This can be remedied if we interview the student. As
such interviews are always encouraged (Adams and Wieman, 2010).

It may be possible that distractors to items relevant to a population may not be
appropriate for another. Administration of part of the inventory at the University of
Washington revealed an instance of this. It was found that there exists differences
between the American and Indian students when it came to the direction of angular
velocity. The differences seemed to be on account of the variation in the instruction
in India and US. These differences in student thinking need to be taken into account.
The context dependence of novice thinking is another issue of concern related to
CI’s (Bao and Redish, 2006). Novices may correctly answer a question about a
concept in one context and incorrectly in another. As a result, when a student
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answers an item it becomes difficult to delineate the effect of understanding from
the effect of context. It has been shown that the timing of administration of a CI
and the incentives for the participants can affect the results (Ding et al., 2008). It
is important that factors like these are noted. What precisely a concept inventory
measures is another issue of concern. This has been extensively debated in the case
of the Force Concept Inventory (Huffman and Heller, 1995). As per the critics,
FCI rather than measuring an understanding of the force concept, is more likely
measuring ‘bits and pieces of student’s knowledge that do not necessarily form a
coherent force concept’. So apart from the phenomenological insights provided, a
cognitive science perspective of what CI’s actually measure is unclear.

We were aware of these limitations and have attempted to address them at least
partially. The inventory was constructed systematically and iteratively. We inter-
viewed a cross section of students. Brief explanations were sought from students
during pilot studies. Thus considerable care was taken to develop the distractors so
that they represent students’ thinking. Efforts were made to structure items so that
they are not answerable by resorting to logical tricks. We limited our inventory to
kinematic concepts alone. Such a focused approach helps narrow down the concep-
tual difficulties experienced by students. This would be difficult if items involved
greater number of concepts or involve considerable mathematical manipulations. It
may be recalled that, despite these limitations, an inventory has its advantages,
which we have discussed in chapter 1. They include its ready to use characteristic,
possibility of easy and rapid evaluation and the potential for large scale application.

8.4 Future directions

We conclude by mentioning some of the possible avenues that our work opens up.
Quality science education to a larger populace is important for the economic and
societal progress of the country. We need to promote research driven education re-
forms to achieve this. Our work points to the stark necessity of meaningful teacher
professional development in the country. One possible way to achieve this is to en-
sure scientific communities in our universities collaborate with practicing teachers in
developing CIs. Rotational kinematics of a particle needs to be dealt with in detail
before addressing rigid bodies. We think that such a sequencing would be pedagog-
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ically more prudent (Mashood and Singh, 2012a). We need to promote a culture
of learning where alternative conceptions and pitfalls are considered as resources to
achieve a better understanding. Instructors who are in a state of denial regarding
the findings of science education research need to be made aware of the importance
of research in education. CIs can play a facilitating role in this regard. Interac-
tive pedagogies like peer instruction (Mazur, 2007) should supplement traditional
modes of instruction. CI items can be adapted as clicker questions. Furthermore
research driven curriculum like the Tutorials in Introductory Physics (McDermott
et al., 2002) needs to be developed to address pitfalls in understanding. In all these
efforts a synergistic collaboration of practicing teachers, scientific communities in
the universities and researchers in education is important. We have made modest
efforts in this regard. Further, analysis of the misconceptions and pitfalls we iden-
tified from the perspective of cognitive science would be fruitful. Such an endeavor
would throw light on why these misconceptions and pitfalls arise. It may then help
us to address them better.

In future we plan to administer the test to varying samples which will extend to
rural India. It is possible that we will uncover differences between the urban and the
rural samples. Administering the test to rural India brings additional challenges.
The varying culture and languages of rural India makes the process a daunting
task. It will require translation to local languages and use of local idioms. We have
initiated our effort in the national language Hindi. Inventory construction is an
iterative process. As such we are aware that even the present form of the test is
open to refinement and modifications. So far we have covered only angular velocity
and angular acceleration . We did not dwell into more complex aspects like rolling
with or without slipping. These areas along with other concepts like conservation of
angular momentum and torque-angular momentum relation hold potential for future
research which one can undertake. It is encouraging to know that other researchers
are pursuing related areas. Biechner is currently working on student understanding
of graphs in the context of rotational motion (private communication). The physics
education group at the university of Washington intends to revise the chapter on
rotational motion in their Tutorials in Introductory physics (McDermott et al. 2002).
We also plan to work on an Indian adaptation of the same in future.
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Appendix A

Questionnaire on Rotational
Kinematics

A.1 Instructions

Each question or incomplete sentence is followed by four suggested answers or com-
pletions. Select the one that is the most appropriate in each case.

A.2 Rotational kinematics of a particle

A.2.1 Angular Velocity of a Particle

Questions 1–3 are concerned with figure A.1. The figure depicts a wall clock showing
the second hand and minute hand (the hour hand is not shown). A and C denotes
the tip of the second hand and minute hand respectively. The point B on the second
hand is at the halfway distance, namely OA = 2OB. The clock is in the x-y plane
with the z axis coming out of the plane of the paper. The unit vectors in the x, y,
z direction are î, ĵ and k̂ respectively. We consider angular velocity about O.

1. Let ωA, ωB and ωC be the angular speeds of points A, B and C respectively.
Which of the following is the correct relation?

(a) ωA > ωC > ωB
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Figure A.1: Wall clock (see questions 1-3).

(b) ωA = ωB = ωC

(c) ωA = ωB > ωC

(d) ωA > ωB = ωC

2. The clock is transparent and the second hand can be viewed from both the
front and the back side. Then,

(a) if viewed from the front, the second hand moves anticlockwise with an-
gular velocity in the - k̂ direction.

(b) if viewed from the front, the second hand moves clockwise with angular
velocity in the k̂ direction.

(c) if viewed from the back, the second hand moves anticlockwise with an-
gular velocity in the k̂ direction.

(d) if viewed from the back, the second hand moves anticlockwise with an-
gular velocity in the - k̂ direction.

3. At an instant t, both the second hand and the minute hand of the clock are
at 12 O’clock position. Regarding the angular speeds of A and C at time t

which of the following statements is true ?

(a) Angular speed of A is greater than the angular speed of C.

(b) Angular speed of A is less than the angular speed of C.

(c) Angular speed of A is equal to the angular speed of C.
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(d) Angular speed at an instant cannot be defined.

4. A particle is moving in a circle about the origin O with increasing speed as
shown in figure A.2. At two points A and B on the circumference of the circle,
the angular velocity ~ω about O

.O

A

B

Figure A.2: Particle in circular motion (see questions 4, 12 and 13).

(a) differs only in magnitude.

(b) differs only in direction.

(c) differs in both magnitude and direction.

(d) is the same in magnitude and direction.

Questions 5–6 are concerned with figure A.3. A planet is revolving in
an elliptical orbit with sun at one of its foci. A and B are two distinct points
on the trajectory of planet. We consider angular velocity of the planet about
the sun regarded fixed.

Sun

Planet

A

B

Figure A.3: Planet moving in an elliptical orbit with sun at one of its foci (see
questions 5 and 6).

5. The direction of the angular velocity vector of the planet at point A, ~ωA is
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(a) radially inward towards sun.

(b) inward but not radial.

(c) tangential to the orbit at the point A.

(d) perpendicular to the plane of motion.

6. Let ~vB be the linear velocity, ~ωB the angular velocity and ~rB the position vector
of the planet at B (all about the sun). Which of the following statements is
correct?

(a) ~vB = ~ωB × ~rB from the definition of angular velocity.

(b) ~vB = ~ωB × ~rB because the planet is in rotational motion.

(c) ~vB 6= ~ωB × ~rB because the motion is not circular.

(d) ~vB 6= ~ωB × ~rB because ~ωB is not perpendicular to the plane of motion.

Questions 7–11 are concerned with figure A.4. Figure shows a simple
pendulum oscillating about the mean position B. A and D are the left and
right extreme positions respectively. Consider the plane of the paper to be the
plane of motion of the bob. We consider angular velocity about O.

O

A

B
C

D

Figure A.4: Oscillating simple pendulum (see questions 7-11 and 14-18).

7. Regarding the angular velocity of the bob at the instant when it is in the left
extreme position A, which of the following statements is true?
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(a) Angular velocity is zero.

(b) Angular velocity at a single instant is undefined.

(c) Angular velocity at a single position is undefined.

(d) Angular velocity is non zero.

8. Angular velocity of the bob at the mean position B is

(a) non zero and radially inward.

(b) zero.

(c) the maximum (in magnitude).

(d) non zero (but not the maximum) and perpendicular to the plane of mo-
tion.

9. As the pendulum moves from A to D, the direction of angular velocity of the
bob between A and D

(a) is in the plane of motion and remains the same.

(b) is in the plane of motion and keeps changing.

(c) is perpendicular to the plane of motion and remains the same.

(d) is perpendicular to the plane of motion and flips at the mean position.

10. Throughout the motion of the bob from A to D the magnitude of the angular
velocity of the bob

(a) remains same.

(b) keeps on increasing.

(c) first increases and then decreases.

(d) first decreases and then increases.

11. The angular velocities of the bob at a point C on the trajectory, when going
from A to D and from D to A are

(a) equal in magnitude, but differ in direction.
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(b) the same in direction, but differ in magnitude.

(c) different in both magnitude and direction.

(d) equal in both magnitude and direction.

A.2.2 Angular Acceleration of a Particle

Questions 12–13 are concerned with figure A.2. Figure shows a particle
moving clockwise in a circle about the center O with increasing speed. A
and B are two distinct points on the trajectory of the particle. We consider
angular acceleration about O.

12. The angular acceleration of the particle at point A is

(a) zero.

(b) non zero because only the direction of angular velocity keeps on changing.

(c) non zero because only the magnitude of angular velocity keeps on chang-
ing.

(d) non zero because both the magnitude and direction of angular velocity
keep on changing.

13. The directions of angular acceleration of the particle at two distinct points A
and B on the circle

(a) are the same and out of the plane of the paper.

(b) are the same and into the plane of the paper.

(c) are different.

(d) are undefined since the magnitude of acceleration is zero.

Questions 14–18 are concerned with figure A.4. Figure shows a simple
pendulum oscillating about the mean position B. A and D are the left and
right extreme positions respectively. Consider the plane of the paper to be the
plane of motion of the bob. We consider angular acceleration about O.
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14. Regarding the angular acceleration of the bob at the instant when it is in the
extreme position A on the left, which of the following statements is true?

(a) Angular acceleration is zero.

(b) Angular acceleration at a single instant is undefined.

(c) Angular acceleration at a single position is undefined.

(d) Angular acceleration is non zero.

15. Angular acceleration of the bob at the mean position B is

(a) non zero and radially inward.

(b) zero.

(c) the maximum (in magnitude).

(d) non zero and perpendicular to the plane of motion.

16. As the pendulum moves from A to D, the direction of angular acceleration of
the bob between A and D

(a) is in the plane of motion and remains the same.

(b) is in the plane of motion and keeps on changing.

(c) is perpendicular to the plane of motion and remains the same.

(d) is perpendicular to the plane of motion and changes the direction.

17. Throughout the motion of the bob from A to D, the magnitude of the angular
acceleration of the bob

(a) remains the same.

(b) keeps on increasing.

(c) first increases and then decreases.

(d) first decreases and then increases.

18. The angular accelerations of the bob at a point C on the trajectory, when
going from A to D and from D to A are
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Figure A.5: Particle moving in a line (see questions 19-25).

(a) equal in magnitude, but differ in direction.

(b) the same in direction, but differ in magnitude.

(c) different in both magnitude and direction.

(d) equal in magnitude and direction.

A.3 Particle Moving in a Straight Line

Questions 19-25 are concerned with figure A.5. Figure shows a particle
moving in a straight line with constant velocity. The origin O as shown in the
figure is not on the line. We consider angular velocity and angular acceleration
about O.

19. The magnitudes of angular velocities of the particle (about O) at points A and
B are ωA and ωB respectively. Which of the following is true?

(a) ωA > ωB because v = ωr, v is constant and rA < rB.

(b) ωA > ωB because the angular displacement at A is greater than angular
displacement at B for the same interval of time.

(c) ωA = ωB because there is no acceleration.

(d) ωA = ωB = 0 because the motion is linear.

20. The direction of angular velocity of the particle at A is
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(a) along AB.

(b) along OA.

(c) perpendicular to the plane of the paper.

(d) undefined since its magnitude is zero.

21. The angular acceleration of the particle at point A on the line is

(a) zero because the motion is linear.

(b) non zero because angular velocity changes in direction only.

(c) non zero because angular velocity changes in magnitude only.

(d) non zero because angular velocity changes in both magnitude and direc-
tion.

22. Consider the motion of particle at large values of r, in the region LMN. As
the particle moves from L to N the magnitude (absolute value) of angular
acceleration of the particle

(a) remains zero because the motion is linear.

(b) is non zero and remains constant because there is no linear acceleration.

(c) keeps increasing.

(d) keeps decreasing.

23. Torque τ on the particle at any instant is

(a) zero because force acting on the particle is zero.

(b) non zero because there exists an angular acceleration.

(c) zero because τ = Iα and α = 0 (I is the moment of inertia and α is the
angular acceleration).

(d) undefined since the motion is linear.

24. The direction of angular acceleration is

(a) undefined since its magnitude is zero.
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(b) along the direction of angular velocity.

(c) opposite to the direction of angular velocity.

(d) along the direction of torque.

25. As the particle moves away from P, which of the following statements regarding
linear velocity of the particle is correct?

(a) The radial component increases.

(b) The tangential (azimuthal) component increases.

(c) Both the radial and tangential (azimuthal) components remain constant
since the velocity is constant.

(d) The radial component remains constant since the centripetal force is zero.

A.4 Rigid Body Rotation About a Fixed Axis

26. The magnitude of angular velocity ω of a rigid body rotating about a fixed
axis is given by ω = ∆θ/∆t. The angle ∆θ here is the angle traced by

(a) the position vector of the center of mass of the rigid body (from a specified
origin).

(b) the position vector of any particle on the body (from a specified origin).

(c) a line perpendicular to the axis from any particle on the body.

(d) a line perpendicular to the axis from the center of mass only.

Question 27 is concerned with figure A.6. Figure A.6 shows a pulley of
radius R rotating about a fixed axis with increasing angular speed. The
axis is passing through the center P. The angular velocity of the pulley is ~ω

and the angular acceleration is ~α.

27. The angular velocity of the pulley is

(a) the vector sum of angular velocities of all the particles constituting the
pulley.
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P

Figure A.6: A rotating pulley (see question 27).

(b) the scalar sum of the magnitude of angular velocities of all the particles
constituting the pulley.

(c) equal to the angular velocity of any particle on the pulley.

(d) equal to the angular velocity of the center of mass of the pulley.

28. A rigid body is rotating about a fixed axis. Motion of an arbitrary particle
(not lying along the axis) on the body

(a) is on a circle with center on the axis.

(b) is on some complex curve.

(c) is spiral.

(d) is circular only if the axis passes through the center of mass.

29. A ceiling fan is rotating about a fixed axis. Consider the following statements
for the particles not on the axis at a given instant.

• Statement I: Every particle on the fan has the same linear velocity.

• Statement II: Every particle on the fan has the same angular velocity.

The correct statement(s) is (are):

(a) Statement I only.
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(b) Statement II only.

(c) Both statements I and II.

(d) Neither statement I nor II.

Questions 30–32 are concerned with figure A.7. Figure shows a potter’s
wheel rotating uniformly about a fixed axis. P and Q are two particles on the
wheel. P is closer to the axis than Q.

30. The particle P compared to particle Q has a

P Q

Figure A.7: A potter’s wheel (see questions 30-32).

(a) greater angular speed.

(b) smaller angular speed.

(c) greater linear speed.

(d) smaller linear speed.

Now the potter decides to slow down the wheel.

31. Which of the following statements is correct regarding the angular velocity ~ω

of the potter’s wheel?
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(a) The direction of ~ω does not change with time.

(b) The magnitude of ~ω does not change with time.

(c) Both the magnitude and direction of ~ω change with time.

(d) Neither the magnitude nor the direction of ~ω changes with time.

32. The direction of the angular acceleration of the potter’s wheel at any instant
will be

(a) along the direction of the angular velocity.

(b) opposite to the direction of the angular velocity.

(c) perpendicular to the axis of rotation.

(d) perpendicular to the direction of the angular velocity.

33. A girl is sitting on a stool with her arms outstretched and is rotating with
constant angular velocity. The axis of rotation is fixed throughout the motion
as shown in figure A.8 (by dotted line). When she folds her arms toward her
body she acquires an angular acceleration. Which of the following statements
is true regarding the rotational motion of the girl-stool system?

Figure A.8: A girl sitting on a stool, rotating about a fixed axis (see question 33).
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(a) There exists an angular acceleration because both the magnitude and
direction of the angular velocity of the system changes.

(b) There exists an angular acceleration because only the direction of the
angular velocity of the system changes.

(c) A torque (~τ) acts on the system which results in the angular acceleration
~α as per ~τ = I~α (where I is the moment of inertia).

(d) Torque acting on the system is zero.

34. Consider the following statements. Which among them is/are correct?

• Statement I: Angular velocity of a particle depends on the choice of a
specified origin.

• Statement II: Angular velocity of a rigid body (rotating about a fixed
axis) depends on the choice of a specified origin.

(a) Statement I only.

(b) Statement II only.

(c) Both statements I and II.

(d) Neither statement I nor II.

Questions 35-37 are concerned with figure A.9. Figure shows a wheel
spinning about its axis. P is a point on the rim and O is the center of the
wheel. We consider accelerations about O.

P

O

Figure A.9: Schematic of a spinning wheel (see questions 35-37).
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35. The wheel is spinning about its axis with constant angular acceleration. The
tangential acceleration of the point P

(a) remains constant in magnitude.

(b) keeps increasing with time.

(c) is zero.

(d) is independent of angular acceleration.

36. The wheel is spinning about its axis with constant angular acceleration (an-
gular acceleration is in the same direction as the angular velocity). The mag-
nitude of the centripetal acceleration of the point P

(a) remains constant and non zero because a = αr (α and r are constant).

(b) increases with time.

(c) is zero.

(d) is independent of the angular acceleration.

37. The wheel is spinning about its axis with zero angular acceleration. For the
point P on the rim there exists

(a) tangential acceleration only.

(b) centripetal acceleration only.

(c) both tangential and centripetal acceleration.

(d) neither tangential nor centripetal acceleration.

Questions 38–39 are concerned with figure A.10. Figure shows a giant
wheel rotating about a fixed axis with increasing speed. The axis passes
through the center O. G denotes a girl sitting on the wheel.

The arrows numbered (1-4) represent directions to be referred while answering
question 38.

38. Which of the four arrows in the diagram best represents the direction of the
linear acceleration ~a of the girl at G (relative to the ground)?
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Figure A.10: A giant wheel (see questions 38-39).

(a) 1

(b) 2

(c) 3

(d) 4

39. Let ~r, ~a and ~α denote the position vector, linear acceleration and angular
acceleration (about O) respectively of the girl at any instant. Which of the
following statements is correct?

(a) ~a = ~α × ~r because the motion is circular.

(b) ~a = ~α × ~r because angular acceleration is perpendicular to the linear
acceleration.

(c) ~a6=~α ×~r because ~a does not denote the acceleration of the center of mass
of the whole system.

(d) ~a6=~α × ~r because ~a has a radial component.
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Appendix B

Open ended and free response
questions: Initial phase of
development

B.1 Examples

Below we provide examples of questions given to students during the ini-
tial phase of development. The theoretical analyses described in chapter
2 and our experiences while teaching the module on rotational motion
helped develop these questions.

1. The second hand of a clock moves from 12’O clock position to 4’O clock
position. How would you describe the angular speed of the second hand?
What are the different types of units that you will adopt ?

2. How are angular speed and linear speed different? Will linear speed alone
suffice to describe motion?

3. What do you understand by the terms ‘clockwise and anti-clockwise’, often
used in the context of angular motion?

4. Suppose a wall clock is transparent. You are free to move around and watch
the clock from all sides. Will the motion of the second hand be clockwise
always? Explain.
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5. A particle is in uniform circular motion. How is the direction of its angular
velocity determined ?

6. Consider an oscillating simple pendulum. Is it at rest at any point or time
during its oscillation. If yes, what do you think about angular velocity and
angular acceleration of the pendulum bob at that point or time? If your answer
is no, give reasons for your answer.

7. In the previous question what do you think about linear velocity and linear
acceleration.

8. How does the magnitude of angular velocity of an oscillating pendulum bob
vary as it moves from one extreme to the other?

9. How does the direction of angular velocity of the pendulum bob vary as it
moves from one extreme to the other? Does the direction remain same through
out? Explain your answer.

10. The previous question concerns the direction of angular velocity. What do you
think about the direction of linear velocity? Will its behavior be identical to
angular velocity.

11. How does the magnitude of angular acceleration of an oscillating pendulum
bob vary as it moves from one extreme to the other? Does it decrease or
increase monotonously?

12. How does the direction of angular acceleration of the pendulum bob vary as it
moves from one extreme to the other? Does the direction remain same through
out? Explain your answer.

13. Equation ~v = ~ω × ~r is always valid. True or False? Explain your answer. If
your answer is false, give example of a motion where the equation is not valid.

14. Consider any motion where the object has both linear and angular acceleration.
Is the equation ~a = ~α × ~r valid for the motion. Discuss by explaining each
term in the equation.

15. A particle has an angular velocity. Will it necessarily move in a circle? Discuss.
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16. A particle is moving in a straight line? Can it have an angular velocity ?
Explain.

17. A planet is moving in an elliptical orbit with sun at one of its foci. What do
you understand by the direction of linear velocity and angular velocity at a
point on the trajectory? Are they same.

18. What do you mean by angular velocity of a rigid body? Illustrate with an
example.

19. Consider a point (not lying on axis) on a rotating potter’s wheel. Indicate
the direction of its a) linear velocity b) angular velocity c) angular velocity d)
angular acceleration.

20. Is angular acceleration of a rigid body always directed along its angular veloc-
ity? Give an example to illustrate your answer.

21. A ring is rotating with uniform angular acceleration. Discuss whether it has
a centripetal acceleration.
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Appendix C

Winnowing process of items

C.1 Iterative evolution of items - Examples

Example 1:
Question 1 below was designed initially to probe student understanding of the

direction of linear and angular velocity. It was motivated by our interactions with
students which revealed that students harbor an array of misconceptions related
to the direction of angular velocity and their relationship with linear velocity. We
found that students ascribe aspects of linear velocity to angular velocity. Some of
them tried to answer the question by resorting to the equation ~v = ~ω × ~r and were
unaware that the equation was valid only for circular motion. All these observations
indicated that the question needs to be refined to be more specific. This itera-
tively led to the evolution of questions 5 and 6 in appendix A. Question 5 contains
distractors like ‘angular velocity is tangential to the orbit’ which are specific and di-
rectly incorporates students’ notions, in contrast to the earlier version given below.
Question 6 exclusively focuses on student understanding of the validity condition of
~v = ~ω × ~r. As mentioned earlier our interactions with students have revealed this
to be a widespread pitfall.

1. A planet is moving in an elliptical orbit with sun at one of its foci. At a point
on its trajectory ~v is the linear velocity and ~ω is the angular velocity of the
planet.

(a) ~v is parallel to ~ω.
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(b) ~v is perpendicular to ~ω.

(c) ~v is at an acute angle with ~ω.

(d) ~v is at an obtuse angle with ~ω.

Example 2:

At an early stage of development of the inventory, only 4 questions were de-
vised in the context of a simple pendulum. Two of them pertained to the
angular velocity ~ω and angular acceleration ~α at an extreme position. The
other 2 probed the variation of ~ω and ~α as the pendulum bob moved from
one extreme to the other. Question 2 given below was one among them. Our
interactions with students unveiled many interesting notions pertaining to stu-
dent understanding of ~ω and ~α of the pendulum bob. We have described this
pattern of reasoning in chapter 3 using the phrase ‘as ~ω behaves so does ~α’.
The question 2 below and a similar question on acceleration led to the evo-
lution of items 9-11 and 16-18 listed in appendix A. Questions were crafted
to probe magnitude and direction separately unlike the initial version given
below. The distractors got modified accordingly to incorporate student ideas
uncovered during the interviews with students. Evolution along this thread
continued even after phase 1 of administration. As mentioned in chapter 3, a
new item (8 in appendix A) was added.

2. Consider an oscillating simple pendulum. As the pendulum oscillates from
left extreme to the right extreme, which of the following is true regarding its
angular velocity.

(a) Only the magnitude of angular velocity changes.

(b) Only the direction of angular velocity changes.

(c) Both the magnitude and direction of angular velocity change.

(d) Neither the magnitude nor the direction of angular velocity change.

Example 3:
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The initial version of item 19 listed in appendix A was as given below. During
interviews with students we found that many chose the correct answer a. How-
ever their reasoning using the relation v = ωr is invalid in the context under
consideration. Hence we modified the distractor a to incorporate this pitfall.
As may be seen from appendix A, distractor now reads as ‘ωA > ωB because
v = ωr, v is constant and rA < rB.’ Also, we observed that many students
maintained that ωA = ωB because linear acceleration is absent. They assumed
that the absence of linear acceleration will imply the absence of angular ac-
celeration. Distractor c below was modified to incorporate this student idea.
It may be recalled that the context was a particle in rectilinear motion with
constant velocity (origin not on the line of motion) as shown in figure A.5.

3. The magnitude of angular velocities of the particle at points A and B are ωA

and ωB respectively. Which of the following relations is true?

(a) ωA > ωB

(b) ωA < ωB

(c) ωA = ωB

(d) ωA = ωB = 0

Example 4:

Question 4 below was the preliminary version of item 25 in appendix A. The
item probed student understanding of the radial and tangential component of
velocity of a particle moving in a straight line (with constant velocity) as shown
in figure A.5. In our pilot studies we observed many students opting d. In
the subsequent interviews they made clear their reasoning. Most of them said
that since velocity of the particle is constant, its components also will remain
constant. We modified distractors so as to incorporate this notion. There
also existed another notion that the component of velocity remains constant
because no force is acting on the particle. As can be seen from appendix A
this aspect was also incorporated.
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4. Which of the following statements is correct regarding the linear velocity of
the particle?

(a) Radial component increases.

(b) Tangential component increases.

(c) Both radial and tangential components increase.

(d) Neither radial nor tangential component increases.

Example 5:

Item 26 (see appendix A) was developed to probe student understanding of
the angular velocity of a rigid body. An initial version of item 26 is given
below as question 5. In our interviews with the students, we observed that
many students regard center of mass to be important while describing the
angular velocity . Most of them said that center of mass is a representative
point of the rigid body. Also they pointed out that an angle is always traced
by position vector of a particle. We reframed the distractors to include these
student notions pertaining to the center of mass (CoM). Related modifications
were made in the distractors to items 27 and 28. As one can see from appendix
A these items have distractors involving notions related to CoM.

5. Angle ∆θ in the definition of angular velocity of a rigid body ω = ∆θ/∆t

(rotating about a fixed axis) is

(a) traced by position vector of any particle on the rigid body with respect
to a specified origin.

(b) traced by a line perpendicular to the axis from any particle on the body.

(c) determined by angles between two co-ordinate systems, one fixed on the
body and the other fixed on ground.

(d) determined by taking the vector sum of angular velocities of all the par-
ticles on the rigid body.
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C.2 Minor modifications - Examples

Minor modifications in wording of certain questions or the distractors were made,
some after the first phase of administration. They enhanced the clarity of the
questions and facilitated easier interpretation during analysis of the response pattern
of students.

Example 1:
During the first phase of administration the form of item 9 in appendix A was as

given below. The distractors were modified to exactly match those of item 17 which
probed angular acceleration. This in turn helped us to compare student thinking
about angular velocity and angular acceleration.

1. Throughout the motion of the bob from A to D the magnitude of the angular
velocity of the bob

(a) remains same.

(b) keeps on increasing.

(c) keeps on decreasing.

(d) first increases and then decreases.

Example 2:

Question 2 below is an earlier version of item 11 (see appendix A). The part
‘moves up and down’ in the statement of the question was replaced by ‘going
from A to D and from D to A’. This modification was suggested by experts
during validation and some of the students during interviews, to remove any
ambiguity.

2. The angular velocities of the bob at a point C on the trajectory as it moves
up and down are

(a) equal in magnitude, but differ in direction.

(b) the same in direction, but differ in magnitude.
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(c) different in both magnitude and direction.

(d) equal in both magnitude and direction.

Example 3:

Question 3 below is an earlier version of item 29 in appendix A. During pilot
studies some of the students pointed out that the points on the axis of the
ceiling fan were at rest. It was not explicitly stated that we exclude these
points. In addition, the phrase ‘at any instant of time’ was repeated in all the
choices. The phrasing and structure of the question and the ensuing choices
were appropriately changed.

3. For a ceiling fan rotating about a fixed axis which of the following statements
is true?

(a) At any instant of time every particle on the fan has the same linear
velocity only.

(b) At any instant of time every particle on the fan has the same angular
velocity only.

(c) At any instant of time every particle on the fan has the same linear
velocity as well as the same angular velocity.

(d) At any instant of time every particle on the fan has different linear ve-
locities as well as different angular velocities.

Example 4:

Question 4 below is an earlier form of item 32 ( see appendix A). In the pilot
studies distractor d did not attract many responses. Also experts and a few
students pointed out that ‘direction of motion of wheel’ made little sense. As
such we replaced it by the option ’perpendicular to the direction of angular
velocity’ in subsequent administrations.

4. The direction of angular acceleration of the potter’s wheel at any instant will
be
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(a) along the direction of angular velocity.

(b) opposite to the direction of angular velocity.

(c) perpendicular to the axis of rotation.

(d) along the direction of motion of the wheel.

Example 5:

Items 35 and 36 in appendix A served to elicit a case of indiscriminate use
of equation a = αr as discussed in chapter 6. The earlier version of item
36 was as given by question 5 below. Distractor a was expanded as ‘ remains
constant and non zero because a = αr, α and r are constant’. This modification
was to enable an unambiguous interpretation of student response. Also an
expert pointed out that a constant angular acceleration can imply a decreasing
centripetal acceleration as well. Though the choices provided has only one
answer (b) we added a caveat in the latest version of the statement of the
item that ‘angular acceleration is in the same direction as angular velocity’,
to address the concern.

5. The wheel is spinning about its axis with constant angular acceleration. The
magnitude of the centripetal acceleration of the point P

(a) remains constant and non zero.

(b) increases with time.

(c) is zero.

(d) is independent of angular acceleration.

C.3 Dropped questions - Examples

Example 1:
The experts agreed that checking for a knowledge of units is important, but

voted against testing them in a conceptual inventory. As such item 1 below was
excluded from the inventory.
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1. When the minute hand moves from the 12 O’clock position to the 6 O’clock
position, the angular speed of C (see figure A.1) in SI units is

(a) π/1800 rad/s

(b) 1/3600 Hz

(c) π/60 rad/s

(d) π/1800 Hz

Example 2: Item 2 below was devised to test student understanding of the
equations ~v = ~ω ×~r and ~a = ~α ×~r. These equations are often used for solving
problems in rolling motion, where the particle analyzed is the center of mass
of the rigid body. When applied to a general particle ~v and ~a in the equations
refer respectively to the tangential component of the velocity and acceleration.
We wanted to investigate whether students can understand these intricacies.
But in the present case the equations become trivially valid for center of mass
since ~v=~a=~r=0. Moreover as pointed out by experts, the distractors lack
clarity and are clumsy. As such we dropped it and incorporated some of the
aspects in other items.

2. Let ~v, ~a be the linear velocity and the acceleration respectively of any arbitrary
point on a pulley (rotating about a fixed axis with increasing speed). Let ~ω

denote the angular velocity and ~α the angular acceleration of the pulley. Which
of the following statements is true?

(a) ~v = ~ω × ~r because ~v is not necessarily the center of the mass.

(b) ~a = ~α × ~r because ~a is not necessarily the acceleration of the center of
the mass.

(c) Both relations ~v = ~ω × ~r and ~a = ~α × ~r hold true.

(d) The relation ~v = ~ω × ~r holds true but ~a = ~α × ~r does not because there
exists a centripetal acceleration

Example 3:
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B

A

O

Figure C.1: A circular groove

Question 3 below involved mostly algebraic manipulations. We were careful
to avoid items involving calculations. So the question was removed.

3. Figure C.1 shows a circular groove with center O on a horizontal plane. A ball
starts at rest from A and moves clockwise with constant angular acceleration
~α in such a way that unobstructed it reaches B with angular velocity ~ω. At
the same instant another identical ball is set to motion anticlockwise from B
with initial angular velocity ~ω and constant angular deceleration of magnitude
α. The angular displacement of the first ball (about O) when the two balls
meet is

(a) π/4 rad

(b) π/2 rad

(c) 2π/3 rad

(d) 3π/4 rad

Example 4:

The reasons given by experts to exclude item 4 below was that it appeared
out of syllabus for higher secondary school students.

4. Which of the following statements is not true for a rigid body?

(a) Distance between the different particles constituting the rigid body does
not change.
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(b) Sum of internal forces acting on particles of the rigid body is zero.

(c) In reality no body is truly rigid.

(d) The number of coordinates required to specify the locations of all particles
of a rigid body is 3N, where N is the number of particles.

Example 5:

Though nothing explicitly wrong with question 5 below, experts suggested
that the item was too trivial since the body is rotating about a fixed axis.
Some of them also pointed out that the distractor d was irrelevant.

5. The direction of angular velocity of a rigid body rotating about a fixed axis

(a) is sometimes along the axis of rotation.

(b) is always along the axis of rotation.

(c) is never along the axis of rotation.

(d) depends on the actual configuration of the rigid body and the directions
of forces acting on it.

Example 6:

Question 6 below was developed as part of items on rigid body rotating about
a fixed axis. Experts pointed out that all other items strictly adhered to the
condition that the axis is fixed. They suggested that the question would be
more appropriate in an inventory on rolling without slipping and as such the
item was excluded.

6. A solid cylinder is held horizontally by two wires as shown in figure C.2. The
wires are wrapped around either ends of the cylinder. The wire ends are tied
to hooks on the ceiling. The cylinder falls down as the wires unwind. The
direction of angular acceleration of the cylinder

(a) will be along the direction of gravity.

(b) will be along the direction of angular velocity of the cylinder.
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Figure C.2: Solid cylinder rolling down

(c) will be opposite to the direction of angular velocity of the cylinder.

(d) keeps changing with time.

Example 7:

Item 7 was dropped because the same conceptual aspects are being probed by
other questions (item 30 in appendix A and to some extend item 29).

7. A girl is sitting on the outermost seat of a merry go round rotating uniformly
about a fixed axis. After sometime she shifts to a seat closer to the axis. Her
angular speed with respect to a person on the ground

(a) remains same.

(b) decreases because the circle which she travels gets smaller .

(c) increases because her linear speed changes.

(d) is zero because she is sitting idly on the seat (ignore the time while she
was shifting).

Example 8: Question 8 below was dropped because experts pointed out that
the item should be part of a separate inventory on non inertial frame of ref-
erence at the undergraduate level. It is inappropriate at the higher secondary
level as the topic is hardly covered except for passing mention.

8. Let the angular speed of the girl (see question 7 above) with respect to a
person on the ground be ω at some instant of time. A boy is sitting on the
merry go round closer to the axis than the girl. The angular speed of the girl
with respect to the boy will be



160 Chapter C. Winnowing process of items

(a) ω.

(b) greater than ω.

(c) less than ω.

(d) zero.

Example 9:

The reason for dropping item 9 below was because it concerns rolling without
slipping. Experts suggested that the topic needs to be dealt separately as it
is complex on its own and has a host of issues that need to be investigated.

9. A wheel of radius R is rolling without slipping on a horizontal surface. The
condition for rolling without slipping is v = ωR. Regarding v and ω which of
the following statements is correct?

(a) v is the linear speed and ω the angular speed of any of the particle on
the wheel.

(b) v is the linear speed and ω the angular speed of the center of mass of the
wheel.

(c) v is the linear speed of the center of mass and ω the angular speed of the
wheel about the axis passing through the center of mass.

(d) v is the linear speed of any of the particle on the wheel and ω the angular
speed of the wheel about the axis passing through the center of mass.
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