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Chapter 1: Introduction 

1.0 Background: Mathematics and mathematics educa-
tion  

Mathematics has an important place in the elementary school curriculum in 

India, as in all other parts of the world. It has a high status and value in the so-

ciety, as an intellectual endeavour and as a subject which provides better op-

portunities for employment. It is seen as an “epitome of precision, manifested 

in the use of symbols in calculation and in formal proofs” (Lakoff and Nunez, 

2000, p. xi). But, it is not in this symbolic rigour that the content of mathemat-

ics lies; it lies in human ideas (ibid.). Mathematics is mind dependent and not 

Platonic. Mathematics is shaped, developed and structured by the human 

mind. Mathematics began from the activities of counting, measuring and 

evolved into a discipline with its own concepts, problems and syntax, which 

could be used in many other disciplines (Jacquette, 2002). In the process, it 

became separated from the practical contexts and grew in its abstraction char-

acterized by precision, generality and certainty. In the school curriculum as 

well, the subject was translated in a similar fashion, with emphasis on its ab-

stract nature from the beginning. The alienation of most students from mathe-

matics can be attributed to remoteness of the subject (its ‘mind-

independentness’) and lack of a sense of meaning for the symbols, these being 

considered arbitrary marks on paper. This is also one of the reasons for the 

large number of students opting out of optional mathematics courses and in 

general, dropping out of school education due to failure in mathematics. 

In an effort to get important and challenging mathematics accessible to stu-

dents and strike a balance between the precision and rigour of mathematics 

and its “social construction”, the new National Curriculum Framework (2005) 

of India aims to move away from the ‘utilitarian’ view of mathematics which 

equipped students with basic computational ability, to developing among stu-
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dents the ability to “think and reason mathematically, to pursue assumptions to 

their logical conclusion and to handle abstraction” (NCF, 2005, p. 42). By 

adopting this approach, the new curriculum framework intends to tackle the 

large number of dropouts from school due to failure in mathematics. The ear-

lier reform movements in the United States of America, like the ‘New Math’ 

movement which introduced ideas like set theory and inequalities, followed by 

the ‘back to basics’ movement with focus only on basic skills had failed to 

achieve the desired outcome of getting students interested in mathematics, to 

develop mathematical thinking in them and retain them for advanced studies 

in mathematics (Resnick and Ford, 1981; Schoenfeld, 1987, 2002).  

Subsequently, reform movements, including the one in India, have endeav-

oured to improve the quality of mathematics that is to be taught and learnt and 

include as many students in the teaching-learning process of mathematics as 

possible and teach them important and meaningful mathematics (NCF, 2005). 

The focus in this reform movement has been on multiple ways of approaching 

a problem, reasoning and verbalizing explanations, which are better indicators 

of procedural and conceptual understanding of students. Richard Skemp 

(1919-1995) pioneered the important distinction between ‘instrumental’ and 

‘relational’ understanding underlying the difference between ‘knowing what’ 

and ‘knowing why’. He also pointed out the reason for students’ difficulty in 

mathematics in the nature of abstraction (reflective against empirical abstrac-

tion, as explained by Piaget) required for constructing concepts in mathemat-

ics. Hans Freudenthal (1905-1990) was another person who led the goal of 

making mathematics meaningful to students by starting a school of thought 

called Realistic Mathematics Education. This approach believed in beginning 

from a context that the students could relate to, and through the processes of 

‘horizontal’ and ‘vertical’ mathematization, leading to context free exploration 

of properties and relationships within mathematics.  
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1.1 The state of algebra education 

Within mathematics, algebra has occupied a very special place. The teaching 

and learning of algebra has been highly debated and contested in the last three 

decades with respect to its role and purpose as well as the aspects which need 

emphasis in algebra. Its abstract nature and demand for precision in symbolic 

recording has been a source of concern and failure for many students. This has 

led to the exclusion of large numbers of students since algebra is the gateway 

to success in many prestigious professions as well as academic careers. Alge-

bra is a discipline which deals with the study of structures, and is a means for 

exploring patterns, relationships, and expressing them as generalities. It thus 

serves as a major analytical tool in many branches of mathematics and in other 

disciplines which use mathematics for reasoning, justifying and proving. It 

provides us with concepts, symbols, and techniques for working on symbols, 

using which one can first express a situation symbolically and deduce results 

with certainty, thus making it one of the most preferred symbol systems for 

purposes of reasoning. Much of the higher mathematics and sciences, takes 

algebraic expressions as the input, for example, for understanding and using 

functions, and in calculus.  

1.1.1 The arithmetic algebra divide 

Algebra is the domain which first takes students away from concrete situations 

and operations on numbers to abstract rules, properties and generalizations 

involving the use of letters, making it difficult for students to cope with this 

new domain. It poses the first major challenge of making sense of symbols and 

working on them, also because symbolic expressions are no longer amenable 

to a sequential processing leading to a numerical solution (Booth, 1988). Det-

tori et al. (2001) describe the break between arithmetic and algebra as consist-

ing of a ‘change in the nature of problem resolution’ (from performing step by 

step computations to defining relations and transforming them by means of 

formal manipulations) as well as a change in the ‘nature of mathematical ob-
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jects’ (not just numbers but variables, unknowns, parameters). Students have 

to move beyond looking at expressions as sequences of binary operations to 

working with the whole expression.  

Notations in algebra are also responsible for many of the difficulties with al-

gebra. 3+a cannot be added up to 3a as they are different kinds of terms, and 

denotes the sum of 3 and ‘a’, while 3a stands for the product of 3 and ‘a’ and 

does not denote place value notation. Together with these changes in notation, 

students have to deal with multiple uses of ‘+’ and ‘–’ sign: used as an opera-

tion sign for adding or taking away, sign of the number, denoting increase and 

decrease, and the relationship between two numbers. Similarly the ‘=’ sign has 

to be considered as signifying the result of an operation or a set of operations 

and also the sign of equivalence between two expressions (Wagner and Parker, 

1999). Over and above all these, one needs to construct the meaning of the let-

ter, which also varies with the context in which it appears (unknown in an 

equation, generalized number in identities and variable in functions). Students 

have been found to have many misconceptions regarding the use of letter in 

mathematics, for example, that the letter is the short hand for an object, the 

letter which precedes another in the order of alphabets has a smaller value than 

the one which succeeds, different letters must always have different values, 

etc. (Kuchemann, 1981; Booth, 1984, MacGregor and Stacey, 1997; Stacey 

and MacGregor, 1997a).  

Further, the difficulty for symbolic algebra arises from students’ prior expo-

sure to arithmetic computations. Students initially get familiar with binary op-

erations and then preparation for algebra begins by introduction to evaluating 

a sequence of binary operations on numbers presented as a symbolic expres-

sion. Thus, procedures and conventions of operating on these sequences of 

numbers and operations are introduced so that one arrives at a unique value for 

the expression. But hardly ever are these procedures abstracted to form proper-

ties of operations, which are essential to understand the rules of transforming 
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algebraic expressions. Attending to the properties of operations and structure 

of expressions is one of the essential prerequisites for learning symbolic alge-

bra (Kieran, 1989a, 1992; Stacey and MacGregor, 2001, Linchevski and Liv-

neh, 1999).  

There are also differences in approaching problems in arithmetic and algebra. 

While in the arithmetic approach students can work from the known condi-

tions and find intermediate numerical solutions to arrive at the solution to the 

problem, it is essential in the algebraic approach to use expressions to repre-

sent the problem situation using a letter for the unknown (Bednarz and Jan-

vier, 1996; Stacey and MacGregor, 1999), distinct from solving the problem. 

Thus, in the context of arithmetic, students do not appreciate the purpose of 

recording operation sequences or representing problem situations. They also 

do not abstract the properties and rules of transformation which can be consis-

tently applied while manipulating expressions (Booth, 1988). They only im-

plement procedures for finding the numerical solution to a problem (posed us-

ing symbols or embedded in word problems) which may depend on the con-

text or the numbers involved, and thus do not engage in general solution 

methods applicable over a range of problems (Ursini, 2001). The methods of 

teaching and learning generally used force the students to rigidly follow algo-

rithms without any space for reflecting on them and for exploring properties 

and relations between numbers and operations. This is unhelpful to students in 

understanding the equivalence of different procedures, or their generalizabil-

ity, making it difficult to shift to algebra. Students’ poor skills in representing 

problem situations and weak understanding of transformation of expressions 

do not allow the students to move to the step of deducing or inferring about 

the situation, which is the crux of algebra (Booth, 1989a). 

1.1.2 Reconceptualization of algebra: solutions and problems 

Researchers’ concern with students’ understanding of properties of operations 

and structure of expressions and their resulting failure to deal with algebraic 
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symbolism led to various reconceptualizations of algebra. Some of these ap-

proaches (to be discussed below) moved away from emphasizing a strong 

connection with arithmetic expressions, which was believed to involve peda-

gogic hurdles and to be a source of misconceptions and was considered diffi-

cult (Mason et al., 1985; Lee and Wheeler, 1989, Usiskin, 1988). However, 

studies have been done with students in the middle school level which have 

made efforts to explore and analyze the connection between arithmetic and 

algebra bringing a focus on the structure sense of the expressions in the two 

domains – arithmetic and algebra (Kieran, 1989a; Linchevski and Livneh, 

1999, 2002; Livneh and Linchevski, 2003; Liebenberg et al., 1998; Liebenberg 

et al. 1999a), thereby showing the promise in the connection between the two 

domains. These will be discussed in detail in the next chapter. 

Recent studies by Blanton and Kaput (2001), Carpenter and Franke (2001) add 

evidence to the power and accessibility of generalization, even with very 

young children at the beginning of primary school. In these studies, children 

were able to develop their symbolization, reasoning and analytical skills, 

through an emphasis on verbalizing explanations and negotiating meaning of 

the symbols. Also, studies by Carraher et al. (2000, 2001, 2003) and Brizuela 

et al. (2000) indicate that some children as young as in grades 3 and 4 can han-

dle functions by treating each of the four basic operations as functions and use 

letters to both stand for an unknown and a variable. They can also solve linear 

equations building their own strategies for working on the unknown. There are 

many other studies which demonstrate young children’s capabilities to handle 

simple algebraic situations (e.g. Carpenter et al. 2003; Ainley et al., 2003), not 

always using algebraic symbols but inventing ways (diagrams, non-

conventional symbols) to explain their reasoning and the solution. These ap-

proaches capitalize on bringing forth the generality and pattern in the opera-

tions in arithmetic, which are within the reach of the young children and can 

provide a good ground on which the more complex algebraic understanding of 
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both the syntax and the semantics of symbolic expressions, characteristic of 

middle school, can be built.  

In this context, Schifter (1999) highlighted the importance of giving space and 

opportunity to students to explore alternative strategies to solve problems and 

explaining their understanding of the problem as well as the process of finding 

a solution. Both word problem contexts and calculation tasks can act as poten-

tial sources for learning about operations, properties and relationships, which 

can lead to the development of operation sense. The purpose of such tasks in 

the beginning years is to make the implicit understanding of students explicit, 

which with the use of appropriate symbols can be used in formal algebra. 

These studies represent a countertrend against the initial studies in the field of 

algebra education which deduced Piagetian stage-like features in acquiring the 

concept of letter/ variable (Kuchemann, 1981) and identified the lack of cogni-

tive maturity as a reason for difficulty in dealing with algebraic symbols 

(Booth, 1984). So, the view that algebra is abstract and can be dealt only when 

the child has reached formal operation stage as identified by Piaget, has been 

challenged by several studies.  

Researchers have also looked for alternative approaches to introducing algebra 

like pattern generalization (e.g. Rojano and Sutherland, 1991; van Reeuwijk 

and Wijers, 1997). It is a potentially rich way to introduce algebra and embeds 

algebraic symbolism in a meaningful context. Some studies, like the ones just 

mentioned, have shown the progress the students make and the understanding 

of algebra they display, while some others have pointed out the complexities 

involved in the task (Lee, 1996; Stacey and McGregor, 2001). The complexi-

ties arise chiefly because students fail to understand the requirements of the 

task; that they need to find a pattern which can be generalized, it needs to be 

denoted by a common rule in an algebraic form which can be inductively in-

ferred from mechanisms rooted in counting. Also there are not sufficient em-
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pirical studies which show this approach to be better than others or the tradi-

tional approach (Stacey and MacGregor, 2001).  

Numerous studies and experiments were carried out in the 1980s and 1990s on 

teaching students the meaning of the letter, the ‘=’ sign, manipulating expres-

sions and solving equations (e.g. Kieran, 1981; Booth, 1984; Chalough and 

Herscovics, 1988; Filloy and Rojano, 1989; Linchevski and Herscovics, 

1996). In the process, many of them used concrete models to introduce the 

new symbols. The results are mixed with regard to efficacy in the teaching and 

learning of algebra. Some of the efforts, like trying to teach solving equations 

using the balance or area model, had limited success mainly due to the number 

of translations required between the abstract and the concrete world (Filloy 

and Rojano, 1989). Lins (2001), on the other hand, feels that these situations 

create a ‘semantic field’ which enables the students to develop symbols as 

well as attach meaning to them. A point which has been made against this ap-

proach is that it might be difficult for these students to move out of the con-

crete settings and generalize to other situations or even to treat the symbols on 

their own without considering the referent at each step (Balacheff, 2001). 

Also, the models and situations have a limited scope with respect to the con-

cepts or procedures they can address and it is not possible to cover the domain 

of algebra using one such model/ situation.  

Another approach to algebra is through the route of problem solving which 

mostly involves formulation of expressions and equations to mathematize real 

life or any other situation which is relevant/ meaningful, including situations 

within mathematics like justifying and proving. This is yet another fruitful ac-

tivity in which students can be engaged but requires some basic knowledge of 

algebraic symbols to represent the situation – being aware that manipulating 

this representation would lead to a solution for the problem and correct ma-

nipulation followed by interpretation will complete the task. It is a matter of 

emphasis that one decides to teach the manipulation skills whenever required 
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within the context or teach the basic skills before moving on to the more chal-

lenging situations as in the more traditional approach.   

Recently the use of technology has opened many more avenues for approach-

ing algebra, chiefly through the use of functions in the spreadsheet, and CAS 

environments and in other environments with multiple linked representations 

(Kaput, 1989). These have been especially useful in introducing algebra as 

functions, where different ways of representing functions can be highlighted 

as well as can be linked so that the changes in one form of representation is 

visible through changes in others. For example, changes made in the tables of 

values of a function are reflected in changes in the graphical representation 

and the symbolic expressions. These environments allow the students to focus 

on the more challenging aspect of problem solving – understanding the de-

mands of the problem, correct representation and interpretation rather than 

manipulation of symbolic expressions. But for a successful use of these envi-

ronments students need abilities to choose the correct keys to enter the data 

and process it further as per the requirements of the task, keep track of the so-

lution process and judge the correctness of the solution. It is not clear that ap-

proaches using technologies such as CAS or multiple-linked systems can side-

step this problem. Ball, Pierce and Stacey (2003) have used the concept of 

equivalent expressions to develop and monitor students’ algebraic thinking in 

secondary grades equipped with CAS. These students need conceptual under-

standing and technical facility with algebra in order to see if the expression 

that they had entered or the one that CAS had simplified for them was the ap-

propriate one and how it could be converted back to the standard form. Pierce 

and Stacey (2002, 2004) call it the ‘algebraic insight’, required to work with 

algebraic transformational activity. Algebraic insight is considered as being 

analogous to number sense in arithmetic and as a subset of ‘symbol sense’ as 

characterized by Arcavi (1994). Merely abandoning techniques of manipulat-

ing algebraic symbols does not lead to a better understanding of algebra as a 
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basic minimum understanding of symbols is essential to be able to use these 

powerful systems (Kieran, 2004).  

In spite of the possible advantages, this medium is not suitable for a country 

like India due to infrastructural limitations. Moreover, knowing the technique 

of solving the problem is equally important as solving the problem (Kieran, 

2004) which need not necessarily be computer/ technological environment 

based as is contended by some researchers. She indicates research studies 

which highlight the recently developing consensus about the interrelationship 

between techniques and conceptual knowledge rather than opposition and that 

transformational activities can themselves form the ground for meaning mak-

ing. One does not only understand the meaning of the symbols by attaching a 

referent to it from a context, but also by acting with and on the symbols. This 

action gives a sense of the operations and properties which can be associated 

with them. Moreover, symbols arise to express ideas concisely, but this act of 

expression itself using symbols broadens the idea, leading to new ideas and 

symbols (Arcavi, 1995). The objects in the algebraic world cannot exist with-

out the processes on them; and thus the separation between algebra for prob-

lem solving and algebraic symbol manipulation is misplaced. Thus, it is once 

again essential to understand symbols flexibly: as processes and products 

which can be manipulated (Sfard, 1991; Dubinsky, 1991; Tall et al., 2000).  

Finally, the choice of approaching algebra has to take into account students’ 

ways of thinking, understanding and reasoning in the classroom as well as take 

into consideration the theoretical understanding of algebraic activity. Alge-

braic understanding according to Drouhard and Teppo (2004, p. 249) is “char-

acterized by the way in which a student relates the sign and its meaning to a 

larger, connected set of relationships – that is, a way of representing, organiz-

ing, and acting mathematically within a particular syntactic structure”. The 

fact that a student has made sense or meaning of a sign system/ symbols can 
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be interpreted from the flexibility with which he/she can interpret it, use them 

in novel ways and explain procedures which go beyond the written steps.   

1.2 Rationale for the study 

The above description draws on nature of debates that have been prevalent in 

the area of algebra education. These debates, as we have seen, have largely 

dealt with clarifying issues related to the content of algebra, its aims and pur-

pose and the possible ways of introducing it. Although many efforts have been 

made towards better teaching and learning of algebra in many other countries, 

there has not been much systematic research in mathematics education or even 

specific areas of mathematics in India. Like in any other country, students’ 

performance in India is equally worrisome. In a recently conducted study in 

the top 200 schools in India by Educational Initiatives and Wipro (2006), it 

was found that only 23% of class 6 students could correctly solve an expres-

sion like10+30÷5-2 with 70% of the students writing the answer 6 for this ex-

pression. In an earlier study, 80% of grade 6 students in the sample drawn 

from two schools who had undergone instruction in algebra failed to add or 

subtract two algebraic expressions (Banerjee, 2000).  

With the advent of the new National Curriculum Framework (NCF, 2005) and 

change in the curriculum together with the text books in the country, it is es-

sential to undertake research in specific areas of mathematics and larger issues 

of approaches to teaching-learning of mathematics in the classroom, not only 

to fulfill the vision statement of the new curriculum but also to strengthen and 

broaden curricular choices. Also, as has been noted earlier, algebra being the 

gateway to much higher learning, failure in it leads to non-enrollment in many 

courses which use algebraic symbolism. Thus, it is important to understand the 

conceptual changes which the students experience while moving to the middle 

school, especially due to the introduction of algebra, and identify ways to ad-

dress the problems which arise in the course of its introduction. In this thesis, 

an effort will be made to understand deeply the connection between arithmetic 
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and algebra and propose a sequence for developing students’ competence in 

algebra. This is important not only from the Indian point of view where there 

is an initiative to reform the curricula and include more students in the teach-

ing-learning process, but also to throw light on the long standing debates in 

algebra education about issues of meaning, symbols, manipulation of symbols 

and purpose in algebra. 

1.3 Research questions 

The study aimed to address the following research questions: 

• What kind of arithmetic understanding would help in learning symbolic 

algebra? 

o How should the teaching of arithmetic expressions be restructured to 

prepare for a transformational capability with algebraic expressions? 

o How effective is such a teaching learning sequence in understanding 

beginning syntactic algebra? 

o Which tasks of the ones identified are more effective in making the 

shift possible from arithmetic to symbolic algebra? 

• Does understanding the syntax and symbols of algebra support students in 

understanding the purpose of algebra and in the application of algebra for 

generalizing and justifying? 

• What meanings do students attach to letters, expressions and syntactic 

rules of transformations in this learning approach?  

• How do procedural understanding and structure sense of expressions mu-

tually support one another? 
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1.4 Scope of the study 

The research being reported here was motivated by three issues: approach to 

algebra, major difficulties faced by students while learning algebra, and the 

need to systematically investigate the relation between arithmetic and algebra. 

The arithmetic-algebra sequence is followed in the traditional curriculum in 

India. From the viewpoint of acceptability to the teaching community, drasti-

cally changing the approach to algebra was thought not to be desirable. The 

focus was rather on an intervention in the classroom with the aim of making 

the transition from arithmetic to algebra smoother by exploiting the structure 

of arithmetic expressions. There is enough evidence in the literature to suggest 

that the link between arithmetic and algebra would be beneficial for the stu-

dents to move to algebra. Some of these studies focused on notational/ repre-

sentational similarity between the two domains and used that as the launching 

pad for algebra (e.g. Booth, 1984, Malara and Iaderosa, 1999). Some others 

used the computational properties of arithmetic expressions and generalized 

these properties of operations to algebra (e.g. Linchevski and Livneh, 1999; 

Liebenberg et al., 1998, 1999a, b; Malara and Iaderosa, 1999; Livneh and 

Linchevski, 2003). A few also used correct parsing followed by order of op-

erations and exploration of properties of operations in order to make the transi-

tion to algebra (e.g. Thompson and Thompson, 1987).  

Except for the study by Thompson and Thompson (1987) which actually 

trained students to perceive the structure of expressions and appreciate the 

constraint of certain transformations but in a limited situation, the other studies 

focused largely on computational features and their generalizations to make 

the transition to algebra. This always did not lead to the desired effect on the 

students and they still failed to see the equivalences in the transformation rules 

in arithmetic and algebra and continued to work on algebraic expressions simi-

lar to computational arithmetic without abstracting properties and constraints 

of operations. The present research study builds on these insights from the lit-
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erature and proposes a way to deal with the arithmetic-algebra connection and 

tackle the errors due to faulty perception of structure of expressions, which 

have been found to be the main hurdle in understanding symbolic algebra.  

The study capitalized on the intuitive understanding among students of num-

bers and operations developed during learning arithmetic and focused on the 

structural aspect of arithmetic expressions in order to develop a teaching-

learning sequence for transiting to algebra. The objectives of the teaching-

learning sequence were to strengthen both procedural knowledge, that is, the 

calculus of algebra – knowledge of rules, conventions and procedures for 

working on expressions, and structure sense – sense of the composition of the 

expression, how the components are related to the value of the expression and 

their relation among each other, for arithmetic and algebraic expressions. 

Meaning for symbols was created through two broad sets of activities: work-

ing with syntactic transformations and working with contexts that lend pur-

pose to algebra. The study engaged in analyzing students’ responses to the 

various tasks, and identifying the nature of the support (concepts, tasks) that is 

required to make the transition. This fed back into the development of the 

teaching module, thereby evolving and clarifying the approach that facilitates 

students in making the transition. 

The research study being reported here is a design experiment and has been 

carried out with grade 6 students from two schools in Mumbai. Grade 6 is the 

level when students first learn algebra and there was no effort to lower the 

stage at which algebra can be introduced. Five trials were conducted with dif-

ferent groups of students between the years 2003-2005 to evolve the teaching 

learning sequence and much time was spent in developing understanding of 

syntactic transformations in the sequence. The first two trials were exploratory 

in nature and the last three form the main study. Thirty one students in two 

groups were followed as part of the main study for a year. The study began 

with the aim of exploiting the structure of arithmetic expressions for teaching 
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algebra but the exact nature of arithmetic and the tasks that would enable stu-

dents to perceive the structure and make the connection with algebra took time 

to develop. The role of procedures, rules, concepts in the whole sequence and 

in attempting various tasks had also to be clarified. The study did not aim to 

prove the efficacy of the instructional approach being discussed with respect 

to traditional or any other approach. It aimed instead, at an internal under-

standing of its effectiveness by exploring the changes in students’ understand-

ing and thinking processes as they developed new concepts and tools through 

interaction with the instructional sequence. The instructional sequence was 

repeatedly carried out with groups of students with the aim of evolving the 

sequence till some evidence was observed where students indeed saw the con-

nection between arithmetic and algebra.  

1.4.1 The content of algebra and the approach in the study 

The approach that was developed keeping the aims in view, tried to deal with 

the semantic-syntactic problem which algebra brings with it. The approach 

adopted in the study could be characterized as ‘generalized arithmetic’ which 

treats algebra as encoding general rules of operations in arithmetic like com-

mutativity, associativity, distributivity, thereby focusing on the structural as-

pect of the number system (Wagner and Kieran, 1989; Kaput, 1995). This was 

complemented using tasks which took a more comprehensive view towards 

generalization – exploring and finding relations among numbers/ quantities, 

sequence of operations and shapes in patterns and justifying and proving some 

of the patterns, where algebra was used as a tool. To put it in Kieran’s (2004) 

words, the students were engaged first in transformational activities (focusing 

on the syntactic aspects like evaluating, simplifying, identifying equality and 

reasoning about these). The idea was to allow students to engage with under-

standing and articulating relationships, properties and processes and represent 

them in the context of arithmetic (which is largely computational in the tradi-

tional approach) and then simultaneously learn to use these properties in the 
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context of algebra. The earlier studies (e.g. Kuchemann, 1981; Booth, 1984) 

showed lack of these ideas to be a major stumbling block for students for mov-

ing to algebra.  

This was followed by global/ meta-level activities where algebra was used as a 

tool for problem solving, generalizing, justifying, proving and predicting 

(Kieran, 2004). These contexts are quite challenging and have demands more 

than knowing the meaning of the letter and its use in representation such as: (i) 

knowing the requirements of the task, (ii) deciding a plan of action based on 

this knowledge, (iii) choosing an appropriate representation, (iv) knowledge of 

transformation of expression, (v) goal directed manipulation, and (vi) interpre-

tation of the result. It would have been difficult to work on these situations 

without any knowledge of manipulation of algebraic expressions in a paper 

and pencil situation. The interest was rather on exploring the connection the 

students make between the transformational tasks and the global/meta-level 

tasks, the students having undergone a specific set of instructions for the trans-

formational tasks.  

These two kinds of tasks are complementary and inculcate the understanding 

of algebraic symbols and their use in solving problems. It is only the algebraic 

way of solving problems which can ascertain a solution to be correct, com-

plete and gives a deeper comprehension of the questions together with under-

standing of their solutions (Dettori et al., 2001). For a complete sense of alge-

bra one would need to build an understanding of both the syntactic (based on 

structure of expressions/ equations and rules which define the nature of possi-

ble transformations) and the semantic (based on meaning of the letter/ expres-

sion/ equation) aspects of algebra. The syntactic aspect feeds into the more 

challenging problem solving part and while one tries to work with algebraic 

expressions and equations, one also simultaneously unravels many of the se-

mantic features in the new ways of interpreting the same representation/ ex-
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pression which vary in ‘intention’ but not in ‘denotation’ (see Arzarrello et al., 

2001).  

1.4.2 Overview of the thesis 

In the context of this design experiment, data from various sources will be 

used to answer the research questions posed. In the next chapter (Chapter 2), 

review of literature will be presented to set the background for the study as 

well as to make an argument for the need for such a study by citing relevant 

research, both theoretical and empirical, which support (or oppose) the frame-

work/ approach taken in the present study. The major issues identified in the 

teaching and learning of algebra will be discussed and some efforts which 

have been already carried out to handle those will be explained. Having set the 

stage for the present study, which also is an intervention to deal with the diffi-

culties students face in algebra, the theoretical background for the teaching-

learning approach will be presented in Chapter 3. There are two intercon-

nected parts of the study: developing an instructional sequence for making the 

transition from arithmetic to algebra, and characterizing students’ change and 

development within the learning sequence. The designing of the instructional 

sequence followed some general principles like using students’ intuition and 

formalizing intuitions through the use of symbols. Further, emphasis was put 

on articulation and reasoning about mathematical situations using either lan-

guage or symbols. The content for the sequence exploited the structure of the 

arithmetic expressions using two ‘bridge’ concepts: terms and equality. The 

connections were explicitly demonstrated by allowing for generalizations of 

procedures and rules from arithmetic context to algebra as well as explicitly 

reasoning with the syntactic transformation rules.  Lastly, the teaching learn-

ing sequence included some activities to give a sense of meaning and purpose 

of algebra to the students. These contexts were of generalizing patterns and 

relationships and justifying and proving them.  
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Chapter 4 will deal with the methodology adopted for the study. The study is a 

design experiment and was carried over two years and five trials. The chapter 

will describe the implementation of the study, the sample, the tools used to 

collect data and a plan for analyzing the data. Chapter 5 will describe the evo-

lution of the teaching learning sequence over the five trials. In the process, the 

nature of arithmetic knowledge that will be required to make the transition to 

symbolic algebra will be clarified as well as the nature of tasks that help in this 

transition. In the next three chapters (6, 7 and 8) analysis of the students’ re-

sponses to the pre and the post tests to various questions will be taken up. This 

data will be substantiated, clarified and extended by the use of individual in-

terviews with students, classroom discussions, daily logs of teachers and prac-

tice exercises of the students. The purpose of the analysis is to see the extent to 

which the students learnt the concepts, procedures and the rules taught in the 

study and how well they applied these ideas in situations of reasoning. The 

effect of students’ understanding of symbols and syntactic transformations in 

contexts where they needed to apply these (purpose of algebra) will also be 

explored. The analysis of the responses, is expected to lead to an understand-

ing of the relation between procedure and structure sense of expressions as 

well as interpret their understanding of letter, expressions and transformations 

on them. Conclusion drawn from this study will be presented in the last chap-

ter (Chapter 9) where the research questions will be revisited and answers pre-

sented based on the analysis.  

1.4.3 Limitations 

The students who participated in the study came from two different schools 

which catered to low and middle income groups. One was a Marathi medium 

school and the other was an English medium school and both followed the 

state prescribed curriculum. But there were also differences in the groups of 

students with respect to their year end performance, their language capabili-

ties, medium of instruction and the school setting but the differences were not 
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systematically studied. Identifying the differences between the groups was not 

the aim of the study. Although factors, like the ones mentioned above, influ-

encing learning in particular ways are important issues and must be explored, 

keeping in view the composition of the students in a classroom in a country 

like India with multiplicity of languages and socio-economic backgrounds, 

these were beyond the scope of the present study. Two different groups were 

taken to add insight about the different ways of responding to the same in-

structional sequence.  

The study did not cover the whole of the algebra portion as it appears in the 

state prescribed curriculum. The focus was on the transition from arithmetic to 

algebra with a large amount of time spent in understanding arithmetic and 

concepts which can act as bridge between the two domains of mathematics. 

The discussion largely revolved around expressions, both arithmetic and alge-

braic, and various aspects of it like computation/ evaluation, equality, etc., 

which were considered to be the building blocks for all further learning. The 

algebraic expressions were all linear with a single variable and matched in 

structure the arithmetic expressions they were working with. More variables 

and complex syntax were avoided in this study, also because the students be-

longed to grade 6. To develop this framework into a full module for algebra 

learning, it would need to be elaborated to expressions with more than one 

variable and also expressions with higher degree. Expressions with the divi-

sion operation in arithmetic, or rational coefficients or rational expressions 

were not dealt with as they involve more complicated notation requiring an 

understanding of fractions which was again beyond the scope of the study. 

Simple linear equations also need to be systematically dealt with and included 

in the teaching sequence.  

The study was approached from the generalized arithmetic view to keep it 

close to the existing curricular sequence and its utility in the Indian context. 

Though it has its merits, as described earlier, other approaches, including the 
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technology aided methods, were not explored. This in itself has its limitations. 

Some understanding of aspects of algebra, like the meaning of letter as a vari-

able and its parameter use can also be understood in a function approach, es-

pecially with the use of spreadsheets, graphing calculators and linked repre-

sentations. Further, the choice of the research design allowed an insider’s view 

of the development process, making available rich data on students’ thinking, 

reasoning and difficulties in understanding algebra while making the transition 

from arithmetic. But, the study design invovlign iterations of teaching did not 

allow the separation of the effect of refined teaching and more teaching. The 

study also did not seek to arrive at an independent assessment of the efficacy 

and efficiency of the teaching approach/method vis-à-vis any other method.  
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Chapter 2: Reviewing the arithmetic-algebra   
connection 

2.0 Introduction: Algebra as a domain of mathematics 

Algebra is an important domain of mathematics and the past three or four dec-

ades have seen a rise in the research studies in the area of teaching and learn-

ing of algebra. Researchers have elucidated the nature of algebra, the differ-

ences between arithmetic and algebra, the difficulties which students face and 

the reasons which make algebra learning difficult for students. Besides the ex-

ploratory studies which focused largely on students’ understanding of algebra 

(spontaneous or after instruction), researchers have also conducted numerous 

teaching studies in an effort to make students understand the ideas of algebra 

and make the algebraic activity meaningful for them. Through this review of 

literature an effort will be made to situate the present study in the context of 

previous research, which has raised issues about the teaching and learning al-

gebra, explored students’ difficulties, hypothesized about causes of the diffi-

culties in learning and has suggested possible measures aimed at overcoming 

these difficulties.  

Researchers have suggested a variety of ways of approaching algebra, which 

entail certain possibilities and emphases on certain aspects. They have arisen 

as a result of efforts to find solutions to the many problems with the teaching 

and learning of algebra. The various approaches reflect differences in the con-

ception of algebra leading to differences in the approach to instructional de-

sign. These approaches to algebra are briefly discussed below.  

2.1 Approaches to algebra 

Algebra as generalized arithmetic: Mason (1985), Usiskin (1988), Bell 

(1995) and Kaput (1998) have proposed this as one of the approaches to intro-

duce algebra to students. Wagner (1989) suggested that algebra is generalized 
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arithmetic in two senses: generalized arithmetic and generalized arithmetic. 

The first aspect focuses on the structural aspects of the number system - rec-

ognizing properties of operations like commutativity, associativity or distribu-

tivity and knowing when they can be applied. The second focuses on the nu-

merical referent as the connection between arithmetic and algebra.  For exam-

ple, for statements like x+5=12 or x+y=12, the values of x and y can be found 

by subsequently replacing one or both of them by numbers. Kaput (1995) sup-

plements this characterization, by describing generalized arithmetic as an ap-

proach that treats algebra as a ‘language that encodes the general rules of 

arithmetic, particularly rules concerning the operations’. It involves generaliz-

ing in the context of arithmetic, often beginning in the system of integers, un-

derstanding their properties and operations and letting the mathematical struc-

tures play the core constraining role. Comparing 7+4 with 4+7 or 7-4 with 4-7, 

3×(4+7) with 3×4+3×7 and 3×4+7 , 13-(7-5) and (13-7)-5 would be good ex-

amples which can lead to making explicit the general rules of order of opera-

tions. These rules, which also govern manipulation in algebra, have to do with 

when changing the order of numbers while operating makes a difference and 

when it does not. Mason (1985) cautioned that the success of generalized 

arithmetic lies in seeing algebra as an expression of generality (Wagner’s first 

characterization mentioned above) and not just an extension of arithmetic on 

number symbols to arithmetic on letters. To develop awareness of generality, 

it is essential to see the particular in the general and the general in the particu-

lar (Mason, 1996). The expectation is to see equivalences in expressions based 

on their structure, that is, to know 3+5 is equal to 5+3 not only because both 

are 8 but also because the addition operation is commutative. All the above 

descriptions of generalized arithmetic focus on the structural properties of the 

number system and not simply replacing the letter with the number. Keeping 

with this description, one of the ways in which generalized arithmetic will be 

used in this thesis is ‘algebra as encoding general properties of arithmetic op-

erations’. 
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The key tasks in this approach are of translation and generalization with the 

letter as pattern generalizer (Usiskin, 1988). But the act of generalization is not 

restricted to the domain of arithmetic operations and requires engaging in an 

activity/ culture of generalization. The crucial aspect of learning to generalize 

is the “process of exploring a given situation for patterns and relationships, 

organizing the data systematically, recognizing the relations and expressing 

them verbally and symbolically, and seeking explanation and appropriate 

kinds of justification or proof according to level” (Bell, 1995, p. 50). In situa-

tions such as the above, it is meaningful to introduce the letter ‘x’ without 

much cognitive hurdle as the purpose of using the letter is evident to the stu-

dents. Moreover, contexts which lead to pattern generalization can be many 

and varied like, the arithmetic operations, pattern generalization based on cal-

endar patterns, sequences of numbers, shapes, etc. (Bell, 1996; Arcavi, 1994). 

This is another way to look at generalized arithmetic which will play a role in 

this thesis.  

Kaput broadened the discussion of generalized arithmetic and called it ‘alge-

bra for generalizing and formalizing patterns and constraints’ which includes 

generalized arithmetic and generalized quantitative reasoning (Kaput, 1998). 

In contrast to generalized arithmetic, this second dimension of quantitative 

reasoning involves reasoning in contexts which are outside mathematics but 

can be mathematized. Thus, the generalized arithmetic approach allows for 

firstly, a gradual introduction to letter through generalization of arithmetic 

(‘metacognitive teaching’, Malara and Iaderosa, 1999), where the focus is on 

structure of operations and numbers (exploring both possibilities and con-

straints on operations) as well as using these while operating on variables and 

expressions. Secondly, it deals with broader pattern generalization activities 

where the letter is largely a generalized number. Many examples of studies 

dealing with this approach, tried with students in various grades, will be dis-

cussed later to show the understanding and power it can give to the students 
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while working with numbers and engaging in generalizing activities. The extra 

emphasis being laid on this approach is mainly because the present study also 

takes such a view and is one of the main guiding principles of the study. Al-

though many researchers have used this conceptualization of algebra in their 

exploratory studies of students’ understanding as well as a teaching tool, some 

have also expressed their reservations about this approach (e.g. Mason, 1985; 

Lee and Wheeler, 1989; Linchevski and Livneh, 1999) which will also be dis-

cussed later. 

Algebra as solving and forming equations (Usiskin, 1988; Bell, 1995) is an-

other approach to introduce algebra where the variable is treated as an un-

known. In contrast to an algebraic expression where the letter can take any 

value, the equation puts a constraint on the letter (Mason, 1985).  Mental ways 

of resolving simple equations and ability to symbolically represent equation/s 

and manipulate them to solve for the variables/ unknowns are important in this 

approach (Bell, 1995, 1996).  

‘Syntactically guided manipulations’ (Kaput, 1998; Mason, 1985) is a broader 

scheme to fit in all kinds of syntactic manipulations required to work with ex-

pressions or equations. Although in this case, the focus is on formal algebraic 

symbols and its syntax, Kaput (1998) believes that it is possible to act on these 

formalisms semantically. Mason (1985) detailed out the aspects which need 

careful attention while following such an approach:  

• Discovering the possibility of manipulating expressions as a result of 
encountering different expressions for the same thing.  

• Becoming aware that an expression is an entity in its own right. 

• Realizing that an algebraic expression is something which has been 
built up and which can be ‘unbuilt’ or stripped down again. 

• Deciding how to manipulate expressions and to what end. 

It is clear from the above that the syntactic manipulation is guided by semantic 

aspects dealing with the essence and purpose of algebra: possibility of ma-
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nipulating the expression to conclude a result and anticipating the goal in ad-

vance to decide a scheme of manipulation. This point will be revisited again.  

Algebra as working with functions: This approach has the possibility to give 

insight into practical situations with the variables acting as arguments or pa-

rameters in tasks related to relations and graphing (Usiskin, 1988; Bell, 1995, 

1996). The tasks require describing and writing a rule for the function, ex-

trapolating, intrapolating, comparing graphs and studying the nature and prop-

erties of graphs of various kinds of functions. Kaput (1998) added that the 

ideas of correspondence and variation of quantities are very powerful and cut 

across and unify many different kinds of common mathematical experiences 

which can be introduced in elementary classrooms, like ideas about ratio and 

proportion.  

Algebra as study of structures: For Usiskin (1988), this approach meant ar-

bitrary marks on paper and the key task is to manipulate and justify. This ap-

parently limited characterization is seen in a modified form in Kaput (1998) 

where he describes this strand as ‘acts of generalizations and abstraction based 

on computations, where the structure of the computation rather than its result 

becomes the focus of attention, giving rise to abstract structures’. According to 

him, these structures have three purposes, (1) to enrich understanding of the 

systems that they are abstracted from, (2) to provide intrinsically useful struc-

tures for computations freed of the particulars that they once were tied to, and 

(3) to provide the base for yet higher levels of abstraction and formalization.  

The fact that the above mentioned approaches to algebra are not mutually ex-

clusive can be appreciated and as Mason (1985) says they are all ‘routes to 

roots of algebra’. They should permeate the classroom and as the occasion 

arises the opportunities to bring in other notions of algebra should be utilized 

to the fullest extent. It will be difficult to conceptualize activities which will 

fall solely in one approach and not include aspects in other approaches, as that 
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will make the whole effort contrived. One of the alternatives put forth by 

Kieran (2004), is to think of algebra not as ways of approaching it but as an 

activity which allows one to mix all the approaches and look at what can be 

done in and with algebra. Kieran characterized algebraic activity as consisting 

of generational activities (e.g. generating equations, expressing generalities 

from geometric patterns, expressions of the rules governing numerical rela-

tionships), transformational activities (e.g. collecting like terms, factoring, ex-

panding, solving equations, simplifying expressions) and global/ meta-level 

activity (algebra used as a tool for problem solving, modeling, noticing struc-

ture, generalizing, justifying, proving and predicting). This last set of activities 

provides purpose to algebra and uses skills and abilities which are developed 

as part of the first two sets of activities. The traditional curriculum has empha-

sized ‘transformational activities’ at the cost of ‘generational’ and ‘global/ 

meta-level’ activities. It does not mean that transformational activities do not 

have any role or that they are meaningless. In fact in this thesis, the effort will 

be to show the meanings that can be generated within the transformational ac-

tivities and ways, if any, in which they can be used in the global/ meta-level 

activities.  

A lot of advancement has taken place with the introduction of technology, es-

pecially with the use of spreadsheets and CAS, in the teaching and learning of 

algebra. Introducing algebra using the path of functions and modeling is not 

difficult when sufficient support from technology is available. Some discus-

sion on the use of technology was taken up in the last chapter and other de-

tailed research review and examples of studies based on these approaches can 

be found in Nemirovsky (1996), Heid (1996), Kieran et al. (1996), Kieran and 

Yerushalmy (2004) and Thomas, Monaghan and Pierce (2004). Although 

these approaches are very fruitful and have given a new direction and meaning 

to the whole activity of algebra in the secondary and the higher secondary 

level, the primary setting for algebraic teaching and learning in the Indian con-
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text is the classroom without significant access to computers. Hence the study 

did not include these aspects of algebra teaching and learning. Instead the fo-

cus of the review in the sections below will be on studies which have used 

generalization approaches and a combination of semantic-syntactic approaches 

as a framework for their study. In the process, I will try to highlight the studies 

carried out either for the purposes of exploring students’ understanding of al-

gebra or using generalized arithmetic as a principle for teaching algebra.  

2.2 Exploring students’ understanding of symbols in al-
gebra 

2.2.1 Students’ understanding of the letter 

The earliest of the studies which had a major impact in the field of algebra 

education research were the CSMS and SESM studies. In the CSMS (Con-

cepts in secondary mathematics and science) study, Kuchemann (1981) inves-

tigated the issue of structural complexity of questions and the meaning that 

students (13-15 year olds) associate with the letter. He found that students’ 

understanding of the letter determines the complexity of the item and therefore 

facility with the item. One of the important outcomes of the study was the 

classification of students’ interpretation and use of the letter symbol in various 

contexts. He identified six different ways in which children interpreted and 

used the letter, namely, letter evaluated, letter not used, letter used as an ob-

ject, letter used as a specific unknown, letter used as a generalized number and 

letter used as a variable. The last three categories are higher levels of under-

standing of the letter than the first three which indicate no real understanding 

of algebra. He accordingly categorized students in various levels of under-

standing as below late concrete, late-concrete, early-formal and late-formal, 

which corresponded to the Piagetian developmental stages.  

It is clear that if algebra is taken as recording the rules of arithmetic in a gen-

eral fashion using letters, then the non-recognition of these rules and structures 
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in arithmetic would definitely be a hindrance in the learning of algebra. Tak-

ing this as the basis for further work, Booth (1984) in the SESM study (Strate-

gies and errors in secondary mathematics project) investigated the causes of 

the errors already described by the CSMS study through individual interviews 

of students and conducted small-scale teaching experiments based on the 

analysis leading to the development of teaching modules for trial with whole 

classes. In the study with 13-15 year olds, she found that the errors are due to 

students’ poor understanding/ interpretation of the letter, alternative concep-

tions about the appropriate method, the non-appreciation of the need to sym-

bolize and formalize the methods, relying on primitive methods and also due 

to confusion over the algebraic conventions and notations. The main task in 

the small-scale teaching experiment carried out with one group of six 13-year 

olds and two groups of five 14-year olds was to write instructions for a model 

computer so that it can solve the problem or a class of problems and write the 

print out or answer in each case (e.g. subtract 9 from 14, add 3 to any number, 

area of any rectangle). The teaching experiments revealed that the ‘cognitive-

readiness factor’ could play an important role in the learning of algebra profi-

ciently. It also showed that some of the problems in understanding the notion 

of letter and notations and conventions in algebra (like letter as a number or 

non-closure of algebraic expressions1) are caused due to poor teaching-

learning material and can be remedied by “good teaching” whereas the errors 

relating to use and need for brackets proved to be more resilient. This study 

again highlighted the lack of awareness of structure of arithmetic expressions 

among students obstructing the possibility of generalizing concepts and meth-

ods in the context of algebra.  

                                                 
1In the context of algebra, it is essential to appreciate that all expressions will not lead to a 
closed answer. For example, 2x+3 cannot be written as 5x, that is, a single number, whereas in 
arithmetic an expression of the type 2×5+3 will lead to an answer denoted by a single number. 
Collis (1974) (as cited in Booth, 1988) called it as the ‘Acceptance of Lack of Closure 
(ALC)’. 
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These studies emphasized the importance of building and appreciating struc-

ture sense in arithmetic. They also laid the ground for many future research 

studies which attempted to unravel students’ understanding of letter and the 

reasons for the various difficulties students face in learning algebra. At least 

two more studies by Filloy and Rojano (1989) and Herscovics and Linchevski 

(1994) pointed towards cognitive factors as the reason for students’ difficulties 

with algebra.  

Filloy and Rojano (1989) termed students’ inability to operate on or with the 

unknown when present on both sides of the ‘=’ sign as a ‘didactic cut’. They 

explained that the solution to the equation of the kind Ax+B=C can be arrived 

at by simply inverting the operations, which is an intuitive process, whereas to 

resolve the equation of the type Ax+B=Cx+D, students would need to go be-

yond the inversion and would need some elements of algebraic syntax. This 

requires the breaking of the barriers of the arithmetic domain and seeing the 

two sides of the ‘=’ sign as expressions with a relation. An action which gives 

meaning to the sign of equality in such a situation is finding the number which 

makes the values on both sides equal. In the small teaching experiment they 

carried out with students (12-13 year olds) to teach linear equations, it was 

found that both concrete models (geometric area model) and concrete contexts 

(weighing balance) for understanding the meaning of equations are fraught 

with difficulties. Such models also do not help in learning the syntactic aspects 

of resolving the equation. They themselves observed that the use of such mod-

els and concrete situations were not very helpful, as the students first required 

translation by which abstract objects and operations are given meaning and 

later separation or detachment from the concrete model. They concluded that 

syntactic errors and the resolution of such complex problems cannot be spon-

taneously resolved by the students using their intuitive skills. 

Herscovics and Linchevski (1994) and Linchevski and Herscovics (1996) in-

dicated a ‘cognitive gap’ between arithmetic and algebra which could be char-
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acterized by students’ inability to spontaneously operate on or with the un-

known. Their results of interviews with seventh grade students did not confirm 

Filloy and Rojano’s (1989) findings, in that most of the students were able to 

find a solution to an equation with a letter on both sides of the ‘=’ sign but the 

solution methods were essentially those which were used for solving an equa-

tion with two occurrences of the letter on the same side, that is, by systematic 

substitution. Only in the case of equations with a single occurrence of the let-

ter did the students succeed in using an inversion operation to find the solution 

and the substitution strategy was rarely used. This meant that the students 

were not able to operate on the letter. The researchers elaborated that it is not 

only essential to think of the letter as a number but also endow it with the op-

erational properties of the number which render operations on the letter possi-

ble, again giving the generalized arithmetic flavor to algebra. The informal 

methods of solving such equations had an upper limit. In the individualized 

teaching experiment which followed, the researchers tried to bridge this gap 

between arithmetic and algebra by allowing the students to use their prior un-

derstanding of number operations. They were introduced to the notion of 

equivalent equations by making it possible for them to work spontaneously on 

and with the unknown by grouping and cancelling like terms and numerical 

terms and using inversion operations in equations like 23+n+18=44+16, 

n+n=178, 3n+5n=136, 17n+12n+36=210 and 8n+11=5n+50.  

MacGregor and Stacey (1997) took the issue of finding the cause of students’ 

misunderstandings about letter further and opined that lack of cognitive readi-

ness can only explain their inability to work on certain algebraic problems but 

cannot explain misinterpretations of the letter. They gave evidence to support 

their argument through a large scale study conducted over several hundreds of 

students in grades 7 to 10 through the use of written tests and interviews in the 

age group of 11-15 year olds and traced the development of some of the stu-

dents over two years.  They found that many of the misinterpretations of letter 
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are due to intuitive and pragmatic reasoning about an unfamiliar notation sys-

tem, drawing on analogies with familiar symbol systems, interference from 

new learning and other subject areas that use similar symbols and from mis-

leading teaching materials.  

The explanations based on cognitive deficiencies/ factors suggest limitations 

intrinsic to the learner which create initial learning hurdles, whereas the last 

explanation suggests that it is due to general sense making phenomena and 

interference/ effects from various kinds of teaching and learning.  Some more 

reasons have been put forth for the difficulties in learning the use and meaning 

of letters in algebra which are not based on cognitive factors, rather they are 

inherent in the nature of the symbols in algebra. Schoenfeld and Arcavi (1999) 

explained that the meaning of the letter is not determined by formal rules but 

is determined by the context of application of the letter, which makes it hard 

for the students to understand it. It encompasses both the usages: as a tool to 

express generality (for example, an even number is a multiple of two, so can 

be expressed as 2×y) and the dynamic aspect of continuous change in value 

(e.g. understanding an algebraic expression like 2×a-3 or a linear function y = 

x-5, where a and x can take any value in the domain of real numbers, and y 

will change depending on the value of x). Also a complete appreciation of the 

letter involves the knowledge that numerals label specific fixed elements of 

the set whereas the letter labels random, variable elements (Wagner and 

Parker, 1999).  Students often show misconception regarding the use of the 

letter by thinking that it is one particular number. 

2.2.2 Students’ conception of ‘=’ sign 

Besides the letter symbol which, as most researchers agree, impedes students’ 

development in the world of algebra, the ‘=’ symbol has been found to be an-

other crucial symbol connecting the passage from the arithmetic domain to the 

algebra domain. Kieran (1981, 1989) and Filloy and Rojano (1989) pointed 

out the importance of moving away from the arithmetical notion of ‘=’ sign 
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which signals following a sequence of instructions, to a notion which states a 

relation of equivalence between two sides of the ‘=’ sign. Herscovics (1989), 

in his review of cognitive obstacles faced by students, explained that students 

often do not consider an equation as an expression of equivalence but as a de-

scription of relative size or the ‘=’ sign as a symbol of association or compari-

son. For example, in the ‘student-professor’ problem (Clement et al., 1981 as 

cited in Herscovics, 1989), where there are six times as many students (S) as 

professors (P), students have been found to write the equation as 6S=P. How-

ever, their diagrammatic representation shows that they do understand the 

relative sizes of the two sets, six circles for the students’ population compared 

to one for the professor. The 6 adjacent to S is like an adjective qualifying the 

S, instead of signifying the magnitude (ibid.). It is well known that the ‘=’ 

symbol is a key to move from the procedural computational world of arithme-

tic to the structural understanding of ‘equivalence’ essential to begin learning 

algebra (Booth, 1988).  

Kieran (1981) cites experiments carried out by various researchers to make 

students understand the meaning of ‘=’ sign and describes her own effort in 

the area. In an experiment with six students (12-14 years), they were gradually 

moved away from the idea of answer on the right side to see arithmetic identi-

ties with multiple operations on both sides of ‘=’ sign, which was a relational 

conception. This provided the foundation for later introduction of non-trivial 

algebraic equations. One of the numbers in the arithmetic identity was first 

hidden with a finger, then with a box and finally replaced by a letter. Occur-

rence of the letter twice in the equation could be easily understood in this 

scheme but this was not sufficient to understand the equation solving process 

which required an understanding of equivalent equations. The semantic under-

standing of ‘=’ sign or equations, as two expressions having the same value, 

did not automatically lead to a syntactic understanding of the procedure of 

solving equations.  In another review article (Kieran, 1989), she observed that 
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students solving equations with multiple occurrence of the letter by trial-and-

error, repeatedly substituting numbers in place of the letter (considered a se-

mantic solution), were more aware of the structure of equations and relations 

between operations and made less errors (switching-addends: x+a=b consid-

ered equivalent to x=b+a and redistribution: x+a=b considered equivalent to 

x+a-c=b+c) than those who used the ‘change-side-change-sign’ method.  

Many of the recent researches (e.g. Carpenter and Levi, 2000; Carpenter and 

Franke, 2001; Stephens, 2004a) focus on a flexible and relational understand-

ing of the ‘=’ sign from the very beginning (grades 1 and 2 onwards) because 

of its relevance and importance in the structural understanding of arithmetic 

and algebra. Nearly all of algebra learning exploits the idea of equivalence – 

first, equivalence of expressions: the fact that, despite changes in surface fea-

tures, the application of valid transformations on an expression ensures the 

equality of all the intermediate expressions in a simplification process. And 

secondly, equivalence of equations, which keeps the solution of the equation 

the same despite changes in the form of the expressions on both sides of the 

‘=’ sign (Kieran, 1989).  

2.2.3 Notational and conventional hurdles  

The difficulties caused by the letter symbol and the ‘=’ sign are not the only 

troubles in learning algebra. Algebra has been considered to be important due 

to its ability to express general rules and methods for manipulating the referent 

free symbols using well defined rules to lead to valid conclusions. Its notation 

system is precise, requiring correct recording of statements. Although in arith-

metic one can get away with a wrong recording and a correct answer, but the 

consequences of this in algebra are critical (Booth, 1988). For example, in 

arithmetic one can afford to represent the area of a rectangle with dimensions 

(3+4) units and 2 units as 3+4×2 and calculate it as 7×2 but in the case of al-

gebra representing the area of a rectangle with dimensions (a+2) units and 3 

units as a+2×3 will be incorrect. On the other hand, its syntax is ambiguous 
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leading to many difficulties for students in manipulating the expressions. Stu-

dents have to be aware that the addition/ subtraction symbol can stand for both 

the process of computation and the answer to a question. For example, the ex-

pression x-4 indicates the performance of an operation, that of subtracting 4 

from x, but at the same time the expression itself is the answer, when no value 

of x is provided. Similarly, the ‘=’ sign can signal the answer to a problem as 

well as show equality/ equivalence between two expressions. Students must 

understand that the letter stands for a number, although some of their prior ex-

perience had exposed them to other uses of the letter, like shorthand for units 

of measurement (Booth, 1988). Some ambiguity is caused by following differ-

ent convention in arithmetic and algebra. In arithmetic, concatenation means 

addition (number notation in decimal system or fraction notation) but in alge-

bra concatenation implies multiplication. This is manifested in errors like 

evaluating 3a for a=2 as 32. Many of these problems arise due to excessive 

emphasis on finding a numerical answer to arithmetic problems which rein-

forces the operational rather than relational ideas and also leaves the students 

resistant to unclosed expressions as answers (Wagner and Kieran, 1989).  

2.3 Syntax and semantics of algebraic symbols 

It is clear from the discussion in the last section that symbols used in algebra 

contribute greatly to the difficulties students face in algebra. The studies indi-

cated students’ lack of structure sense, alternative/ wrong meanings for the 

letter attributed by the students and coping with correct but varied meanings of 

the letter in different contexts. Algebra encodes general rules and procedures 

of arithmetic, but has many distinctions with it like notations, conventions and 

shift in emphasis from the procedural in arithmetic to the relational in algebra.  

2.3.1 The syntactic semantic divide 

The discussions in the last section also indicate that having a sense of the al-

gebraic symbols, like the ‘=’ sign, letter/ variable is essential and would help 
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students better understand algebraic expressions and equations, but this does 

not guarantee syntactic ability. Knowledge of the meaning of symbols is not 

enough as it does not automatically lead to the ability to work on them. True 

algebraic knowledge requires one to understand a situation, represent that us-

ing symbols and transform it till it matches the goal and interpret it back to the 

situation. So, embedding algebra in rich settings to lead to algebraic thinking 

and to create meaning for the symbols used in algebra cannot by itself be suf-

ficient to use algebra as a tool for the problem solving. Also, learning to work 

on the symbols itself is a context which can create meaning for the symbols 

(Kieran, 2004). For example, identifying whether two expressions n2+2n+1 

and (n+1)2 are equivalent or whether 23+45×14-27 is same as 14×45+23-27. 

Knowing the syntax and the properties of operations can guard the students 

against transformations which are not permissible, but tempting (Carry, Lewis 

and Bernard (1980) quoted in Bell and Malone (1993)). In the above example, 

a student who knows the syntax well would avoid adding 23 and 45 while 

evaluating the expression or would not consider 45+23×14-27 to be equal to 

the given expression. The reason for arbitrariness or meaninglessness which 

the students experience during their exposure to algebra is not solely due to 

working on rule based transformation tasks. It is also due to the lack of em-

phasis on structure of expressions, making appropriate links with properties of 

number systems and explanations for the rules, like distributivity and associa-

tivity (Kirshner, 2001). In the paragraphs below, research on students’ syntac-

tic awareness and ability and the connections of algebra with arithmetic will 

be discussed.  

2.3.2 Algebra as a language 

MacGregor and Price (1999) considered algebra as a language. They hypothe-

sized and demonstrated a relation between students’ algebra learning and 

meta-linguistic awareness of symbols and syntax in non-algebraic contexts. 

Similar to language proficiency, proficiency in algebraic symbols requires (i) 
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knowing that numerals, letters and other mathematical signs can be treated as 

symbols detached from real-world referents, groups of symbols can be used as 

basic meaning-units like x+2, that is, having ability to reflect and analyze 

structural and functional features, (ii) recognition of well-formedness in alge-

braic expressions, e.g. 2x=10⇒x=5, but not 2x=10=5, and making judgments 

about how syntactic structure controls both meaning and inference making, 

e.g. a-b=x does not imply b-a=x and (iii) mastering ambiguity: an expression 

can have more than one interpretation, depending on how structural relation-

ships or referential terms are interpreted, e.g. knowing when brackets are re-

quired for ordering operations and awareness of potential for mistranslating 

relational statements to equations. MacGregor and Price argued that students, 

who are beginning algebra at the age of 11 or 12 years, possess symbol aware-

ness as they know that words are arbitrary names, which can be represented as 

groups of symbols and they can use words in various ways (games, jokes etc.). 

What they lack is the awareness of syntax, which takes time to learn. While 

reading, context is sufficient to make sense of the situation. This is not so in 

the case of algebra where the contextual cues are not sufficient for interpreting 

algebraic notation as one has to attend to the order and arrangement of the 

symbols. Thus this aspect needs special attention in the teaching and learning 

of algebra. 

2.3.3 Differences between arithmetic and algebra  

For learning algebra, not only is it necessary to understand the language of al-

gebra and know its differences with natural language, but also to shift atten-

tion from purely numerical solutions to methods and processes of representing 

and solving (Kieran, 1999). The prior experience of students in the field of 

arithmetic has been largely one of computation, where first they carried out 

the four operations on two numbers and later evaluated expressions with mul-

tiple operations following a sequential set of instructions, assuming that the 

written sequence of operations determines the order of computation (binary 
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operation between each successive pair of numbers), leading them to a closed 

answer in the end. There is a radical change in the case of algebra where stu-

dents cannot work sequentially; they have to look for like terms which can be 

combined and cannot expect to get a closed answer in the end (Booth, 1988). 

The students need to accept the fact that the unclosed expression of the form 

2a+3b is a legitimate solution and stands for both the process of solution as 

well as the solution itself. Stacey and MacGregor (1994) noted that students 

conjoin to represent addition and sometimes even subtraction and multiplica-

tion because they want closure of answers. Davis (1975) while reporting the 

work of a seventh grade gifted student solving a linear equation (   =       ) 

elaborated the nature of cognitive demands such tasks pose (beyond knowing 

the mathematical pre-requisites) on students, like understanding the different 

meanings of ‘=’ sign, choosing the one which fits the situation and under-

standing that the symbols stand for both the result as well as the process (in 

this case seeing x and 3x+1 as both valid entities which can be multiplied and 

divided). The progress of the student is stalled due to his/ her inability to meet 

the above demands. The students do not see any problem in violating the 

structure while being creative in finding solutions and consider everything as  

‘rules of mathematics’, without understanding the goal of the task.  

This ability to view the unclosed expression as representing both the instruc-

tion to compute as well as the result of the computation has been called the 

process-product duality by Sfard (1991). Similarly, Tall et al. (2000) talks 

about flexible interpretation of the symbol as both process and object, viewing 

it as a ‘procept’. Mason (1996) reiterated that ‘algebraic awareness’ consists of 

“necessary shifts of attention, which make it possible to be flexible in seeing 

written symbols: as expressions and as value; as object and as process” (p. 74). 

The students’ inability to see the symbol as a ‘procept’ or both process and 

object leads to their non-acceptance of closure in solutions. Contrary to the 

understanding that the obstacles are in the mathematical systems of thinking 

3 
x 

6 
3x+1 
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and symbolizing, Stacey and MacGregor (1994) pointed out the interference 

effect from other notational systems which use algebra-like symbolism as well 

as students’ own disabilities to distinguish between notations for repeated ad-

dition, multiplication and repeated multiplication, as the explanation for such 

behaviour. Other explanations include a loss of the numerical referent  in the 

expression containing letters and non-appreciation of the relation of equiva-

lence among the expressions on the left and right side of the ‘=’ sign (Booth, 

1988). In the case of such a loss of reference or unawareness, the expression 

does not stand for anything for the students which they can meaningfully ma-

nipulate using the rules of transformations they already know. The rules then 

tend to look arbitrary and meaningless.  

Arzarello et al. (2001) argued that students’ algebraic difficulties are due to 

their failure to “master the invariance of denotation with respect to the sense 

… as if there were a one-one correspondence between sense, denotation and 

formal expression, so that identifying all three, pupils remain with a trivial de-

notation: a symbolic expression denotes itself as a collection of signs” (p. 65). 

According to Arzarello et al., while an arithmetic expression has a fixed sense 

and denotation; an algebraic expression can be interpreted in ways that vary in 

sense. For example, an arithmetic expression 4+7 means the number which is 

seven more than 4 and stands for the number 11. But an algebraic expression 

n(n+1) may mean the product of two consecutive numbers or the area of a rec-

tangle with dimensions n and n+1. The denoted set in both cases is the set {0, 

2, 6, 12, …} for n∈N. Also, different ways of interpreting algebraic expres-

sions resulting in a shift in sense can be achieved by one of the two following 

ways: first, transforming the expression according to a supposed denotation 

(e.g. to show that the product of two consecutive numbers can always be rep-

resented as the sum of the smaller number and the square of the smaller num-

ber, one would need to transform n(n+1) = n2+n) and second, without any 

formal manipulation, inventing a new sense of the expression by looking at it 
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with a supposed new denotation in a possibly new ‘conceptual frame’ (e.g. 

seeing n(n+1) as the product of two consecutive numbers and seeing it as rep-

resenting the area of a rectangle).  

2.3.4 Students’ understanding of structure of expressions  

In addition to the difficulties caused due to differences in arithmetic and alge-

braic ways of working and notations and conventions, exploring students’ un-

derstanding of the structure of arithmetic and algebraic expressions in particu-

lar and the connection between arithmetic and algebraic expressions in gen-

eral, were two other main foci of research studies. Some researchers showed 

the limitations of students’ understanding of structure of arithmetic expres-

sions and their abilities to compute with expressions. Studies showed students’ 

inability to judge equality of expressions without calculation (e.g. 685-

492+947 and 947+492-685, Chaiklin and Lesgold, 1984), inconsistency in ap-

plying rules for computing/ simplifying (e.g. simplifying 4(6x-3y)+5x as either 

4(6x-3y+5x) or as 4×6x-3y+5x, Kieran, 1989, 1992), sequential computation 

not capitalizing on the relations (e.g. being unable to find the answer of 

17+59-59+18-18 without computation, Herscovics and Lincheveski, 1994), 

failing to use inverse relations (knowing (3x+2)(5x-4) to be equal to 15x2-2x-8 

but being unable to immediately identify the factors of the expression, Wagner 

and Parker, 1999). Similar to the context of number learning and place value, 

students while learning algebra need to “unitize” the polynomial expressions 

and treat them as single variables, as in factoring by grouping, for example, 

ax+bx+ay+by = (a+b)x+(a+b)y, where (a+b) will need to be treated like a sin-

gle variable to proceed further (Wagner and Parker, 1999). Hoch and Dreyfus 

(2004) also reported students’ lack of structure sense among 92 grade 11 stu-

dents while solving equations, where students solved the equation in the nor-

mal manner without attending to the relation between the terms (e.g. 1 –       – 

(1 –        ) =         or       –        – x = 5 + (      –       ). The researchers found that 
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the presence of brackets helped students in noticing the structure of the equa-

tion.  

Putnam et al. (1987) examined 74 5th , 7th and 9th grade students’ understand-

ing of sign-change rules in addition and subtraction expressions with parenthe-

ses of the form a-(b+c), a-(b-c) in the context of numbers through interview. 

They found that students were generally successful in judging the equivalence 

of two story situations and justified them informally (e.g. sold the same num-

ber of things, together or at different times does not make any difference for a 

situation 18-(7+2) and 18-7-2) but they were more successful in situations of 

the form a-(b+c). Students’ understanding of sign-change rules in the formal 

symbolic condition was weak even after instruction in algebra and they were 

less successful in a-(b+c) situation than in a-(b-c), contrary to their perform-

ance in the story situation. Students’ responses did not use justifications based 

on structure but on computations, surface-level comparisons and often incor-

rect rules for operating on the symbols. The researchers found that situational 

referents in the form of stories for expressions with parentheses enabled stu-

dents to justify their equivalence. This was an effort to improve students’ 

symbolic understanding by using their intuitive understanding and strengthen-

ing referential meaning.  

In a systematic effort to explore if lack of understanding of structure of arith-

metic expressions really leads to errors in algebra, Linchevski and Livneh 

(1999) carried out a study on 6th and 7th graders and found students’ difficul-

ties in algebra in purely arithmetic contexts. They reported three errors in the 

case of arithmetic expressions: (i) detachment of a term from indicated opera-

tion (e.g. 23-6+7=23-13, due to a misinterpretation of the rule of order of op-

erations as addition first or due to wrongly applying associative property), (ii) 

misunderstanding the order of operations (e.g. 5+6×10=11×10=110 or 

24÷3×2=24÷6=4, move from left to right or multiplication before division), 

and (iii) jumping off with the posterior operation (e.g. in 217+175-
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217+175+67 the 175s are cancelled because of the ‘–’ sign following the first 

175). Similar errors were observed by them in their earlier studies (Herscovics 

and Linchevski, 1994; Linchevski and Herscovics, 1996) in the context of al-

gebra. Although the students generally showed consistency in their under-

standing and interpretation of the structure of the expressions, some of them 

were correct in one instance and incorrect in another. For example, in expres-

sions with similar structure 27-5+3, 167-20+10+30 and 50-10+10+10, the rate 

of detachment error was different, least in the first and maximum in the last. 

This was attributed to some number combinations which are responsible for 

shifting the attention from structural to numerical properties in a way which 

changes the meaning of the expression leading to the assignment of a wrong 

value to the expression (Linchevski and Livneh, 2002). According to them, the 

difficulty arises due to a competition between structure and biasing number 

combinations together with many other factors.  

Kirshner (2001) suggested that polynomial expressions have a complicated 

binary parse, and competence in algebraic skills is not so much about knowing 

rules but about coordinating pattern-based perceptual cues, a point that throws 

light on the effect of biasing number combinations. Kirshner and Awtry 

(2004) carried out an experimental design consisting of two treatments (2 les-

sons of 50 minutes and 1 review lesson of 30 minutes) on novices of grade 7 

not exposed to algebraic symbol to assess the cognitive basis of algebraic 

symbol manipulation. One of the treatments involved an ordinary notational 

representation and the other involved a tree representation and both the groups 

learnt eight rules - 4 visually salient (e.g. 2(x-y)=2x-2y) and 4 non-visually sa-

lient (e.g. x2-y2=(x-y)(x+y)). The tree notation was to act as a neutral medium 

to control the influence of position and spacing between symbols (visual sali-

ence) in standard notations. Students were presented with three items for each 

rule, two of which were recognition tasks (choose one from five options) and 

one rejection task (none of the options were correct). The analysis of the data 
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revealed that for students taught in ordinary notation, recognizing visually sa-

lient rules was significantly easier than non-visually-salient rules. They also 

retained the visually salient rules more often than the non-visually-salient 

rules. The students trained through a tree-notation responded equally to the 

two sets of rules with a slight reversal in difficulty for visually salient rules, 

which is hard to explain. The rejection task showed similar results: constrain-

ing overgeneralization easier for non-visually-salient rules for standard nota-

tion but a slight difference for tree notation where students performed better in 

visually salient rules. The results indicate that “students engage with visual 

characteristics of the symbol system in their initial learning of algebra rules” 

(Kirshner et al., 2004, p. 242) and that this knowledge is not a result of de-

clarative understanding of rules. In the light on the above, they argue that con-

textualizing algebraic rules in rich settings would not help as the source of the 

problem is not a result of de-contextualized, abstract learning but focusing on 

visual salience.  

Fischbein and Barash (1993) hypothesized the existence of rules which served 

as models to explain the systematic errors in solving algebraic problems. For 

example, the model used while a student writes (a+b)2 as a2+b2 is that of dis-

tributive property which acts as the prototype. Further, they argued that 

stronger models impose themselves over the weaker ones and eliminate them. 

Therefore in the above example, the incorrect formula a2+b2 is more intuitive 

than the correct one a2+2ab+b2. They provided evidence for their hypotheses 

in the case of exponents where students used a preliminary notion of distribu-

tive property (e.g.       = 2x-3 as 4x2-9=(2x-3)2), as well as in the case of ra-

tional expressions where a more intuitive model of additive structures (which 

allows reduction by subtraction) was used incorrectly (e.g.     = b or 1+b). 

These students confused the ideas of ‘terms’ and ‘factors’ while simplifying 

algebraic expressions. Many of these students who had made the errors while 

simplifying algebraic expressions knew the correct rules, making the case 

4x2-9
2x-3 

a+b
a
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stronger for the existence of conflicting models in the minds of the students. It 

is actually the lack of structure sense of expressions among students which 

leads them to over-generalize and use rules inappropriately in expressions 

which have different structures.  

2.3.5 Exploring the arithmetic algebra connection 

Some researchers focused on the more general issue of the connection be-

tween arithmetic and algebra and explored the extent of such a connection in 

the responses of students, who had undergone instruction in both the areas of 

arithmetic and algebra. Lee and Wheeler (1989) in their attempt to show the 

connection between arithmetic and algebra, found dissociation between grade 

10 students’ arithmetic and algebraic knowledge even when they could per-

form standard algebraic tasks correctly. These students could not coordinate 

their movement between the two worlds of arithmetic and algebra. They could 

not spontaneously use numbers to check their solutions in algebra. Instead of 

this step helping them to resolve the discrepancy in answers, it aggravated the 

dilemma, often choosing one (arithmetic or algebraic) over the other. When 

the expression was in the domain of arithmetic, they could not solve it by 

computation and went on to use the wrong algebraic identity to solve it. These 

students did not see algebra as generalized arithmetic and for them the rules 

worked differently in both the worlds. 

Similarly, Cerulli and Mariotti (2001) present a case study of a student who 

could not think of the simplification of arithmetic and algebraic expressions as 

being the same process, one on numbers and the other on letters although she 

could handle both kinds of expressions well using appropriate rules of sym-

bolic manipulation. She knew that two expressions, like (a-b)(a+b) and a2-b2, 

are equivalent if their values are the same after replacing the letter with a 

number but considered the two expressions as independent and did not think 

that transforming one into another kept the expressions equivalent. The au-

thors point out that although she was thinking of the expressions in the dual 
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mode: of both a calculation procedure and as entities which could be com-

pared, she did not relate the two expressions and the two kinds of computa-

tions: computing with numbers and with letters. This example demonstrates 

that students may acquire some structural and procedural conceptions of op-

erations and algebraic expressions but may lack a comprehensive meaning of 

computing procedures, on letters and numbers. The authors add that the “key-

point is that properties of the operations have to become rules of transforma-

tion, that is, instruments of computation, and in order to do so, they must as-

sume a dual meaning (structural and operational): properties state the basic 

equivalence relations and function as instruments for symbolic manipulation” 

(p. 231).  

Demby (1997) also suggested that the connection between arithmetic and al-

gebraic procedures is complex and her study did not support the hypothesis of 

the analogy of procedures following from arithmetic to algebra. She asked 

students in grade 7 and the same students after a year in grade 8 to simplify 

algebraic expressions and she prepared a list of procedures used by the stu-

dents to perform the task. Most of the procedures were spontaneous, although 

they had been taught the simplification procedure by the teacher using com-

mutative and distributive properties and their geometric interpretation in the 

classroom. She identified seven different types of students’ procedures: auto-

matization (operations automatized, one simply knows the correct result), 

formulas (use formulas with variables), guessing-substituting (checking the 

answer by substituting with numbers), preparatory modification (changing the 

given surface structure into more elementary form), concretization (imagining 

some concrete model of the abstract operation), rules (when a rule is implicitly 

or explicitly stated while transforming and consistently used) and quasi-rules 

(the stated rule is used inconsistently). Some of the results that students ob-

tained after transformations using these procedures were correct, though many 

were incorrect. The study brought forth the futility of the dichotomies between 
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“formal” (routine algorithms/ school methods) and “intuitive” methods; be-

tween “deriving complex transformations from the basic properties” and 

“practicing algebraic rules in a quite mechanical way”. A procedure like ‘Con-

cretization’ is intuitive but of limited use and a procedure like ‘Preparatory 

Modification’ is mathematically sound but acts only as a preparatory step be-

fore using another procedure. Except for ‘formulas’ and ‘rules’ which were 

considered syntactic (based on form of the expression, solving (8x-2x)2 on the 

basis of (a-b)2), the others were considered semantic. The procedures termed 

semantic appealed to the meaning of the expression, e.g. changing -2x2+8-8x-

4x2 to addition -2x2+8+(-8x)+(-4x2) thereby affording more freedom while 

manipulating the expression or 3x and 6x are 9x similar to 3 apples and 6 ap-

ples are 9 apples. In contrast to the syntactic solutions which are based on 

rules of transformations, the semantic solutions try to find a referent for the 

symbols in some way. It was seen that the more successful students used se-

mantic procedures more frequently than those who were less successful. Also, 

it was observed that a good command over algebraic transformation is more 

likely when the students use diverse types of procedures. Therefore an integra-

tion of semantic and syntactic aspects of school algebra with diverse types of 

methods was considered desirable.  

2.3.6 Implications for teaching 

The debate on the connection between arithmetic and algebra and of structure 

sense and procedures and its utility for teaching-learning is a long standing 

one. Nearly all of the studies quoted above were grappling with the issue of 

the importance of awareness of structure sense and its possible implication for 

the learning of algebra. Most of the researchers agree that algebra encodes the 

properties of arithmetic in a generalized manner and a grasp of the structure of 

arithmetic expressions would pave the way for learning algebraic symbol ma-

nipulation. But they are also cautious about the intended outcome of such a 

suggestion. Although Linchevski and Livneh (1999, 2002) expressed the view 
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that an attempt to teach algebra as generalized arithmetic would help situate 

the structural rules of algebra in a meaningful context and give semantic vali-

dation to the procedures, they were skeptical about teaching arithmetic for al-

gebraic purposes apprehending that the whole exercise would become mean-

ingless and artificial. They suggested tasks based on equivalent structures of 

an expression, using transformations flexibly and creatively, and analyzing 

and unpacking familiar procedures as some of the ways to build the connec-

tion between arithmetic and algebra. A systematic investigation of the connec-

tion between the ‘structure sense’ in the contexts of arithmetic and algebra was 

recommended. Many others have also expressed doubts over using this con-

nection of algebra with arithmetic for teaching as students do not find this 

connection easily accessible (Mason, 1985; Lee and Wheeler, 1989; Demby, 

1997). Lee and Wheeler (1989) pointed out that the proposed building of 

arithmetic-algebra connection among students firstly requires a clear under-

standing of the connection between arithmetic and algebra. They argued that 

even if both the domains use the same operational signs, there are stark differ-

ences in the writing and manipulation of the expressions making it difficult for 

students to spot the connection. Wheeler (1996) pointed out the need to both 

facilitate the transition from arithmetic to algebra as well as tackle the intrinsic 

obstacles, such as those of notations, conventions and rules of symbol manipu-

lation, which have been discussed earlier. Also since many of the errors dis-

cussed in the preceding paragraphs are known to be caused by over generaliza-

tion of the rules from arithmetic, some researchers do not particularly like the 

idea of introducing algebra the arithmetic way and in fact argue for a ‘rupture’ 

between arithmetic and algebra rather than a transition between them (Lins, 

2001). For them this pathway is littered with pedagogical, ‘procedural, linguis-

tic, conceptual and epistemological hurdles’ (e.g. Lee and Wheeler, 1989).  

Another apprehension is that the result of an approach which capitalizes on the 

arithmetic algebra link (following the generalized arithmetic approach) would 
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be sophisticated ‘symbolic arithmetic’ where, even if difficult, it will be possi-

ble for the students to keep track of the referent for the letter while manipulat-

ing it (Balacheff, 2001). But the objective of algebra is to be able to manipu-

late expressions in a referent free manner and interpret the result of the ma-

nipulation back in the problem. As Balacheff (2001) puts it “the essential dif-

ference between symbolic arithmetic and algebra is a shift of emphasis from a 

pragmatic control to a theoretical control on the solution of the problems con-

sidered” (p. 256). The fact that the students can manipulate algebraic expres-

sions does not mean that they have accepted or acquired the shift in the 

method from arithmetic. The algebraic statements are simply generalized pro-

cedures arrived at it by replacing the number with the letter (ibid.). It is not 

necessary that they derive confidence and control of the situation by using al-

gebra and they understand that once a result has been shown using algebra, it 

is true for all possible cases, that it is correct and complete. This is a more se-

rious problem that arises due to using arithmetic-algebra connection and can 

have stronger implications but I would suggest that these are stages in the de-

velopment of understanding of the symbols in algebra and purpose of algebra. 

This point will be revisited again while discussing students’ understanding of 

use of algebra in contexts. 

In contrast to these views, Kirshner (2001) argued for an algebra curriculum 

which is structural in nature, building from undefined symbols and explicit 

rules, as against a referential approach to introducing algebra. He suggests that 

students should be exposed to the rules of algebraic manipulation rationally 

through specialized activities and be engaged in articulating and justifying 

their rule usage in the classroom. According to him, algebra learning is a mat-

ter of generating and consolidating subcognitive patterns rather than learning 

rules. He disagrees with the argument that the failure of traditional curriculum 

is due to its being rule based. This kind of understanding of patterns does not 

develop automatically by working with a symbol system and cannot be 
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achieved by telling and practicing the rule. This is an important point which 

needs to be kept in mind while reading the first set of criticisms against the 

arithmetic-algebra connection and the thesis tries to find a way of communi-

cating these patterns in expressions to the students. Some studies which build 

on students’ arithmetic competence and enhance their understanding of struc-

ture of expressions to teach algebra will be discussed later.  

2.4 Theoretical models explaining difficulties with sym-
bolic algebra 

Besides these empirical investigations of the connection between arithmetic 

and algebra and the causes for the difficulties with syntactic manipulation in 

algebra, theoretical models have also been suggested to account for students’ 

difficulties in learning algebraic transformations.  These models have been 

variously called as theory of reification (Sfard, 1991), encapsulation (Dubin-

sky, 1991) or flexible procepts (Gray and Tall, 1994). The focus of these theo-

ries is on the construction of abstract mental objects from processes, which 

makes manipulation on the higher order objects possible. These theories, 

which try to explain the stages involved in the formation of such objects 

among the learners are more ‘domain general’ and can explain and predict dif-

ficulties in different domains of mathematics. They have also been used to un-

derstand the causes of the difficulties in algebra. 

A theory proposed by Sfard (1991) is called the theory of reification. Accord-

ing to this theory, abstract notions like number, expression or function can be 

conceived of in two ways: the operational (as processes) and the structural (as 

objects). She points out that there is a deep ontological gap between these two 

conceptions but they are complementary. Moreover, the journey from the op-

erational to the structural is on a continuum gradually progressing from one to 

the other, and are not two discrete states, the end points being characterized by 

thinking of a set of symbols as instructions to carry out some action (opera-

tional) and thinking of a set of symbols as an entity in itself which can be ma-
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nipulated using defined rules (structural). Instead of a dichotomy, this theory 

emphasizes a process-product duality, the process conception preceding the 

product. The movement from process to understanding the duality of process-

product takes place in a series of stages. The first stage is called interioriza-

tion: ‘getting acquainted with the processes which eventually give rise to a 

new concept’. These processes are operations on lower-order mathematical 

objects. A process is interiorized when it can be carried out through mental 

representations. The second stage is condensation which is a ‘period of 

“squeezing” lengthy sequences of operations into more manageable units’. 

The processes now can be thought as a whole without going into all its details 

and steps. This is a long phase which lasts as long as the new entity is con-

nected to processes. The final stage is that of reification when the notion can 

be treated as a full-fledged object. It involves an ontological shift which en-

ables one to see something familiar in a new light. The first two phases are 

quantitative changes but the last one is a qualitative change where the process 

becomes an object or a static structure. Subsequently, this gets detached from 

the processes from which it has been constructed and gets attached to mean-

ings which are associated with the new domain to which it belongs (e.g. seeing 

an algebraic expression 3(x+1)+5 as a function mapping real numbers to them-

selves through linear transformation). Processes can now be performed on 

these newly formed objects. In this context, the role of names, symbols, graphs 

and other representations in condensation and reification is enormous.  

This becomes a cycle where the newly constructed objects become the input 

for higher level objects/ concepts. She calls this a ‘vicious circle’ in that 

‘lower-level reification and the higher-level interiorization are prerequisites 

for each other’. This makes it also clear that the process of reification is inher-

ently difficult – higher level interiorization is essential for reification and ob-

jects must also exist on which higher level processes can be carried out for in-

teriorization to happen – and fewer people cross it. One of the implications of 
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this is that the reification of the primary processes (underlying the given con-

cept) is a precondition for the ability to deal with the secondary processes (ap-

plied to the given concept) and the latter is a precondition for the former.  

Sfard’s theory gives a framework for understanding the difficulty with alge-

bra. In algebra, the symbols at each point have to be treated both operationally 

and structurally2 (Sfard and Linchevski, 1994). The same representation en-

codes both the instruction of computation as well as the product of a computa-

tion (for example, x+4 is both the instruction to add 4 to any number as well as 

the result of a computation stating the relationship ‘standing for a number 

which is four more than a given number’). This requires the reification of the 

process of adding 4 to any number leading to another number as an answer to 

stating the relation as a representation x+4. Further, to be able to consistently 

evaluate arithmetic expressions (primary process), one needs to know general 

rules which govern operations. These are algebraic in nature and also underlie 

manipulation of algebraic expressions (secondary process). It is the same rule 

of ‘multiplication before addition’ which allows 5+4×6 to be computed as 

5+24 and disallows the simplification of 5+4x as 9x. Similarly, it is the same 

distributive law which allows solving 5×4+8×4 as 13×4 and 5x+8x=13x, but 

one has to withhold finding the intermediate results 5×4, 8×4, 5x and 8x and 

treat them as entities. This requires the students to move away from succes-

sively computing binary operations on two numbers to focus on the full ex-

pression with multiple operations and the properties which govern its compu-

tation/ simplification. Studies by Linchevski and Sfard (1991), Sfard and 

Linchevski (1994) describe the complexity in attaining a structural conception 

of notions like equations and inequalities and show that students are often led 

to a ‘pseudo-structural’ (mistaking the signifier with the signified) approach to 

dealing with symbols, which on the surface look structural but are in fact su-

                                                 
2 Considering algebra to be generalized arithmetic, Sfard and Linchevski (1994) correlate the 
operational phase with the rhetoric and the syncopated stages of the historical evolution of 
algebra and the structural phase with the symbolic stage of its historical evolution.  
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perficial. They have no connection with the underlying mathematical opera-

tions. A 15 year old student’s solution to the inequality x2+x+1>0 by treating it 

as an equation and concluding that it has no solution due to a negative dis-

criminant, is a case in point. Such students do not realize that the processes 

required for solving an equation and inequality are different. The familiarity 

with the symbols in one context drives them to manipulate the symbols simi-

larly, without appreciating the shift in meaning of the algebraic symbols in the 

context of inequality. 

On similar lines, Gray and Tall (1994) and Tall et al. (2000) considered the 

duality (and not the distinction) between process and concept and the use of 

same symbols for denoting both, the process and the product or result of the 

process. They put forth the notion of ‘procept’ to refer to ‘the amalgam of 

concept and process represented by the same symbol’ (Gray and Tall, 1994, 

pp. 121). According to them, an ‘elementary procept’ is the amalgam of three 

components, a process that produces a mathematical object, the mathematical 

object that is produced, and a symbol that represents either the process or the 

object. A procept is thus a collection of elementary procepts that have the 

same object (for example, the procept 6 includes the counting till 6 and repre-

sentations like 3 + 3, 2 ×3 etc.). The flexibility in combining the conceptual 

and the procedural thinking to see the processes and the products/ objects in 

the same symbol is successful proceptual thinking. This kind of thinking is 

characterized by the ability to compress stages in symbol manipulation to the 

point where symbols are viewed as objects that can be decomposed and re-

composed in flexible ways.  

The trouble with students who are unable to work with algebraic symbols is 

precisely that they are unable to deal with the ‘ambiguity’ of the symbol as 

both a process and the product of the process. This leads to difficulties while 

combining these symbols (e.g. in simplification of algebraic expressions) as 

the students are fixated on the process conception of the symbols and consider 
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an expression like 2+3×y only as an instruction to compute which cannot be 

completed till the value of y is known. According to Tall (1992), it is essential 

to hold the operations in suspension in the case of algebraic expressions and 

consider them only as potential processes, whereas in arithmetic ‘procepts’ 

have an internal procedure and the value can be calculated (operational ‘pro-

cepts’) (Tall, 1992; Thomas and Tall, 2001). Through a computer driven ap-

proach (‘cybernetic’ approach) which included programming to understand 

equivalent expressions and practically carrying out computations (e.g. under-

standing equivalence of 2×a+b and b+2×a, for all values of a and b), using the 

same symbols, students were found to think about algebraic symbols procep-

tually (Tall, 1992). For example, one student rearranged 3x-5=2x+1 as 

3x=2x+6, and concluded that the extra x should be equal to 6, without carrying 

out the whole process. This is the difference between a flexible ‘proceptual’ 

thinker, who could stop the manipulation when the solution was evident, and 

the procedural thinker who would go on till the end.  

Mason (1996) while recommending the need for the awareness of the dual 

meaning of expressions: as entities or object, and as processes for algebraic 

thinking, described the development of abstraction as phases in a developing 

spiral – from experience in manipulating objects (physical, mental, or sym-

bolic objects) to expressing this experience (getting-a-sense-of), to articulat-

ing the properties of such experiences as expressions of generality, and subse-

quently manipulating such expressions to search for further properties. ‘The 

actual process of abstraction is considered to lie in the “delicate shift of atten-

tion” from seeing the expression as an expression of generality, to seeing it as 

a manipulable object or property’ (Mason, 1989 as cited in English and 

Sharry, 1996, p. 137). For example, we learn that 2×3+2×5=2×(3+5) and this 

can be generalized to 3a+5a = (3+5)×a. But this generalization is not suffi-

cient to add 3a+5a with itself or multiply with itself. The learner must not only 

be able to manipulate these generalities but also remain aware of the calcula-
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tions inherent in the expressions. English and Sharry (1996) proposed that al-

gebraic abstraction involves analogical reasoning consisting of the articulation 

of expressions of generality from experiences with operations on lower level 

algebraic constructs, that is, operation on numbers and extracting relational 

commonalities between algebraic examples. These generalities can be subse-

quently manipulated as full-fledged mathematical objects. This theory high-

lights the need for exploring algebraic processes to construct abstract general-

ized models. Also it helps one understand that relational properties are the key 

to draw these abstractions.  

Dubinsky (1991) based his theory of encapsulation on Piaget’s theory of re-

flective abstraction. This theory is similar to Sfard’s theory in many ways and 

has four stages given by the acronym APOS. The first two processes men-

tioned in Sfard’s theory are similar to the first two of Dubinsky. An individual 

deals with mathematical problem situations by creating mental actions, proc-

esses and objects and organizes them into schemas. The object is formed by 

either encapsulation of the processes or the schemas. Dubinsky and Mac-

Donald (2001, pp. 276) summarize their theory as follows: 

An action is a transformation of objects perceived by the individual as essen-
tially external and as requiring, either explicitly or from memory, step-by-
step instructions on how to perform the operation. … When an action is re-
peated and the individual reflects upon it, he or she can make an internal 
mental construction called a process which the individual can think of as per-
forming the same kind of action, but no longer with the need of external 
stimuli. An individual can think of performing a process without actually do-
ing it, and therefore can think about reversing it and composing it with other 
processes. … An object is constructed from a process when the individual 
becomes aware of the process as a totality and realizes that transformations 
can act on it. … Finally, a schema for a certain mathematical concept is an 
individual’s collection of actions, processes, objects, and other schemas 
which are linked by some general principles to form a framework in the indi-
vidual’s mind that may be brought to bear upon a problem situation involving 
that concept. 

Although Dubinsky (1991) used his theory to explain the difficulties of stu-

dents in advanced mathematics, it can be used similarly to explain the prob-
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lems at lower levels. As students beginning middle school bring their arithme-

tic habits along with them, it interferes with the algebra learning. The students’ 

inability to move from actually carrying out each step (action) as in arithmetic, 

to see the steps as composing a process which can be mentally reversed, com-

posed etc. leaves algebra almost out of reach for most students. Students fail to 

understand/ manipulate 3+2a or 3a+2a as they consider 3a and 2a as only a 

set of actions (like 3×5+2×5 as a set of instruction – multiply 3 by 5, 2 by 5 

and add them) and not as ‘processes’, which does not allow them to work with 

these symbols till the value of ‘a’ is given. Once these are considered as 

‘processes’, then they can be mentally imagined and combined with other 

processes. Finally, students can encapsulate these processes and carry out 

complex transformations on them.  

Tzur and Simon (2004) and Simon et al. (2004) building on Piaget’s theory of 

reflective abstraction have proposed a two stage theory of learning mathemati-

cal concepts – participatory and anticipatory, and a mechanism for explaining 

mathematical conceptual learning – reflection on activity-effect relationship 

(Tzur and Simon, 2004; Simon et al., 2004). Acknowledging the fact that 

learners can understand a new mathematical concept as long as they can as-

similate it into their existing schemes/ structure, one needs to explain how 

learners make progress. The authors explain that learners’ goal-directed activ-

ity and its effect (as seen by the learner) serve as the basis for the formation of 

a new conception. Faced with a task, the learners set up a goal based on their 

current conceptions which requires them to call up their available activities to 

meet the goal. They subsequently attend to the results of their actions, distin-

guishing the positive from the negative ones. The goal directed adjustments 

based on the results are the effects of the activity. The learner’s reflection (may 

not be conscious) on these activity-effect relationships (mental comparison of 

the records of experience) lead to the first step of development of new concep-

tions. A conception can itself be though of as ‘the ability to anticipate the ef-
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fect of one’s activity without mentally or physically running that activity’ 

(Simon et al., 2004). Using this, Tzur and Simon (2004, p. 296) explain the 

two stages of learning mathematics. 

At the participatory (first) stage, the learners have learned to anticipate the 
effects of an activity and may also be able to explain why the effects derive 
from the activity. However, this knowledge is only available to the learners in 
the context of the activity through which it was developed…. In contrast, at 
the anticipatory (second) stage, the learners’ use of the new activity-effect re-
lationship is no longer limited to those times when they are focused on the ac-
tivity through which it was developed. That is, at the anticipatory stage a 
learner independently calls up and uses a newly formed activity-effect rela-
tionship appropriate to the situation at hand (stressing original in author’s de-
scription).  

The learning of symbolic algebra from arithmetic as well as the errors many of 

the students make can also be explained by this mechanism. The arithmetic 

knowledge of the students acts as the assimilable scheme through which they 

make sense of the new activity of algebra. The initial goals of the students are 

determined and directed by this knowledge and therefore the students tend to 

display errors which are considered as being a result of interference of arith-

metic ways of thinking. To be able to succeed in algebra, students through the 

feedback on their manipulation of symbols would have to engage with the rea-

sons for their errors and distinguish actions which are permissible from ones 

which are not permissible. This reflection connecting the causes of the errors 

with the actions on the symbols would lead to a general understanding of 

arithmetic operations, the first stage for algebra. From this ‘participatory’ 

stage’ where the conceptions are based on arithmetic, students have to move to 

the ‘anticipatory’ stage where the actions can be performed on the algebraic 

world without the arithmetic basis and the process can start all over again. 

Summary  

The review of a section of the literature related to the nature and causes of dif-

ficulties in algebra clearly shows that there have been many efforts to under-

stand the issue. Some of the explanations for the problems faced in algebra are 



 56 

restricted to the context of algebra, understanding the meaning of various 

symbols used in algebra and learning symbolic transformations (e.g. Kieran, 

1989; Booth, 1988; Linchevski and Livneh, 1999; Herscovics and Linchevski, 

1994) while some are more extensive in their scope (e.g. Sfard, 1991; Dubin-

sky, 1991; Gray and Tall, 1994; Simon et al., 2004; Tzur and Simon, 2004). 

Most of the studies discussed above considered algebra as encoding rules in 

arithmetic and highlighted the importance of awareness of structural properties 

of arithmetic in helping students to learn the rules of transformation of the al-

gebraic symbol system. Some researchers agree with this argument assuming 

that many years of experience in arithmetic and competent performance in it 

must lead to the appreciation and abstraction of the structure of expressions, 

leading to the domain of algebra which follows arithmetic in the hierarchically 

arranged curriculum. However, this does not usually happen in traditional 

classrooms due to emphasis on correct arithmetic procedures and answers. 

This could be a reason for some researchers questioning the usefulness of 

making the connection with arithmetic, based on their exploratory studies with 

students, where they have found the connection to be lacking or rigid. They 

therefore emphasize other ways of introducing algebra (generating expres-

sions, equations, functions, modeling etc.), not basing it on arithmetic and not 

waiting for arithmetic instruction to end in the primary grades or for students 

to move from the concrete to the formal operational stage. In the process, al-

though meaningful contexts are created for the generation of algebraic sym-

bols, the meaning which can be created by transforming those algebraic sym-

bols is lost. Arguments by Linchevski and Livneh (1999) and Kirshner (2001) 

for developing a connection between arithmetic and algebra emphasizing the 

structure of expressions have already been discussed earlier. This discussion 

will be continued in the next sections with examples of studies which are more 

successful in building and utilizing this connection. The research literature on 

errors/ difficulties in algebra and causes of the errors is vast and there is 

enough data to show that students do not make much sense of the traditional 
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symbol manipulation which is devoid of any context. This led to the beginning 

of a series of research studies which focused on situating algebraic activity in 

contexts, numerical or otherwise, and giving meaning to the actions on the 

symbols.  

2.5 Algebraic reasoning and thinking 

2.5.1 Differentiating algebraic from arithmetic ways of think-
ing 

To shift the emphasis from symbol manipulation and exploring students’ un-

derstanding of symbols, one of the things which needed to be urgently ad-

dressed was the issue of ‘algebraic thinking’, which could lead to a fresh char-

acterization of the activity of ‘doing algebra’. Problem solving was one do-

main in which the distinction between ‘arithmetic ways of thinking’ and ‘al-

gebraic ways of thinking’ was clearly visible. Bednarz and Janvier (1996) and 

Stacey and MacGregor (1999, 2000) distinguished arithmetic thinking from 

algebraic thinking in the context of problem solving. The researchers argued 

that questions/ problems which could be solved by operating with numbers to 

calculate numbers belonged to the category of arithmetic thinking. The charac-

teristic feature of such a solution is that unknown quantities are successively 

calculated from the known quantities and serve as input for the next step.3 A 

problem which necessarily requires algebraic thinking is solved by identifying 

the unknown, representing it by the letter, and describing the whole situation 

using the letter. It requires operating on and with the letter, as if the letter is 

known. The symbol is then used in a chain of deductive reasoning in state-

ments of equivalence till the problem is resolved. For example, an arithmetic 

solution to the problem (Stacey and MacGregor, 1999) ‘To rent a car from Ti-

                                                 
3 We have already seen the difficulties which students have in operating on and with the un-
known: ‘cognitive gap’ (Herscovics and Linchevski, 1994), ‘didactic cut’ (Filloy and Rojano, 
1989). Theoretical explanations for the discontinuity between arithmetic and algebra point out 
the distinctions between ‘procedural and structural’ (Kieran, 1989), ‘process and object’ 
(Sfard, 1991), ‘procept’ (Gray and Tall, 1994). 
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ger costs $100 per day and 20 cents per km. How far can I drive, if the most I 

can afford to pay is $240?’ is the following:  

$240-$100=$140 (money to spend on kilometer charge).  

Cost per km is $0.20.  

Number of kilometers that can be driven = money available ÷ cost per km = 
$140 ÷ 0.20 = 700.  

So I can drive up to 700 km.  

 

 

 

 

Figure 2.1: Bednarz’s and Janvier’s distinction between arithmetic and alge-
braic problems (1996, p. 124) 

The above solution is arrived at by using a method called ‘unwinding’. It is an 

intuitive method in which one begins with the last number and works back-

ward in a step-by-step manner using the information (numerical data) given in 

the problem. On the other hand, the algebraic solution would require one to 

assume the number of kilometers that can be traveled to be x and set up an 

equation with the unknown number (100+0.20x=240) and manipulate it as if 

the x is known, as, for example in the operation of subtracting 100 from both 

sides. In this way, the letter is attributed with the operational properties of the 

number. The problems in arithmetic are “connected” as we work by connect-

ing two given data and use arithmetic operations to arrive at the unknown in 

the end. Algebraic problems are “disconnected”, it is not possible to establish 

a relation directly between the known data due to the presence of missing links 

(Bednarz and Janvier, 1996). The figure (Figure 2.1) illustrates the difference 

“Connected” problems  “Disconnected” problems  

Problems in algebra Problems in arithmetic  

? 

? ? ?
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in the structure of the two kinds of problems. Attributing to the letter the status 

of something which can be worked on as if it is known, allows the algebra 

problem also to become connected. Therefore, students who use numeric trials 

as a strategy for solving problems are closer to algebraic reasoning than stu-

dents who use other types of arithmetic reasoning, like unwinding.  

2.5.2 Characterizing algebraic thinking 

While the above description of algebraic thinking is restricted to problem solv-

ing in algebra and the use of symbols in a situation, some researchers also ar-

gue that it is possible for students to display algebraic thinking or reasoning in 

meaningful contexts without using letters or conventional symbols and not 

necessarily while working in the domain of algebra (e.g. Kieran, 2006). The 

letter symbol can be used as a tool if needed, but is not essential. Algebraic 

thinking can be displayed in activities such as analyzing relationships between 

quantities, noticing structure, studying change, generalizing, problem solving, 

modeling, justifying, proving, and predicting (Bell, 1995; Kieran, 2006). Some 

others (like Carraher et al., 2001) do not see introducing algebraic symbolism 

very early among small children (grades 2-3 onwards) as problematic. They 

emphasize notating relations among quantities and operations using symbols 

from the beginning, in situations like function notations for addition, multipli-

cation, guess-my-rule games etc. (for example, n  n+3, n  n+n, or 2×n). If 

algebraic thinking is not restricted to the domain of algebra and the use of 

symbols, then it is possible to develop this type of thinking from the beginning 

which become the focus of ‘early algebra’. This did not obviously mean teach-

ing traditional middle school algebra to smaller children but developing cer-

tain capabilities among children to think and reason using numbers and quanti-

ties relationally. Lins and Kaput (2004, pp 48) characterized algebraic thinking 

as: 

First, it involves acts of deliberate generalization and expression of general-
ity. Second, it involves, usually as a separate endeavor, reasoning based on 
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the forms of syntactically-structured generalizations, including syntactically 
and semantically guided actions.  

Arithmetic serves as the basis for ‘reasoning based on syntactically-structured 

generalizations’. It includes modeling relationships using numbers and opera-

tions, reasoning involving properties of operations and equality, and analytical 

thinking (Lins, 1992). In almost all characterizations of algebraic thinking, 

aspects of generality, generalization and expressing generality hold a central 

position, which is in contrast to arithmetic thinking where the focus is on spe-

cific situations, methods and values (Sutherland, in press). The point here is 

not whether one uses numbers or other symbols for purposes of reasoning, but 

whether one can think about general cases with the symbols (number or any 

other). Some researchers like Sutherland emphasize the need to manipulate 

and transform the generalized relationships. In this context, the use of alge-

braic symbols becomes essential as they allow for expressing the general as 

well as for manipulating general relations.  

Davis (1985) described a step-by-step procedure for creating algebraic think-

ing among students: (i) valid experiences helping to build appropriate mental 

representations for the key concepts in algebra (ii) followed by discussions 

building on students’ mental representations with emphasis on accurate expla-

nations using simple language, and (iii) culminating in the development of an 

appropriate ‘meta-language’ for thinking about mathematical experiences us-

ing a non-misleading notation. A major problem with the students, in the stud-

ies reported in the last section, can be attributed to a drastic shift in approach, 

nature of thinking, symbols, conventions and notations for which they were 

not adequately prepared. There was indeed a huge ‘cognitive gap’ between 

arithmetic and algebra. The enunciation of algebraic thinking gave an indica-

tion of the amount of work that needs to be done prior to the introduction of 

symbolic algebra, which is typical in the middle and the secondary school. 

With this brief discussion on algebraic thinking, we move on to studies which 
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exemplify the approach that encourages algebraic thinking from the early 

grades and understand the ways in which it has been implemented.  

2.5.3 Early algebra and algebraic thinking 

All the studies being reported here rely on students’ intuitive understanding of 

numbers and operations and generalization abilities and encourage explication 

of these, thereby giving them formal understanding of the properties of opera-

tions. Some studies use only incidental and idiosyncratic symbols, just to ex-

pose students to the power of symbols and the extent to which it can help 

communicate among a group, with more time spent on argumentation and ar-

ticulation of ideas. Some others develop the conventional symbols and nota-

tion in the classroom.  

Algebrafying arithmetic  

In exploratory studies conducted by Fujii (2003) and Fujii and Stephens 

(2001), they argued that the idea of quasi-variables is an important one which 

can bridge the gap between arithmetic and algebra. By quasi-variables, they 

mean a number sentence or a group of number sentences that indicates an un-

derlying mathematical relationship which remains true whatever be the num-

bers used. This kind of reasoning relies on thinking algebraically, looking at 

structures and relations, without using letters and is different from reasoning 

which relies on calculating numerical values. They make the case that the 

missing number sentences (like 13 + 5 = ___ + 8) are not truly algebraic in the 

sense that these tasks can be completed by trial-and-error arithmetically, by 

calculating. But one does not deny their importance in understanding the 

meaning of ‘=’ sign. Algebraic thinking, according to them, essentially en-

gages students in patterns of generalized thinking. Although the idea of vari-

able is not easily grasped by students with inherent difficulties in understand-

ing the meaning of the letter (Fujii, 2003), generalizing patterns giving rise to 

numerical expressions in the many possible rich contexts of arithmetic or ge-
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ometry are fruitful grounds to engage students to think in terms of quasi-

variables. In a series of interviews with students in grades 2 and 3, using tasks 

which focused on generalizability and relational thinking like ‘Peter’s method’ 

(solving 37-5 as 37+5-10) and filling the blank (746+__-262=747), they found 

that students in elementary grades (2-8) to possess and display abilities to 

think in terms of generalizations (like add the complement with respect to 10 

of the number being subtracted and subtract 10) and look at relations between 

expressions and fill the blank without computation. Such relational thinking 

was associated with their ability to construct expressions with letter (arranging 

n-1, n+5, 7, 1 so that two expressions are equal) (Stephens 2004a, 2004b).  

Saenz-Ludlow and Walgamuth (1998) describe a socio-constructivist teaching 

experiment with 14 third graders who participated in a year long project deal-

ing with the ‘=’ symbol and equality. The study showed the resilience of the 

procedural understanding of ‘=’ sign and the unease in accepting the notion of 

quantitative sameness. It illustrated the potential of discussion, communication 

and explanation in the classroom and the effort required to construct the mean-

ings of mathematical symbols (here ‘=’ sign). In the process, the researchers 

bring forth an interesting discussion about the ‘=’ sign. Cautioning against the 

thinking that the meaning of ‘=’ sign is simple, they distinguish between the 

equalities in the expressions a+b=b+a (nominal and quantitative sameness), 

a+a=a+a (nominal and quantitative sameness but operating order not readily 

visible) and a+a=(a+b)+(a-b) (nominal sameness broken but quantitative 

sameness preserved and operating order loses significance). The students need 

to understand ‘=’ sign as quantitative sameness and simultaneously attend to 

operating command and the operating order of the addends. They conclude 

that “interpreting and symbolizing are different but complementary faces of 

the activity of constructing arithmetical meaning of equality through symbolic 

language (natural language and the mathematical symbols) or what could be 

called a symbolic activity” (pp. 185-186).  
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In teaching studies conducted by Carpenter and his colleagues (Carpenter and 

Levi, 2000; Carpenter and Franke, 2001; Carpenter, Franke and Levi, 2003), 

they showed that young children in the primary/ elementary grades are capable 

of learning and justifying generalizations about the underlying structure and 

properties of arithmetic, which can form the basis of algebra. The focus was 

on students’ algebraic thinking, in particular students’ abilities to generalize, 

articulate, represent and justify generalizations about the underlying structure 

and properties of arithmetic. The approach emphasized not only generalization 

but also representing mathematical ideas using symbols. They showed through 

whole class teaching studies that students in grades one through five can un-

derstand and articulate important properties of numbers and operations like 

adding a zero, subtracting the same number, commutative properties of addi-

tion and multiplication and develop a broader understanding of the ‘=’ sign. In 

many of these instances, the students were engaged in ‘true-false’ and ‘open 

number sentence’ activities and were challenged to think of situations which 

remained invariant even though the numbers changed. Not only could they 

verbally justify such properties but with a little scaffolding in grades 4 and 6, 

they could use variables to represent the general statement (like a-a=0, a+0=a, 

a+b-b=a).  

Schifter (1999) described students in primary grades (grades 1-3) exploring 

relations between numbers and properties of operations and unraveling for 

themselves deep properties like commutativity, associativity and distributivity. 

The contexts of the tasks for these students were word problems as well as 

calculations with numbers and operations. As the students engaged in the 

tasks, they were encouraged to come up with multiple ways of finding the so-

lution and representing and justifying them. After having found the solution to 

a problem in different ways, the students were further asked to generalize their 

understanding to other pairs of numbers with regard to the same operation. 

Some of the students arrived at these properties by checking for numerical 
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values of the two arithmetic sentences (viewing the operations as actions/ in-

structions on the numbers) and some others modeled the situation using blocks 

to justify the truth of the statement for all numbers (focusing on the relations 

between the numbers and the operations). It is on these numerical experiences 

that algebra is built and understanding based on this kind of algebraic reason-

ing can be easily converted into conventional notations and explicit knowl-

edge.  

Kaput and Blanton (2001) and Blanton and Kaput (2001) discuss some of the 

ways of algebrafying the elementary curriculum and present examples of 

classroom practice that actualize this goal. The activities involve generalizing 

arithmetic operations, their properties and reasoning about the more general 

relationships and their forms (e.g. properties of zero, commutativity, inverse 

relations, etc.), building generalizations about particular number properties 

and relationships (e.g. the sum of two odd numbers is even, finding regulari-

ties in 100 table, determining general properties based on place holder system 

etc.). This study shares many of its features with the studies described above 

by Carpenter et al. In examples from a grade 3 class, Kaput and Blanton 

(2001) show students’ developing ideas about generalizations like ‘adding two 

odd numbers always gives an even number’, or counting the number of hand-

shakes in a party systematically. The teachers in these classrooms try to alge-

brafy the particular number situations whenever possible. These generalization 

and formalization activities, according to Blanton and Kaput (2001), can build 

students’ understanding of variable, function, and the ‘=’ sign. The instruction 

utilized and developed students’ symbol sense and introduced letters gradually 

through open number sentences or through generalizations of number proper-

ties, using students’ abilities to conjecture and argue about the truth or falsity 

of the generalization.  

Warren and Cooper (2001) report the development of an algebra curriculum 

for Australian schools for the grades P-7. They too used the arithmetic knowl-



 65 

edge base to build understanding of operations, rules of operations, equiva-

lence and the concept of variable. This served as a bridge between arithmetic 

and algebra making them aware of structure and connections, representation, 

exposure to multiple thinking/ reasoning styles, on which knowledge of alge-

bra could be built using unknowns and patterns and relationships.  

A functional approach to early algebra  

In a slightly different approach towards early algebra, Carraher, Schliemann, 

Brizuela and their colleagues carried out research on students studying in 

grades 2 to 4 in Greater Boston to investigate their understanding of algebraic 

concepts, relations and notation. Their studies have been guided by the idea 

that arithmetic operations can be seen as functions, and that generalization is 

at the heart of algebraic reasoning (Carraher and Schliemann, 2002). Accord-

ing to them, one of the major reasons why students fail in representing or ac-

cepting algebraic notation is that notations are always used for computing and 

hardly for describing the relationships in the problem. Together with this are 

the limitations in the early mathematics instruction like restricted problem sets 

and focus on computation of particular set values rather than on relations 

among sets (Carraher et al. 2000). The emphasis on symbolic representations 

in their work is due to the belief that these open up new avenues of thinking 

and connecting and comparing with earlier learned ideas, as well as structure 

one’s own mathematical thinking (Schliemann and Carraher, 2002).  

Using students’ initial understanding and intuitive ways of thinking and repre-

senting, students as young as 3rd graders were seen to use algebraic symbols 

and understand and represent additive and multiplicative relations as functions 

(n n+3 or n 2×n) with minimal help from the teacher. The activities the 

students carried out include those with the letter number line, guess my rule 

games and activities focusing on functions. These students could fill out func-

tion tables and find the rule which could describe a function table. They learnt 

to see the equivalence of two such rules by checking if they got the same out-
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put for a given input. The researchers also emphasized proving the equiva-

lence irrespective of the data set which gave rise to it, which was not so con-

vincing to the students. It is important to note that understanding equivalence 

of algebraic expressions by manipulation without reference to the context is an 

important step in algebra. In their studies, students focused on generalizing 

quantitative relations from particular values and independent of any particular 

context. They allowed students to represent freely the problem situations using 

any of the means like language, pictures etc. but also ensured that the students 

moved towards conventional symbolic notation which they consider to be an 

integral part of algebra (Carraher et al., 2001; Brizuela et al., 2000, Brizuela 

and Schliemann, 2003). Third grade students could also understand graphs of 

linear functions and 4th grade students were able to solve algebraic problems 

using multiple representation systems such as tables, graphs, and written equa-

tions (Schliemann and Carraher, 2002; Schliemann et al., 2003; Brizuela and 

Schliemann, 2003). Contrary to the speculations of some researchers 

(Linchevski, 2001; Radford, 2001; Tall, 2001) regarding the ability of the stu-

dents to operate on and with the letter in the letter-number line context, these 

later activities like guess-my-rule, functions, equations (Schliemann, 2003; 

Schliemann, 2002; Brizuela, 2003) showed that the students could learn to 

represent and think using the letter. Although these studies are promising, the 

overall situations were quite simple, mostly with a single appearance of the 

letter in an expression and a single operation sign where more intuitive meth-

ods can work and one still does not need to work on/ with the letter.  

What the students achieved in the study described above is promising. Warren, 

Cooper and Lamb (2006) describe a similar teaching experiment with grade 4 

students. The teaching sequence focused on the idea of functions where func-

tion machines were used to generalize and formalize arithmetic thinking. The 

relationship between input and output numbers in the function machine 

(arithmetic as ‘change’) was the point of attention, rather than on building un-
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derstanding of operations on numbers so that the structure in the relationships 

is evident.  The study also found that young children are capable of functional 

thinking in the sense that they could figure out the output number from the in-

put number and sometimes even the reverse, and identify the change rule. 

However formal representation of these relations using arrow diagrams and 

equations had limited success. 

Summary: The success stories 

Compared to the earlier section of the discussion of the literature, which fo-

cused on students’ failures and possible causes, this section highlighted what 

students can do given the opportunities and the means of carrying out mean-

ingful tasks, giving some hope to the dismal picture of students’ understanding 

about various aspects of algebra. The ‘Early algebra’ movement has given a 

direction towards improving the teaching and learning of algebra, preparing 

the children to make a transition to algebra. Lins and Kaput (2004) call these 

studies the ‘happy stories’ of algebra. Due to studies of the above kind, there is 

a growing awareness that children are capable of generalization and relational 

thinking. The students need to be given the opportunity in the classroom to 

articulate generalizations and explain their thinking, make conjectures and jus-

tify while working on any domain of mathematics so as to foster algebraic 

thinking from the beginning. They do not propose to teach the middle school 

algebra curriculum with all its symbolism and transformation rules but aim to 

expose the students to a kind of thinking which goes beyond the immediate 

and can reason about the probable. The studies reviewed here were those 

which largely relied on using arithmetic knowledge as the base4.  

Studies have also been carried out with students in the middle school (the 

normal stage for introducing algebra) aimed at improving students’ under-

standing of symbolic algebra. Like many other researchers, the present study 
                                                 
4 There would be many other fruitful approaches to induce algebraic thinking, using geometry 
and other branches of mathematics (Radford, 2001). 
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being reported here takes the view that symbols in algebra are a crucial part of 

algebraic thinking, enabling one to represent the situation and manipulate the 

representations to arrive at solutions which are not always intuitive. This is not 

to deny the role of verbalization and articulation in the process of generaliza-

tion, but to highlight the tool which allows going beyond the surface features 

of a situation and the numbers involved to lead to patterns and general proper-

ties of numbers, operations, solution of a class of problems and further devel-

opment of concepts/ ideas. In the section below, studies which have tried to 

develop some awareness of syntax of algebra and give meaning to syntactic 

transformations will be discussed.  

2.6 Developing understanding of symbolic algebraic ex-
pressions 

2.6.1 Modeling algebraic expressions 

Chalough and Herscovics (1988) carried out a teaching experiment (three les-

sons) with six students in grades 6 and 7 (3 from each grade and belonging to 

weak, average and strong academic ability) trying to teach them algebraic ex-

pressions with meaning. They used situations which required representations 

by the students, like counting the number of dots in an array with only a row 

or column shown, finding the length of a line segment with the number of 

parts hidden and finding the area of rectangles with one of the dimensions or 

part of it as a letter and gradually increasing the complexity. Initially, they ob-

served misconceptions with respect to notations like 3x is 32 if x=2 (concate-

nation) as well as weak conceptions of area. The students also had trouble un-

derstanding the idea of an unknown number of dots. The line segment problem 

had also to be readjusted from unknown number of parts to unknown length of 

each part. The students, even after the instruction, worked with another frame 

of reference (arithmetic), unless explicitly stated to work in the context of al-

gebra. But by the end of the program, they succeeded in understanding the 

meaning of such algebraic expressions with even two variables. The teaching 
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experiment did have some impact in making the students understand the 

meaning of the expressions, which was one of the most important issues in the 

research literature at that time. This experiment was restricted in its scope and 

operating on/ with the letter was not dealt with.  

There have been many studies which tried to build a sense of symbols in alge-

bra in modeling or other quantitative situations (real life or otherwise), like the 

one above, requiring representations of the relationships, which are largely 

generational activities (Kieran, 2004). These models although useful in giving 

meaning to the symbols have inherent limitations, in that the students remain 

tied to the concrete world of reference and often the rules of symbol manipula-

tion are not generalized to work in contexts other than the one in which it was 

created. Moreover, it is cumbersome and sometimes impossible to use the 

same model for all concepts and situations as these need not be translatable to 

the world in which the symbols have acquired meaning. This requires one to 

use many different models simultaneously which itself can be very confusing. 

Also, it is important for students to learn to associate meanings with the sym-

bol and to manipulate them in a referent free manner. This is an important 

ability while solving problems (not restricted to equation solving and inclusive 

of generalization and justifying tasks) where the contexts are first represented 

using symbols and then the symbols are transformed using rules, without con-

sidering the referent and finally interpreting the deductive chain of arguments 

back in terms of the situation. Balacheff (2001) argues that the validation of 

reasoning and the result in modeling situation is not internal to mathematics 

but to the situation and governed by constraints of the modeled world. In the 

above situation, it will be difficult to think about a quantity represented by ‘–

x’(negative x) as lengths or areas cannot be negative. 
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2.6.2 Exploiting the arithmetic-algebra connection using its 
syntax 

Researchers have also tried to induce meaning for the algebraic expressions or 

equations using number as the referent for the letter and build a sense of struc-

ture of expressions among students. Some of the literature has already been 

reviewed on students’ understanding of algebraic symbols and their lack of 

structure sense. The studies which will now be described have exploited the 

arithmetic algebra connection by developing awareness for the structure of 

expressions, the letter automatically standing for the number.  

Thompson and Thompson (1987) developed a special computer program 

called EXPRESSIONS which allowed students to manipulate expressions 

(arithmetic and algebraic) as well as constrain their actions on the expressions 

so that the structure of the expressions is not violated. The program was tried 

with eight students finishing grade seven over eight teaching sessions of 50 

minutes each. The program presented an equation or an expression both in the 

sequential form and as an expression tree. This helped in highlighting the 

structure of the expressions. The students were taught order of operations, 

field properties as transformations of arithmetical expressions, identities and 

derivations. The program supported students’ explorations of properties of op-

erations by carrying out certain transformations as commanded by the students 

but not others which were wrong. Although, initially during the exploratory 

phase students committed errors by choosing the wrong buttons but once they 

internalized the structural constraints on the transformations, they found effi-

cient solution strategies as well as made less errors. The analysis of the results 

suggest that mal-rules (perturbations of correct rules) are not naturally formed 

in environments which support explicit attention to structure of expressions 

and which impose constraints on students’ actions, implying that attention to 

structure is important.  
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The problems designed for the instruction (e.g. exercises on order of opera-

tions involving expressions with and without brackets, changing the numeric 

expression 5×((4+3)+2) to (5×4)+((2+3)×5) or showing the identity 

r×(s/t)=(r×s)/t) required students to treat sub-expressions as a unit. Students 

needed to substitute sub-expressions in an expression for a letter in the canoni-

cal statement of a property or an identity. Letters were also introduced in ex-

pressions which required transformations. Through their experience of trans-

forming numerical expressions, students appreciated that specific constituent 

elements are not important. The same transformation rules were used by the 

students in the context of expressions with letters without difficulty. The au-

thors claimed that the students found the expression tree quite intuitive but 

also pointed out the fact that the study failed to test the students outside the 

computer environment and whether the students understood the identities as 

being applicable in other contexts as well. This study has been one of those 

which have explicitly tried to train students to perceive the structure of expres-

sions. Despite the success of the approach in enabling the students to use the 

correct order of operations (which are hierarchical/ precedence rule based) and 

identities, it detaches the sign from the subsequent term which does not allow 

the students to see the effect of each component on the whole expression. The 

relationship of the components of the expression to the whole and between the 

components is not explicit. One would learn to transform expressions correctly 

without still getting a complete sense of the structure of the expressions.  

APLUSIX (Chaachoua et al., 2004) is another environment for learning formal 

algebra using the structure of the algebraic expression where students carry 

out their own calculations as in paper and pencil situation (using functions like 

selection, cut, copy, paste, drag, drop) and learn through committing errors, 

unlike many other environments as the one described above where students 

use the commands like “commutativity” in the environment to transform the 

expression/ equation. The environment provides the feedback with respect to 
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the denotation – equivalence of the transformed expression/ equation and a 

sense of the expression with respect to the goal of the task. The use of this en-

vironment has shown improvement in competences of students in grades 9, 10, 

11 with a little help from the teacher and without any additional algebra in-

struction in the regular class. 

Malara and Iaderosa (1999) report a research project with students in the age 

group 11-14 years which promotes learning algebra as a language through and 

for the study of problems, internal as well as external to mathematics. They 

studied if and to what extent an early introduction of letters in parallel with a 

constant work of reflection and control of the meanings of the symbols may 

limit or overcome well known obstacles and difficulties in algebra. This pro-

ject also explored the connection between arithmetic and algebra and aspects 

of notation and convention, like parentheses, the ‘+’ and the ‘–’ sign, which 

cause difficulties in learning arithmetic or algebra. These need to be under-

stood both as operators on numbers as well as signs for numbers. The re-

searchers tried to deal with the confusion between the notations of addition 

and multiplication and, multiplication and exponents in the case of arithmetic 

by comparing them and bringing forth the similarities and differences between 

them. This developed understanding was simultaneously carried over to the 

domain of algebra.  Students did not see the equivalence in the procedures and 

properties, which were known in the case of arithmetic, when a new or differ-

ent symbolism with letters was used. The researchers observed that in the nu-

merical expressions the students read the symbols as processes, working inside 

the bracket first, operating on the powers and adding but it was not possible in 

the case of algebraic expressions where they had to think about the form of the 

expression (e.g. (2×3)2+2(2×3)=62+12 whereas in (ab)2+2ab=ab×(ab+2)). 

They recommended that algebra be introduced with a ‘metacognitive teaching’ 

of arithmetic with the algebraic aspects of arithmetic developed and expli-

cated, which would allow students to use the correct algebraic code. Even 
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though this project focused on generalizing properties and procedures of op-

erations on numbers clarifying the notational difficulties, the results show the 

difficulty for students in perceiving the similarity and even engaging in the act 

of generalization in such a context. The recommendation put forth by the au-

thors is therefore a vital lesson for any one trying to use arithmetic for teach-

ing algebra and especially for the work being reported in this thesis.  

In another study, Livneh and Linchevski (2003, 2007) tried to explore the 

connection between arithmetic and algebra among students of grade 7 in four 

schools over two years in Israel. Teaching modules were prepared purely in 

the numerical contexts to address the structural difficulties in arithmetic like, 

order of operations, detachment of the negative sign, ‘=’ sign. These errors 

had earlier been identified in both arithmetic and algebraic context and there-

fore were considered to be impediments to achieving algebraic competence. 

The activities were designed to elicit cognitive conflicts and allow hypothesis 

testing in meaningful contexts. The contexts were chosen so that they were 

‘algebra compatible’; they reflected algebraic competence but in a numerical 

context (e.g. “Is 75-25+25=75-50” gets reflected in the algebraic situation “Is 

16-4x+3x=16-7x”). The intervention proved to be of help to students identified 

as ‘students-at-risk’ who made significant progress in the numerical and com-

patible algebra tasks. This suggested that teaching arithmetic for algebraic 

purposes could prevent some structural mistakes in beginning algebra and a 

carefully designed instruction in purely numerical context transfers its effect to 

algebraic one. The results also showed that although the at-risk students pro-

gressed in algebra-compatible tasks, the progress in other tasks (generaliza-

tion, representation, word problems) was small. This instructional sequence 

drew on earlier studies which highlighted the need for building pre-concepts 

for algebra using pre-algebra activities (Linchevski, 1995). Number pattern 

generalizations, explicating the algebraic structure in numerical contexts (fo-

cusing on order of operations, brackets, detachment of an operation) and equa-
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tion solving through numerical verification, equivalent equations through sub-

stitution, intuitive ways of solving, and forming equations were some of the 

activities proposed for pre-algebra.  

Carrying over a similar line of research, Liebenberg et al. (1998) gave an 

overview of an approach which aimed to build students’ understanding of 

structure of numerical expressions as a foundation for algebra. The structure of 

numerical expressions forms the input for algebraic expressions. They pointed 

out that while understanding the structure of expressions, students need to en-

gage in both semantic and syntactic discussions and acquire a good command 

over order of operations before developing structure sense. In the study, they 

investigated the process of learning of structure of numerical expressions in 

grade 6 (Liebenberg, Linchevski, Sasman and Olvier, 1999). The students 

learnt the precedence of operation rules by analyzing and comparing the re-

sults for an expression using a scientific calculator and a non-scientific one 

and then constructing generalized rules. The study showed that the students 

found it hard to identify multiplication as a unit in an expression and wrongly 

generalized or over generalized the rule of precedence of the multiplication 

operation (e.g. 5×3+2×4×6+7×9 = (5×3)+(2×4)×6+(7×9) = 15+8+63 = 86, 

86×6=516; 5×2×6=5×2+6×2). Students also had difficulty in generalizing the 

rules of operations from a structural perspective making it difficult to apply 

this knowledge to non-computational situations like judging equivalence of 

expressions or solving simple equations (e.g. 302+(79×128)+29 = 

302+(128×79)+29 because all the numbers are the same in the bracket as the 

given one or 5+5×c=124⇒10×c=124).  

In another effort they tried to teach the concepts of numerical and algebraic 

equivalence by focusing on both the procedural and the structural aspects of 

the expressions (Liebenberg, Sasman and Olivier, 1999). The aspect of nu-

merical equivalence was tested in grade 6 and algebraic equivalence in grade 

9. Most students justified the numerical equivalence using syntactic features 
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(repeated the rules of finding the value of the expression) and not by using 

properties of the operations, but these students also had limited understanding 

of the rules of brackets except knowing that brackets are solved first. They 

gradually moved from this understanding of numerical equivalence to alge-

braic equivalence where two algebraic expressions were considered to be 

equivalent if they were equal for all values of the variable. The students were 

encouraged to focus on the properties of the operations to build equivalent al-

gebraic expressions and to see that equivalent algebraic expressions can be 

substituted for one another. Equivalence of algebraic expressions was under-

stood primarily numerically through substitution and not by transforming the 

expression. For example, students replaced the letter by numbers to see if x+x 

is same as x2 and since they are not equal for all values of x, they are not 

equivalent algebraic expressions. The same notion of equivalence was used to 

understand the use of letter in equations with a single variable (expressions 

which are equal for one value of the letter) and identities (expressions which 

are equal for all values of the letter). When tested in grade 9, although the stu-

dents simplified the expression they could not confidently say whether the two 

expressions are equivalent. They did not accept the transformation process to 

be a valid way of ascertaining the equivalence of algebraic expressions and 

checked with a numerical value to be sure. Students’ perceptions were also 

influenced by equation solving which they learnt to be expressions which are 

numerically equivalent for a specific value of the variable resulting in confu-

sion between equivalent expressions and equations. The researchers realized 

that this result was a manifestation of the greater emphasis on procedures in 

the intervention. They therefore recommended focusing away from computa-

tional work to be one way to encourage students to adopt a more structural ap-

proach, which is the core of the idea in the transition from arithmetic to alge-

bra.  
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Williams and Cooper (2001) describe two studies aimed at facilitating and as-

sessing the teaching and learning of algebra, especially in terms of developing 

the meaning of operations, equals sign, and the variable. This study was also 

based on introducing algebra by capitalizing on the arithmetic algebra connec-

tion and the authors contended that learning complex algebra is facilitated by 

understanding similar structures in complex arithmetic. Unknowns, patterns 

and relationships were used to introduce the notion of variable. The first study 

was conducted with grade 8 students (twenty 40 min sessions over 4 weeks) 

and the emphasis was on reflection of their arithmetic experience and gener-

alizations of those (differences between the four operations, procedures for 

simplification and equation solving). Simplification of algebraic expressions 

was introduced by translating the patterns in arithmetic into abstract schema, 

like multiplication as repeated addition, adding, subtracting, multiplying and 

dividing coefficients, multiplication as area, division as the inverse of multi-

plication and adding/ subtracting like things. Cups and counters (and at times 

‘apples’) were used to model algebraic expressions, for example, 3x would be 

three cups and 3+x would be a cup and 3 counters. Students initially did not 

distinguish the modeling with cups and counters in the two cases above but 

slowly learnt it. Modeling something like 3(x+2) was harder which required 

the distributive property. After certain modifications of the teaching interven-

tion, they reported that students appeared to understand the generalizations 

from arithmetic to algebra. Although students were reasonably successful with 

adding/ subtracting like things, they encountered problems due to lack of un-

derstanding of negative numbers.  

The second study was also conducted with grade 8 students (ten 50 minute 

episodes). By the end of the unit, students’ understanding of the equals’ sign, 

expressions and equations improved and they were comfortable with non-

closure of expressions. The results at the end of the study were similar to the 

results of the first study with difficulties persisting in the case of distributive 
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property and negative numbers. Misinterpretation of notations was observed, 

especially mn as m+n and not m×n. The researchers proposed that a greater 

emphasis to be placed on operations, ‘=’ sign, operation laws, expressions, 

equations and complex arithmetic and a gradual movement from operating ar-

ithmetically to operating algebraically. The modeling with concrete materials 

probably made the approach limiting as the students used it mechanically and 

remained in that world to attach meaning to the algebraic symbols. This could 

not be elaborated to more complex situations, especially the contexts of brack-

ets and distributive property, where the students did not have much success. 

Negative numbers/ quantities also could not be treated in this situation. The 

similarity with arithmetic and properties of operations did not get sufficiently 

highlighted. Use of analogies like apple+apple+apple = 3 apples for x+x+x = 

3x is dangerous, as in spite of all efforts, there is more likelihood of misunder-

standing the symbolism (letter as standing for object/ name rather than a num-

ber, e.g. 3a+2b=5ab, 3 apples and 2 babanas are 5 apples and bananas). Also 

all these strategies work for very simple cases. The translation from one lan-

guage (arithmetic) to another (algebra) was dealt with only at the surface level 

(replacing the number by the letter) and not fully engaging with the properties/ 

rules of transformations or equations or the meaning and denotation of the 

symbolic expressions.  

2.6.3 Immediate lessons learned  

There is no doubt that a strong understanding of properties of numbers and 

operations is an essential foundation for beginning algebra (Stacey and Mac-

Gregor, 1997). However, some of the studies, especially the ones by Lieben-

berg et al. and Malara and Iaderosa as described above, showed that students 

do not make the connection between arithmetic and algebra spontaneously, 

even when opportunities are created for doing so. The tendency to compute 

without reflection and using that to reason about situations when required 

without a focus on the properties of the operations is a common problem 
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among students. Emphasizing correct procedures (as in Liebenberg et al., 

1998, 1999a, 1999b) and/ or correct parsing (as in Thompson and Thompson, 

1987) itself is not sufficient to make the connection between arithmetic and 

algebra, as very few students manage to abstract the structural features of ex-

pressions in the end. Therefore, Cerulli and Mariotti’s (2001) suggestion (see 

section 2.3.5) of converting the properties of operations into rules of operation 

is very useful. Only when the focus is explicitly on rules of transformations 

and the discussion engages the students in explicating the possibilities and 

constraints of the transformation, is there some possibility of students making 

the requisite connection. In contrast to the referential approach where the 

meanings are drawn from the external domain, the ‘structural approach’ to in-

troducing algebra, exemplified as above, builds meaning of the symbols inter-

nally, from the connections within the syntactically generated system, 

(Kirshner, 2001). The thesis builds on the lessons learned from this section of 

research and uses this as the framework of the teaching approach.  

2.6.4 Other contexts and reasons for developing understand-
ing of symbols 

In another effort to give meaning to the symbols and manipulation on those as 

well as draw connections between students’ natural language, informal nota-

tions, understanding of arithmetic symbols and procedures and formal algebra, 

Ainely, Wilson and Bills as part of the longitudinal ‘purposeful algebraic ac-

tivity’ teaching project, have looked at the development of algebraic activity in 

pupils in the early years of secondary schooling (12 year olds) using a spread-

sheet environment. The spreadsheet environment was used to guide the stu-

dents into generational tasks which is meaningful within this environment and 

then moved away from it to engage in transformational tasks using transfor-

mations on ‘non-letter-symbolic’ representations. One set of data with three 

pairs (low, middle and high ability) of 12 year olds revealed no differences 

among the pairs with regard to transformational capability but differences with 
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regards to generational abilities, where only the middle and high ability stu-

dents were successful (Wilson et al., 2003). The low ability students however 

used the letters as in ‘fruit-salad-algebra’ and the middle ability students were 

not sure of the nature of the possible transformations on algebraic expressions. 

Another set of data collected through interviews with 12 pairs of 12 year olds 

(evenly distributed over achievement levels and gender) revealed their compe-

tence with transformation of not only simple expressions like 2a+3a but also 

the more complex expressions like (a+b)-b (Bills et al., 2003). Students were 

seen to use substitution of the letter by a number or referred to the operation 

thereby activating the sense of the algebraic expression. The researchers view 

this to be an important activity for developing a sense of symbolic manipula-

tion and stress the need for ‘seeing the particular in the general’ together with 

manipulating the general. The study showed the construction of meaning by 

the students as a result of the complex interaction in the spreadsheet environ-

ment through a back and forth movement between arithmetic and algebraic 

structures, natural language, informal notations, spreadsheet notations and 

formal algebraic notations.  

This approach towards algebra contains a mixture of all aspects essential for 

algebraic activity. But the focus of the project was on generational and global/ 

meta-level activity with arithmetic playing a small role. Due to the nature of 

the spreadsheet environment, the letter/ cell number automatically, takes the 

number as the referent. It has an inbuilt potential to treat the formulas in the 

cells as functions and numbers in the cells as variables (referring to the cell 

and the column) or place holders (number container whose content can be 

changed). It also removes the students from solution of particular instances 

and leads to an awareness of solution for a family of problems, bridging the 

gap between arithmetic and algebra. Although this environment enhances 

one’s understanding of the purpose of algebra and the representational nature 

of the symbols, it does not enable one to reflect on the general processes and 
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properties of computation, which is an important component of sense making 

of the symbols and their transformations. Even when such tasks (as of identi-

fying equivalences) are created, they will be tied to the results arrived at the 

end of the processes rather than the processes themselves. Shifting the atten-

tion between specific number and the general formula in each cell is definitely 

a challenge (Filloy et al., 2001; Dettori et al., 2001, Ainley, 2005). 

Implications of the approach  

The studies cited above emphasize syntax with all efforts made to give mean-

ing to the acts of transformation on algebraic symbols. In the process, students 

do form some understanding about the meaning of the symbols themselves. 

Also, the studies display a range of ways of approaching the semantic-

syntactic problem which algebra brings with it. Some of the approaches have 

been more fruitful than others and have more potential in addressing wider 

issues of algebra. It is somewhat clear through the research studies reported 

here, that only paying attention to the syntax by drawing on the similarity of 

syntax with arithmetic does not help much to alleviate the problem. Also stu-

dents do not see the structural similarity between arithmetic and algebra spon-

taneously, even if they are posed with tasks/ questions which require the abil-

ity. There have not been many attempts to explicitly teach the structure of ex-

pressions to students which allows them to look at expressions flexibly as 

processes and as objects and combine both the syntactic and the semantic (ref-

erence for the letter) aspects of algebra. There are indications from the studies 

quoted in this section and the previous one that it is a promising approach and 

needs careful exploration. It is this task that was taken up in the present study. 

2.7 Contexts for algebra 

Besides the studies which have been discussed in the previous sections dealing 

with understanding the syntax and symbols, a lot of effort in the teaching and 

learning of algebra have gone in identifying situations which could lend mean-
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ing to the symbols and a context where these symbols could naturally arise, 

lending purpose to algebra. In fact, for many researchers, algebraic symbols 

derive their meaning from the contexts in which they are embedded. Syntactic 

transformations are considered meaningless (inferred from the poor perform-

ance of the students in tests) and introduction to algebra using this approach is 

considered to be the hardest. Many arguments in support and in contradiction 

to the above viewpoint have already been discussed in the chapter. It is also 

true that knowing syntactic manipulations does not necessarily reflect stu-

dents’ ability to think algebraically or to solve problems requiring algebra. Al-

gebraic thinking and algebraic symbolization may develop asynchronously 

(Amarom, 2003). Thus, it becomes essential to analyze the role of contexts in 

introducing ideas of algebra as well as giving meaning and purpose to algebra. 

In this section, I will try to review some studies which deal with algebra in 

contexts, especially, contexts of generalization and justification/ proving, 

which are relevant in the context of this study. Most of the studies related to 

these issues have been exploratory in nature, trying to identify the problems/ 

issues which arise when students engage with these situations but some dis-

cuss the effect of these as instructional strategies in small teaching experi-

ments. Equation solving is another popular approach which situates algebra 

but will not be considered in this review. 

2.7.1 Pattern generalization as a context 

Of the many possible situations, like modeling real life situations, pattern gen-

eralizing, problem solving, proving and justifying, generalization of geometric 

patterns has been found to be one way through which algebra can be intro-

duced. This situation leads to algebraic symbolization quite easily as well as 

gives the letter a meaning (generalized number in this case). Mason (1985) 

considered expressing generality as one of the routes to the roots of algebra 

and opined that algebra provides a succinct way in which to express the ob-

served generalities in patterns. He suggested a gradual progress for recording 
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the general using symbols alone: first using words alone, then using words and 

symbols and finally using symbols alone.  

Figure 2.2: A sample problem from “Building Formulas” 

van Reeuwijk and Wijers (1997) describe a unit of the ‘Mathematics in Con-

text’ project whose main aim was to explore students’ construction of formu-

las on their own. Grade 7 students worked on the ‘Building formulas’ task 

where they had to generate a formula for a growing pattern.  The students start 

by looking at the recursive relation between two successive positions by ob-

serving the change in successive figures. For example, while discussing the 

relationship of rods to beams (see Figure 2.2) they say “when the length goes 

up by 1, the number of beams goes up by 4”. Realizing the shortcomings of 

the recursion relation for prediction for larger positions they create direct for-

mulas. Classroom observations revealed that students found many formulas 

which indicated the structures students saw in the situation. Students explored 

and explained the equivalence of formulas by reasoning from the context, ap-

plying or testing the formula in concrete situations (by substituting values in 

the rules) or by transforming one expression to the other using algebraic rules. 

In a test after the first half of the unit, students were found to give answers to 

various questions using recursive relations as well as direct formulas (using 

words, natural language and algebraic expressions) indicating their ability to 

describe relationships at various levels. The researchers observed that students 

freely used words, letter and a combination of both to explain the patterns.  

Many others have found the pattern generalization task to be quite challeng-

ing. All of them reported faulty strategies (additive, recursive) rather than 

functional relations between the index/ figure number and the number of dots/ 
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rods/ matchsticks to make the pattern to be the cause for the lack of success in 

the more complex patterns. English and Warren (1998) found that students 

could verbalize rules for simpler patterns (of the form x+c, ax) but not for the 

more complex patterns (ax±c). In the study by Lee (1996) a group of high 

school and another group of adults were involved in generalizing dot patterns 

in the form of rectangle (Figure 2.3a). Students were found to focus on borders 

(increasing number of dots in the border along the bottom and up the right 

side, 2, 4, 6 etc.) or boxes/ rectangles formed with dots whereas adults focused 

on number patterns (2, 6, 12, 20, …) leading to more success. The problem got 

aggravated due to poor knowledge of task requirement by most students.  

 

 

 

Figure 2.3: Patterns used in some studies 

Stacey’s (1989) study revealed the numerous strategies, many of them not 

likely to lead to the correct solution, used by students (aged 9-13) for working 

on pattern generalization task (for example, Figure 2.3b and c). Students 

across the grades tended to use similar strategies and models for generaliza-

tion: counting method (Christmas tree with 20 levels will have 79 lights as 

count up by 4), difference method (number of matchsticks in a ladder of 1000 

rungs is 3000 as every rung equals 3 matches), whole-object method (number 

of matches required for a ladder with 5 rungs is 17, so for 20 rungs, 17×4=68) 

and linear method (ladder with 1000 rungs will have 1000 matches on both the 

sides, 1000 in the middle and 2 in the end). Inexperienced students were less 

consistent in the models they chose and focused on easy relations not carefully 

building from simpler cases compared to the group of students exposed to 

problem solving. Many did not even check the rule with the concrete data. 

Some students were able to observe patterns and were able to describe them 

a) Dot rectangle pattern b) Christmas tree pattern c) Ladder pattern 

1 level 2 levels 
3 levels 2 rungs 

3 rungs 
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but these could not be used for predicting higher values (like, ‘in between x 

and y there is four’, ‘there is three numbers missing’ in a pattern given by the 

rule y=x+4) (Stacey and MacGregor, 2001; Ainley et al., 2003). Some others 

could find values but not express it algebraically, like when students find the 

value of successive positions by ‘counting’ the increase in each figure. Ac-

cording to Ainley (2003), generalizing the context is not sufficient to express 

the relationship in symbolic notations, and generalizing/ verbalizing the calcu-

lations (e.g. ‘double the number of tables add two’ and writing algebraically 

T2+2) could be a “bridge” which could support pupils in constructing the 

meaning for the symbolic expression of the relationship. Students’ responses 

to such tasks in this study will be taken up in Chapter 8 (section 8.5) 

Almost all the researchers agree and emphasize the need for verbalizing the 

rules and discussions and moving away from recurrent relations to functional 

relations which are suitable for generalization and going beyond describing the 

situation to describing the generalized procedures for counting, thereby also 

connecting it with the figure. Stacey and MacGregor (2001) point out that “to 

learn algebra students need to be able to recognize and articulate the process 

of arithmetic and the structures of relationships between numbers. One essen-

tial requirement for using algebra is that students can put their informal arith-

metic knowledge into a formal arithmetic structure” (p. 148). 

Sasman et al. (1999) varied the presentation of data in generalization tasks: 

either pictures together with numerical data or only tables of values and re-

ported its effects on 8th grade students in Cape Town. The numerical table of 

values were presented as either ‘continuous’ (the input values for which the 

corresponding function values had to be calculated were included) or ‘non-

continuous’ (input values were not given but presented verbally by the inter-

viewer). The pictorial representations were chosen to be ‘transparent’ (func-

tion rules embodied in the structure of the pictures) or ‘non-transparent’ (func-

tion rule cannot be easily seen in the structure of the pictures). The results 
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were not very different from those discussed above. They did not find any dif-

ference in the responses of the students with respect to the changes in presen-

tation and the students were reluctant to find functional relationship between 

the variables. They worked almost exclusively with the number pattern (output 

values corresponding to the input), did not connect the rules with the structure 

in the growing pattern and favoured recursion methods or found simple pro-

portional/ multiplicative rules (f(x)=nx). Although their rules worked for 

smaller values, they had to devise ways to adjust it for larger numbers. Some 

students managed to extend their recursion methods to a manageable strategy 

in the context of tables of values of the form f(n) = (n-k)×d+f(k), d is the com-

mon difference between consecutive terms. Errors were also seen when the 

numbers involved were ‘seductive’ (when n1=k×n2, then f(n1)=k×f(n2)). This 

was changed to f(n)=f(a)+f(b)+f(c), where a+b+c=n when the numbers were 

no longer seductive. The students came up with many strategies but they 

lacked the awareness and the skill to show that the rules are only hypotheses 

and need validation against the database. Contrary to many of the earlier 

comments against recursive methods, Lannin et al. (2006) showed the useful-

ness of the recurrent relations which can be connected to explicit rules when-

ever the former are not efficient for predicting larger positions/ values.  

2.7.2 Issues and concerns 

Pedagogical concerns 

The pattern generalization task, even though promising, is not simple and 

there are issues which need careful thought. Stacey and MacGregor (2001) 

questioned the change from the traditional approach centered on equation 

solving which emphasized the letter-as-specific-unknown to patterns empha-

sizing letter-as-variable. They argue that there is insufficient evidence to indi-

cate that an approach centered on the latter approach is better than the former. 

Most of the studies described in the previous paragraphs show students’ diffi-

culty in generating algebraic rules using symbols and focusing on functional 
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relationships. These studies also highlight the fact that many students do not 

spontaneously verify or justify their generalization. At the most, they check it 

by referring to specific cases (Healy et al., 2001). Healy et al. (2001) further 

add that the students who generate an algebraic expression may understand the 

meaning of the letter as generalized number but may not understand the mean-

ing of the expression in the context of the pattern, ignoring the structural as-

pects of the situation and focusing only on procedures. Lee (1996) sums up by 

saying that the difficulties are at three levels: perceptual, verbal and symbolic. 

In spite of these difficulties, focusing on the students’ verbal ability and en-

couraging them to verbalize their understanding of the pattern helps them to 

make reasonable progress in the task. Some of the studies quoted above (e.g. 

Reeuwijk and Wijers, 1997; Ainely et al., 2003) give hope that the generaliza-

tion task is potentially useful and that it can lead to useful discussions in the 

classrooms both about syntax and semantics of algebra.  

Lee (1996) described how initiation into the generalization activity was like 

initiating into a “culture” where some ways of doing things are more correct 

than others. Some ways of looking at patterns and some ways of choosing 

symbols are more fruitful/ useful than others for purposes of generalization, 

representation and further manipulation to arrive at conclusions. Students fail 

to understand the limitations of a particular strategy of generalization or check 

the validity of a generalization. The challenge therefore is to negotiate the re-

quirements of the task and arrive at a shared understanding, without which it 

cannot be effectively used to convey the meaning of symbols in algebra. Also, 

in many of the studies dealing with pattern generalization, as described in the 

previous paragraphs, the syntax issues are kept in the background and the 

whole attention is paid to the semantics. The syntactical problems were dealt 

with as they arose in contexts due to the participants’ own initiatives and 

needs (as in Lee, 1996). The pattern generalization task creates opportunities 

for students to understand the activity of algebra, the meaning of the letter and 
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explore the syntax of algebra. My contention is that the use of symbols in the 

process of generalization not only creates a situation for giving meaning to the 

symbols but also the symbols enrich the task. Moreover, unless the symbols 

have a role to play in the task besides representing the general, students may 

restrict themselves to verbal rules or the letter may just replace the words. It is 

important to explicitly focus on issues of representation and correct syntax as 

well as questions of equivalence of the rules for the same pattern, which stu-

dents on their own may not attend to.  

Algebra and generalization 

Besides the pedagogical issues related to pattern generalization task, research-

ers have also commented on the activity itself and its nature and processes vis-

à-vis algebra.  Radford (1996) raised the issue of validity in generalizing re-

sults because the logic of generalization may differ for each student. He adds 

that ‘the logical base underlying generalization is that of justifying the conclu-

sion’ (p. 111). The proof process in this case moves from the empirical (seeing 

the pattern in the numbers or the figures) to the abstract through the use of 

symbols (the general rule describing the pattern). This requires one to identify 

the features which are to be retained in the generalization and is thus directed 

by an anticipation of the goal. But algebraic thinking is analytical in nature 

and in this sense differs from generalization and the processes and objectives 

of these do not completely match. Generalization may not need algebra, while 

for algebraic thinking it is not sufficient to see the general in the particular but 

also express the generality using symbols (Kieran, 1989b). Mason (1996) ar-

gues for liberating generalization from just an empirical act to accommodate 

‘powerful generalization’ which allows one to master a single example with 

‘appropriate stressing and consequent ignoring of special features’ (p. 77) and 

use this as a generic example. 
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2.7.3 Other contexts for algebra: Proving and justifying 

Many other contexts which may support students’ developing understanding 

of both syntax and semantics, like contexts of generalization of specific num-

ber patterns in the natural number sequence or number arrangements in the 

calendar have also been suggested (Bell, 1995, 1996; Arcavi, 1994, 1995). Al-

though these activities involve generalization, they are different from the pat-

tern generalization activity which was discussed in the previous section. These 

tasks require one to first write the general relationships between the numbers 

explicating the structure of the situation and then justify/ prove the pattern that 

exists between them. These are rich contexts and afford many paths for repre-

sentation and solution and provide a good opportunity to discuss semantics 

together with syntactic rules of transformation. The letter automatically takes 

the referent of a number in these contexts as the whole exploration is situated 

in the context of number patterns and the manipulation is carried out specifi-

cally to establish the generality of the pattern (Bell, 1996). The knowledge of 

syntactic transformations is more like a tool which when used at the right 

moment also makes the students aware of the need of the tool. The justifica-

tion process can be of two types (Arcavi, 1995): (i) actions and processes that 

are analogous to the processes and actions carried on a single example (e.g. 

generalizing the pattern 1/2 -1/3 = ?, 1/3 – 1/4 = ?, 1/4 - 1/5 =?, 1/n – 1/(n+1) 

= 1/(n(n+1)), (ii) generalization and justification in the problem situation are 

completely different from the actions performed on a single example (e.g. 

what kind of numbers do we get as a result of the difference between the third 

power of a whole number and the number itself: that it will always be a multi-

ple of 6). The second form of justification is more difficult than the first form.  

Algebra as a tool and symbol sense 

In all the cases, whether it is the pattern generalization context or the justify-

ing/ proving, problem solving context, students need some basic understand-

ing of symbols, their meanings and some ability to understand and carry out 
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manipulations on the symbols. These situations not only use algebra as a tool, 

which means that students should know some thing about algebra, but also 

direct them to think with the symbols and learn to use symbols meaningfully. 

Some students, although able to handle the algebraic techniques of manipulat-

ing and transforming expressions, do not see algebra as a tool for understand-

ing, expressing, and communicating generalizations, for revealing structure 

and for establishing connections and formulating mathematical arguments. It 

is in this context that Arcavi (1994) elaborated the idea of ‘symbol sense’, 

which is important from the point of view of both paper-pencil tasks as well as 

technology supported tasks, analogous to the idea of number sense (having 

non-algorithmic feel for numbers and which is different from doing arithmeti-

cal operations). Symbol sense, according to him, grows and changes by feed-

ing on and interacting with other “senses”, like number sense, visual thinking, 

functional sense, and graphical sense. Therefore, symbolic manipulations 

should be introduced from the beginning and should be taught in rich contexts 

which provide opportunities to learn when and how to use these manipula-

tions. The goal for any algebra curriculum would be to instill in students 

“symbol sense” which includes: understanding and aesthetic feel for power of 

symbols, abandoning symbols and changing symbolic representations when-

ever needed, ability to manipulate and “read” symbolic expressions, checking 

the symbol meanings with one’s own intuitions or expected outcomes and be-

ing aware of the fact that the symbols can play different roles in different con-

texts. 

Emphasizing the shift in algebra from manipulative skills to conceptual under-

standing and meaning making, Booth (1989b) pointed out the importance of 

not only attending to ‘what is being represented in terms of the underlying 

structure and relationships in problems (the semantic aspects of algebra), but 

also to how these are represented (the syntactic aspects)’ (p. 244). The other 

requirements for problem solving in algebraic context are (i) choosing the 
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right kind of symbols for representation, (ii) anticipating the transformation 

rules to reach the goal, (iii) checking the solution process against the goal and 

(iv) ability to work with a referent free representation (Boero, 2001). 

Further, Arzarello et al. (2001) used the two processes of ‘condensation’ (al-

lows one to see different meanings in the same expression, thus stressing se-

mantic control and creativity, that is, flexible relations between sense and de-

notation) and ‘evaporation’ (dramatic loss of meaning of symbols when they 

cannot be expressed in natural language and their construction and generation 

cannot be conceived) to explain the difference in ability of students to solve 

problems. The former process of condensation allows students to anticipate 

the path to solution and therefore carefully choose the representation to incor-

porate the relationships in the problem and the transformations required to 

reach the solution. The latter process of evaporation proceeds randomly, does 

not provide anticipatory power leading to the lack of representational capabil-

ity and rigidity. For example, some junior secondary to university level stu-

dents were seen to represent sum of two consecutive numbers as: x+y or 

2h+1+2k+1 or 2h+1+2k+1+2. This happens even though some of these stu-

dents can understand and express the relationships using natural language or 

arithmetic but fail to use the algebraic code as a mediator between the goals of 

the problem and the relationships expressed in the problem. The good problem 

solvers could see the path of the solution process, generate appropriate repre-

sentation and anticipate the transformations required to reach the goal. Stu-

dents who ‘have condensed’ often show flexibility in understanding the sense 

and denotation of algebraic expressions and display a complex use of ordinary 

language with algebra. On the other hand, students who ‘display evaporation’ 

show rigid understanding of symbols and algebra marked by stereotypes, use 

symbols superficially and is not accompanied by natural language. There is 

indeed more semantic control when one works with numbers and where the 

general properties can be identified within the context of numbers. But to 
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switch over to algebra, one needs to get rid of the ‘extra-mathematical and 

procedural tracks and must translate them into symbolic expressions, which 

are highly synthetic, ideographic and relational’ (p. 78).  

Use of symbols for proving 

The previous section elaborates on the characteristics required to succeed in 

problem solving tasks in algebra. The nature of control and anticipatory power 

is what distinguishes a successful problem solver from an unsuccessful one. 

Proving and justifying is one area where control, anticipatory skills and flexi-

bility in perceiving representations as well as in creating them is of utmost im-

portance. The pattern generalizing activity has attracted a lot of research (and 

this does not require much control on algebra), but studies based on other rich 

contexts which call forth students’ understanding of symbols and engages 

them in the algebraic activities of justifying and proving are rare to find. Due 

to the possibilities created by technology, more research on adding context to 

algebra can be found in the context of spreadsheet, CAS (e.g. Rojano and 

Sutherland, 1991; Healy et al., 2001; Ainley et al., 2005) where representa-

tions can be linked and explored. Word problem situations involving formula-

tion and solving of equations and the recent early algebra studies (e.g. Kaput 

and Blanton, 2001) are some examples in the paper-pencil medium. Moreover, 

contexts focusing on ideas of proof and justification are difficult for students 

as they are unable to follow or produce deductive arguments as well as under-

stand the meaning of proof. But if the focus of proof shifts from formal rigour 

to understanding and communication, it is more likely that students would dis-

play a reasonable understanding of proof and its need and purpose (Hanna and 

Jahanke, 1993). High school students have been found to engage in meaning-

less symbol manipulation while proving a proposition (like sum of two con-

secutive numbers is an odd number) and they also chose different letters for 

representing the numbers or considered ‘x’ to be even and ‘x+1’ to be odd (lee, 
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1996). Further, they were not convinced by the general argument and therefore 

substituted numbers in place of the letter to verify the conclusion. 

A recent study by Healy and Hoyles (2000) explored conceptions about proof 

in algebra among high-attaining 14 and 15 year olds (2,459 students from 94 

classes and 90 schools). The study while exploring the nature of the arguments 

which are considered as proof, found that students thought narrative or nu-

merical instances as better and convincing arguments for proof of a proposi-

tion. But they believed that an algebraic argument (correct or incorrect) is re-

quired for convincing the teacher or getting marks. They were however, aware 

of the limitations of empirical examples for proving. The narrative arguments 

were found to be accompanied by deductive reasoning as well as empirical 

examples and were valued for their generality and explanatory power. The au-

thors argue that for many students the empirical data convinces and the narra-

tive arguments (words/ pictures) explain and algebra does not figure in either 

of these roles. Lastly, most students were aware that a proof is general enough 

and proves all specific cases but some believed that conjectures need to be 

proved for specific cases as well. The students held the following conceptions 

of proof: to establish truth of a statement (half), to explain (more than one-

third), to discover and systematize new ideas and theories (1%). Some (more 

than one-fourth) had no idea of the meaning and function of proof. This study 

indicates the importance of words and pictures as a medium of communicating 

and explaining generalities. For any effective intervention in the classroom 

with respect to proving and explaining, one will have to begin with such tech-

niques before moving on to formal symbols and their necessity.  

The explanations given by Booth (1989b), Boero (2001), and Arzarello et al. 

(2001) in the previous section relate directly to the findings of the study by 

Healy and Hoyles (2000). The fact that many of the students preferred the in-

correct but algebraic argument for a conjecture to please the teacher is because 

they understood algebra to be composed of arbitrary sets of symbols and their 
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manipulation. Other students who used words and pictures for explaining the 

results, saw the general in the particular. But they still do not have enough 

control on algebra to be able to anticipate an appropriate representation fol-

lowed by transforming it. Similarly, those students who choose numerical in-

stances as proof for a conjecture either see the general in the particular and 

therefore the conjecture is obvious or they have no more tools at the present to 

work on the task meaningfully. 

2.8 Conclusion 

The research reviewed in the sections above gives an idea about the extent of 

research carried out in the field of symbolic algebra, this being not exhaustive. 

The review of the research was restricted by the approach to the studies, 

namely, generalized arithmetic including other generalizations from patterns 

of shapes and numbers. The early large scale studies like CSMS and SESM 

assumed algebra to be encoding the general rules and procedures of arithmetic. 

These studies highlighted students’ difficulties with the letter symbol and also 

pointed out that while some of the difficulties can be remedied by appropriate 

teaching, some are more resilient. These were also the first in a series of stud-

ies to follow which highlighted the importance of building structure sense for 

expressions. Many researchers explicated the differences between arithmetic 

and algebra and explained the causes for the difficulties. Reasons like ‘didactic 

cut’, ‘cognitive gap’, intuitive reasoning, suggest inherent limitations among 

students in operating on and with the unknown. Other difficulties are more due 

to the differences in thinking patterns in arithmetic and algebra. The narrow 

understanding of ‘=’ sign and students’ computational habits of sequentially 

solving arithmetic expression are two major obstacles in learning formalisms 

in algebra. Researchers also highlighted the necessity to see expressions as 

both process and product in order to manipulate the expressions. Using con-

crete models and concrete contexts did not prove to be of much help in the 

process of making algebraic activity meaningful as these are limited in their 
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scope of generalization in other contexts, especially abstract symbolic expres-

sions. The power of algebra comes from referent free manipulations.  

Researchers have been grappling with the issue of the connection of arithmetic 

and algebra and whether developing an awareness of structure of expressions 

could help bridge the gap between arithmetic and algebra. They have also ex-

plored the possibility of introducing algebra through the route of arithmetic. 

Although much of the earlier studies pointed out students’ difficulties in learn-

ing algebra due to the interference from learning in arithmetic and lack of 

structure sense, later studies indicated the value of learning arithmetic for un-

derstanding algebra. These later studies explicitly focused on the structure of 

expressions and delved into exploring properties of numbers and operations. 

There are two issues involved in this debate which need to be separated – 

learning rules for computation and attending to the structure of expressions. 

One may feel that learning the rules well and competent performance in arith-

metic would eventually and automatically lead to the abstraction of the struc-

tural properties of expressions. However, this is rarely the case as is evidenced 

from the researches which point out dissociation between students’ under-

standing of rules and using them in non-computational tasks. Studies have 

shown that although some students become competent in manipulating expres-

sions, they fail to abstract the properties or relationships of numbers and op-

erations. 

On the other hand, explicitly drawing students’ attention towards structure of 

expressions through direct teaching seems to hold some promise in learning 

rules of evaluation as well as understanding the constraints on transformations 

but has not been systematically tested and tried out. Many of the studies re-

ported here indicated the fruitfulness of such an approach, but in such studies 

students’ work with expressions were strongly tied to the context of calcula-

tion and verification. This proved to be a hindrance for the students in making 

the desired connections between structure of expressions and procedures of 
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manipulating expressions and arithmetic and algebra. In the investigation be-

ing reported here, the approach developed has radicalized the use of structure 

of expressions to enable the developing structure and procedure sense to play a 

complementary role to each other, rather than one following the other. This 

approach will be explained in the next chapter.  

It is also well understood and appreciated that unless the syntactic transforma-

tions are embedded in some context, students do not develop the capacity to 

use algebra as a tool. Pattern generalization from shapes is one such activity 

which has been widely used in research. Although this is promising, it is not 

simple to implement. Many of the studies reviewed indicate the nature of 

complexity involved while students work on pattern generalizing activities. 

The recursive relationships which students easily attend to are an obstacle for 

focusing on the functional relationships. This is essential for generating an al-

gebraic rule to be used later for prediction. But once students understand this, 

it can lead to many explorations about syntax and semantics of algebraic ex-

pressions. Similarly, exploring number patterns in calendars and various other 

places can be challenging exercises for students to understand the meaning of 

the letter and transformations on expressions as well as extend their under-

standing of generalization. These situations lead to interesting discussions 

about verification, explanation and proof besides representation which serve 

an important function in the algebra curriculum, namely, taking control of a 

problem situation using algebra and knowing its advantages over other meth-

ods of solving.  
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Chapter 3: Theoretical background for               
developing the teaching-learning sequence 

3.0 Background 

The discussion of previous research studies in the last chapter revealed the 

range of difficulties which students face while learning algebra. Also much 

effort, both empirical and theoretical, has been made to understand the reasons 

for those difficulties. Finally, a discussion was undertaken exploring the vari-

ous routes to approach algebra together with illustrations from a set of studies 

which have made an attempt to improve the teaching-learning situation of al-

gebra among students in the middle grades. The studies reviewed indicate that 

though some of the errors related to the meaning of the letter and accepting 

unclosed expressions, can be tackled with a carefully chosen teaching strategy, 

some others, like making sense of the manipulation of expressions, are more 

complex, resistant to teaching and not easily resolved.  

The older research tradition focused mainly on the symbolic competence of 

students and made efforts to give meaning to symbolic manipulation through 

figurate representations such as areas of rectangles with dimensions as letters 

or dot arrays with some dots hidden and used problem solving (mainly equa-

tion solving) as the context of application. In the more recent research studies, 

the emphasis has shifted towards meaning making and understanding/ appre-

ciating the purpose of algebra, for which various contexts have been created 

elucidating the use and meaning of letter, expressions, etc. This has happened 

sometimes at the cost of neglecting symbolic manipulations which have been 

relegated to the background. Symbolic manipulation is often thought to be 

mechanical and a function that can be taken over by sophisticated calculators 

and other technological support systems like computer algebra systems. The 

assumption behind this movement is that students should be exposed to chal-

lenging situations where the maximum attention should be paid for formulat-
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ing the problem algebraically, identifying the correct representation and a 

method of solving the problem rather than spend time on mechanical manipu-

lation. We saw however, from discussions in chapters 1 and 2, that under-

standing the structure of syntactic expressions is essential to learning success-

fully even in these technologically supported environments. Appreciation of 

properties of operations, awareness of rules and conventions and knowledge of 

manipulating expressions is essential while working on any problem. These 

are important skills and would be helpful in making sense of symbols in com-

plex situations. At different points in solving the problem, one needs to decide 

the correctness of the procedure and the usefulness of path taken with respect 

to the problem, even if the transformation of the representation can happen in 

a technological world. Also it is difficult to build a sense of structure of ex-

pressions by being immersed in the problem situation while attending to nu-

merous other requirements of the problem and students may get easily bogged 

down by the complexity of the situation. Moreover, manipulation of expres-

sion builds conceptual knowledge and structure sense. Some support for the 

above argument is also found in Kieran (2004) when she points out that the 

transformational process can itself be embedded with meaning and has epis-

temic quality. There is some grain of insight in the frequent use of rules and 

concepts for manipulating expressions, which need to be unraveled by the stu-

dents. Hence the generational activities that focus on the meaning and purpose 

of algebra should be complemented with transformational tasks. As a solution, 

Bell (1995) advocates interspersing the two kinds of tasks, problem solving 

and syntactic transformations.  

3.1 Research study on the transition from arithmetic to 
algebra 

Learning algebra, on the basis of the above description, can be conceived of as 

requiring students to understand syntactic transformations (based on structure 

of expressions/ equations and rules which define the nature of possible trans-
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formations) as well as the semantic aspect (based on the meaning of the letter/ 

expression/ equation as derived from the symbolic statements or problem 

situation). Accordingly, this study was formulated to deal with developing 

among students two aspects with regard to algebra: ‘reasoning about expres-

sions’ (dealing with syntactic and semantic aspects of symbolic expressions) 

and ‘reasoning with expressions’(going further and developing a culture of 

generalization, justification and proof). One of the main aims of the study was 

to generate a teaching-learning sequence for beginning algebra which 

strengthens both procedural knowledge, that is, the calculus of algebra – 

knowledge of rules, conventions and procedures for working on expressions, 

and structure sense – sense of the composition of the expression, how the 

components are related to the value of the expression and their relation among 

each other – for arithmetic and algebraic expressions. For this, students were 

engaged in reasoning based on syntactic transformations of expressions in 

computational and non-computational situations like evaluating/ simplifying 

expressions, comparing expressions, identifying equality and its implications 

for evaluating/ simplifying expressions. Further, this knowledge was used in 

contexts where algebra was treated as a tool for representing, expressing gen-

eralities, verifying and proving. The study also intended to observe and char-

acterize the changes in students’ understanding of algebra in the context of the 

teaching sequence which was to be developed. It was expected that the stu-

dents would learn to deal with both the syntactic as well as the semantic as-

pects of algebra by first transforming expressions and beginning to appreciate 

the possibilities and constraints on transformations and then using algebra in 

contexts which lent meaning and purpose to the use of algebra.  

Thus, the study consisted of two interconnected goals: to prepare a teaching 

learning sequence and to characterize students’ learning while transiting from 

arithmetic to algebra. The designing of the teaching learning sequence can be 

thought of in two parts: overall principles guiding the construction and charac-
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teristics of the content designed for transiting from arithmetic to algebra. The 

overall principles guiding the teaching learning sequence were the following: 

• Using students’ understanding and intuitions/ anticipations in the con-

text of arithmetic to guide their learning of algebra 

• Developing students’ understanding of algebra by using and extending 

their experiences with symbols in arithmetic in specific ways 

• Reasoning as a basis for learning  

The connection between arithmetic and algebra was established by building 

the content which had the following characteristics: 

• Exploiting structure sense of expressions 

• Use of structural concepts (Terms and ‘=’) 

• Explicating connections between arithmetic and algebra 

Figure 3.1 summarizes and captures the framework guiding the teaching se-

quence in this study, which also evolved with the study.  
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Figure 3.1: Framework guiding the teaching approach 
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3.2 Developing the teaching-learning sequence 

3.2.1 Using students’ understanding and intuitions/ anticipa-
tions in the context of arithmetic to guide their learning of al-
gebra  

As students begin to learn algebra, they encounter a representational system 

that is new and unfamiliar. Their understanding and use of the new signifier is 

at first guided by the old discursive habits and forms and is ‘template-driven’ 

(Sfard, 2000). As students progress, the new symbols acquire meaning leading 

to a stage of ‘object mediated’ use of symbols, allowing them to be used as 

representation for something else. This becomes possible due to the expecta-

tions and verifications derived from experiences in the old discourse and 

knowledge of rules and procedures of the old signifiers (ibid.). Whereas in the 

template driven phase, the use of symbols is rigid and there is no awareness of 

reasons for why things work; in the object mediated stage, the symbols are 

used flexibly. The same line of thought can be seen in Goldin and Kaput’s 

(1996) description of the process of development of representational system 

drawing on a variety of ideas. These are:  

• Inventive-semiotic stage: New characters are created or learned, and 

from the outset are used to symbolize aspects of a prior representa-

tional system. This prior system acts as a template for the development 

of the new system. The new characters/ symbols do not truly symbol-

ize but are actually aspects of the prior system that they represent, 

which could be an obstacle for further learning/ progress. 

• Period of structural development: The construction and development is 

driven by structural features of the earlier system. This process makes 

use of the symbolization that was established in the first stage and syn-

tax for the new system is built. At this stage there is no scope for sym-
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bolic relationships other than those or contradictory to those which al-

ready exist as they are derived from the earlier domain.  

• Autonomous stage: The new system separates from the earlier one. It 

can now form symbolic relationships with systems other than the one 

which had acted as the template. Transfer of meaning from old to new 

domain becomes possible.  

The students’ knowledge of arithmetic forms the prior system on the basis of 

which it becomes possible to absorb the new symbol system of algebra. This 

connection, may not, in fact, be made by students spontaneously, and they 

may assimilate the use of the letter in algebra to other templates, such as those 

provided from the domain of language or labeling in graphical systems. Hence 

this perspective of arithmetic, as a symbol system, leading to algebra needs to 

be adopted and explicitly incorporated in the teaching approach5. This ap-

proach has been called the generalized arithmetic approach. In this view, ini-

tially the letter replaces the number and the algebraic expression can be con-

sidered to be computational processes derived from an understanding of com-

puting arithmetic expressions (e.g. considering x+5 or 2x+5 as only a set of 

instructions to be followed given the value of the letter). The new symbols can 

be subsequently interpreted and used based on the structure of arithmetic ex-

pressions (e.g. rewriting 8-3x+4x as 8+x using the distributive property or not 

rewriting 5+3x as 8x due to structural constraints). It is only after this that they 

can be considered independently as objects with certain properties which are 

ready to be operated upon without the use of the template domain. The under-

standing than an algebraic expression has a value, that it can be combined in 

various ways with other algebraic expressions, that it is a function, that the 

letter can take any value in the domain over which the function is defined, etc. 

are features of an ‘object’ perception of the algebraic symbols. This would 

                                                 
5 The possibility of other domains providing prior representational systems for the learning of 
algebra, such as geometry, cannot be denied (Radford, 1996).   
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lead to the establishment of a representation/ symbol system with its own se-

mantics and syntax. The development of such a representation/ symbol system 

would depend of course on the exposure of the students to different number 

systems which can act as a referent for the letter and with each new exposure 

the meaning of the algebraic expression and knowledge of its structure will be 

elaborated.  

In the present study, students’ knowledge of arithmetic was used as a founda-

tion on which algebraic formalisms could be built. Their understanding of syn-

tactic rules and conventions was developed and consolidated using their an-

ticipations regarding operations on numbers, thus tackling the pedagogical 

problem of teaching the syntax of algebra. By the end of primary school, stu-

dents have had sufficient experience with numbers and basic operations. These 

are likely to have acquired properties similar to concrete objects, which can be 

fruitfully employed to learn formal symbols and actions on those. Their 

knowledge of arithmetic shapes their expectations in the situations they en-

counter later. It is important to be aware of and identify these expectations and 

the situations which could invoke these. Some of their expectations/ anticipa-

tions are correct and some are wrong which need to be brought to their notice 

and which they may be unable to correct by themselves. Students intuitively 

understand that the sum 34+29 would be less than 34+31 as adding a smaller 

number would lead to an answer which is less than the expression where a 

bigger number has been added. The counterpart of this, where a subtraction 

operation is used is less intuitive and many times their expectations and antici-

pations go wrong. Generalizing from the above situation, they may say that 

34-17 is more than 34-16. It is these tendencies to generalize which contain 

the essence of algebra that need to be capitalized and rightly channeled.  

Thus, in this approach, concepts, rules and tasks had to be framed as part of 

the teaching sequence which provided opportunities to work on their expecta-

tions, strengthening the right ones and correcting the incorrect ones. For ex-
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ample, students believe that changing the order of operations does not change 

the value of the expression. In fact, very young children can add two numbers 

by flexibly changing the order of the numbers, starting with the bigger num-

bers and counting up to the smaller number. Although this is true in the con-

text of addition (5+8) and multiplication (5×8) operations where the commuta-

tive property holds true, it is not true for subtraction (8–5) and division (8÷5) 

where they have over generalized their expectations. This leads to errors in the 

context of evaluating expressions where more than one operation is involved 

(e.g. in 4+5×6 or 12–4+6) and where it is hard to ascertain the operation which 

is to be computed first. In such expressions, it is essential to identify the units 

involved so that the roles of the operations can be distinguished. In 4+5×6, the 

‘×’ operation scales up the ‘5’ and not ‘4+5’, and therefore ‘×6’ cannot be 

treated as a unit scaling up 4+5. Similarly, in 12–4+6, the ‘–’ sign is only at-

tached to ‘4’ and not to ‘4+6’. Errors of a similar kind are also seen while the 

students engage in identifying equal expressions from a list (e.g. given 

34+13×25+49, which of the following are equal: 13+34×25+49 or 

25×13+49+34. Linchevski and Livneh (1999) observed similar errors as dis-

cussed above in the context of algebra, which have their roots in arithmetic. 

Most of the studies dealing with structure sense (e.g. Chaiklin and Lesgold, 

1984) demonstrate students’ inability to form units correctly and their ten-

dency to over generalize their expectations (discussion in Chapter 2, sections 

2.3.4 and 2.3.5).  

One of the reasons for this may be the fact that the procedures for evaluation 

are learnt in isolation, without giving any recognition to students’ expectations 

and their understanding of the various operations. Also many times students 

do not grasp the generality of the rules and the fact that they should be appli-

cable in all similar situations. Other factors like the presence of certain num-

bers (biasing number combinations induce errors as seen in Linchevski and 

Livneh, 1999) or inappropriate use of rules serving as models/ prototypes 
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which are more intuitive (see Fischbein and Barash, 1993)  provoke them to 

solve the expression without following the rule (see section 2.3.4). This could 

explain the inconsistencies seen in their evaluation procedures. There is no 

connection of the evaluation procedure with important concepts like the value 

of the expression, that the value is unique or that some transformations on an 

expression keep the value invariant and all the expressions involved in the 

process have equal value. There is no discussion about constraints and possi-

bilities on transformations which make students think that the rules are indeed 

arbitrary. This notion gets carried over to algebra as well, leading to a lack of 

understanding of manipulation procedures in algebra. The present study tries 

to bridge the gap by naming the units (called ‘term’ in this study) of an ex-

pression in ways (to be described later) so that the conventions get subsumed 

in it. In this way, evaluation of expressions, contribution of each part to the 

value of the expression and effect of changes made to any part on the value 

can be addressed simultaneously. These are important skills and not only lead 

to a deeper understanding of arithmetic expressions but also enable the transi-

tion to symbolic algebra by considering it as encoding the structure of expres-

sions and general properties of operations (‘the phase of structural develop-

ment’, Goldin and Kaput, 1996).  

3.2.2 Developing students’ understanding of algebra by us-
ing and extending their experiences with symbols in arithme-
tic in specific ways 

Symbols and symbolic representations were an integral component of the in-

structional approach. The aim being to connect arithmetic and algebra, it was 

essential to use symbols in ways which made evident the connection as well as 

elucidate the power of these symbols. Thus, the context which lent meaning to 

the symbols in algebra was drawn from within mathematics, namely the do-

main of arithmetic, rather than contexts outside mathematics. The limitations 

of referential systems borrowed from outside mathematics are well known and 

have been discussed at various places in Chapter 2 (see for example, critique 
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of Chalough and Herscovics, 1988, section 2.6.1). To recapitulate the limita-

tions briefly, it is often difficult for students to create meaning for symbols in 

a referential world and subsequently to work in a referent free environment 

which is essential for algebra (Balacheff, 2001, pp. 51). All students may not 

abstract the same properties and relationships from the situation as the instruc-

tor expects (Gravemeijer et al., 2000), the symbols not necessarily correspond-

ing to single fixed entities in the referential world.  

Further, the contexts/ activities which are created to bring in real-world situa-

tion to the classroom are often superficial with the complexities skillfully re-

moved and suited to the level of the students (Ainley et al., 2004). If the situa-

tion taken is very complex, then it is difficult to monitor students’ mathemati-

cal thinking or their learning and development in any area. They, therefore 

proposed ‘purpose’ and ‘utility’ as the two characteristics of tasks which could 

engage students in meaningful and challenging activities. ‘Purpose’ of the task 

should lead to a meaningful outcome for the learner, in terms of actual or vir-

tual product or solution of an engaging problem and ‘utility’ should lead to a 

understanding of ways (‘how’ and ‘why’) in which an idea or technique is use-

ful. Also, while solving problems, it is cumbersome to translate a new situa-

tion into the familiar referential world in which the symbols have been inter-

preted earlier and then solve it. It is not necessary that any given situation can 

be understood in terms of the referential world in which the meaning of the 

symbols were created. This requires the use of many models simultaneously or 

one after the other for the teaching and learning of algebra and its associated 

symbolism. Moreover, in many of the approaches the role of syntax of expres-

sions and manipulating expressions in a referent free manner takes a back seat, 

with attention focused on only meaning making, which may limit algebraic 

understanding. 

Not only is it the case that symbols need to be attributed with some meaning, 

by analogy with an existing system or by creating a system, but symbols them-
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selves are important objects in mathematics which carry and convey informa-

tion and meaning about other mathematical objects, relations or situations. In 

line with many other researchers (Cobb, 2000; Sfard, 2000; Bazzini et al., 

2001), in this research study, it is believed that it is in the use of symbols that 

the meaning for the symbols is created. Meaning making and symbolization 

are intricately linked, with the use of symbols generating meaning in that 

situation and the development of meaning leading to the modification of sym-

bols. Thus it is not possible to separate out the use of the symbol from its 

meaning, that is, the signifier from the signified; neither precedes the other 

(Sfard, 2000). According to Sfard (2000), mathematics cannot be perceptually 

mediated but only mediated with the help of ‘symbolic substitutes’ of objects 

under consideration. It follows from this that the meaning of the symbol would 

have to be developed through use, negotiation and discussion in the classroom.  

Using the above as the background, the present teaching sequence exploited 

the use of symbols which students were familiar with from their experience in 

arithmetic. One of the main resources which could be capitalized in develop-

ing the sequence was students’ intuitions in arithmetic. However, as discussed 

earlier, it was necessary to find ways to formalize these intuitions. This led to 

the exploration of new ways of using the same symbols to communicate and 

reason and also elaboration of the list by including the letter and operations on 

the letter. The first step in the process involved looking at symbols as also de-

scribing relations rather than only as instructions. So 4+3 no longer indicated 

only the operation that yields answer 7 but also as a relation standing for a 

number which is ‘three more than four’. One can think moreover of other ex-

pressions standing for the same number, like 2+5, 10-3 etc. Similarly, x+3 

would be understood as a relation. Number was the referent for the letter (new 

signifiers) and manipulation procedures in arithmetic were generalized to 

those in the context of algebra. 3+4×2 and 3+4×x have similar structure and 

therefore the rules for manipulating them should be similar.  
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Further, the numbers were attached with the signs preceding it to denote a 

signed number (like -2, +3), which could also represent a change (decrease or 

increase) in state or a relationship of greater/ less between two numbers/ quan-

tities. While comparing the expressions 25+14 and 26+13, one can denote the 

total change in the later expression as +1-1=0 (26 being one more than 25 and 

13 being one less than 14). The operation signs ‘+’ and ‘–’ were used as opera-

tions as well as signs of the numbers. These usages of symbols could be ar-

rived at by translating from the natural language, which was accessible to 

them from their arithmetic experiences. Also, this short hand representation of 

the changes in expressions can be elaborated into complete mathematical sen-

tences showing equivalence or otherwise (like for the above example it will be 

26+13=(25+1)+(14-1)=25+1+14-1=25+14). The symbols helped in compress-

ing the long verbal explanations for tasks like the above example into succinct 

expressions for easy communication to others as well as in progressing to 

higher levels of learning mathematics6. This is an additional feature of sym-

bols, that it encapsulates explanations into short precise statements which can 

be manipulated, when achieving the same through the verbal mode would be 

quite complex and often impossible (Kaput, 1989).  

In this study, symbols were considered important not only to describe situa-

tions (representational use) and find solutions to them, but also symbolic ex-

pressions and syntactic rules formed the focus of many activities. Students 

were engaged in discussions about order of operations, possibilities and con-

straints on transformations of expressions, identifying equality and equiva-

lence of expressions. For example, one not only identified the constraints on 

the possible transformations of the expression 12+3×5-18 but also needed to 

appreciate the change in value when the expression is slightly changed, say, 

3+12×5-18 whose explanation will require a semantic understanding of the 
                                                 
6 In the history of evolution of algebra, from rhetoric to syncopated to symbolic, what differ-
entiated the stages was firstly the presence or absence of letters, but more importantly, coming 
to know that one can operate on the letters similar to numbers (Puig and Rojano, 2004). This 
changed the nature of the problems as well as the solving process. 



 110 

operations. This kind of knowledge would also help while representing a situa-

tion using arithmetic or algebraic expression (e.g. distinguishing a representa-

tion x+3×2-5-x+4-x from (x+3)×2-5-x+4-x). It is also through these ways that 

one can attribute meaning to the signs/ symbols and develop algebraic under-

standing by relating them to a larger set of relationships – ways of represent-

ing, organizing and acting within a syntactic system (Drouhard and Teppo, 

2004). Students’ knowledge of symbols, syntax and syntactic rules/ transfor-

mations were further used to work on contexts like pattern generalization from 

growing patterns of shapes and properties in number arrangements in calendar 

and charts, proving and justifying them, which gives purpose to algebra. 

Working on such tasks leads to getting a sense of algebra, its purpose and role 

in structuring particular kinds of experiences and using symbols and transfor-

mations on symbols to make sense of these experiences (ibid.).  

3.2.3 Reasoning as a basis for learning  

Developing reasoning abilities has been considered to be an important aspect 

of teaching mathematics. Russell (1999, p. 1) argues that  

First, mathematical reasoning is essentially about the development, justifica-
tion, and use of mathematical generalizations. …Second, mathematical rea-
soning leads to an interconnected web of mathematical knowledge within a 
mathematical domain. Third, the development of such a web of mathematical 
understandings is the foundation of what I call “mathematical memory”, what 
we often refer to as mathematical “sense”, which provides the basis for in-
sight into mathematical problems. Fourth, an emphasis on mathematical rea-
soning in the classroom, as in the discipline of mathematics, necessarily in-
corporates the study of flawed or incorrect reasoning as an avenue towards 
deeper development of mathematical knowledge. 

Algebra, being a field which builds on generalizations and relationships drawn 

from various other areas, is explicitly used for purposes of reasoning. As has 

been noted in the previous chapter, there has been a recent shift in focus from 

simply doing algebra to thinking and reasoning algebraically. This requires 

one to explore and articulate relationships and patterns among numbers and 

operations on them (like properties of operations: commutativity, asociativity, 
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distributivity, patterns among consecutive numbers etc.), in situations and 

among quantities. To be able to reason algebraically does not necessarily mean 

working with formal symbols. From the written performance in standard alge-

bra tasks of manipulating expressions one cannot discern whether or not a stu-

dent has difficulties with the formal syntactic structure or whether he/ she can 

understand the generality of the processes. On the other hand, asking students 

to explain their solution methods or choice of strategies leads to richer re-

sponses from students. Greenes and Findell (1999) recommended that children 

should be provided with opportunities for algebraic reasoning from the very 

beginning which focus on the ‘big ideas’ like representation, balance, variable, 

proportionality, function and inductive and deductive reasoning which can 

lead to symbolic representation and have multiple solution paths (see section 

2.5.3 in chapter 2 for more details on studies based on these ideas).  Students 

can use their intuitions and their preferred ways of thinking to reason about 

mathematical situations as has been seen in many studies (e.g. Carpenter and 

Levi, 2000; Kaput and Blanton 2001). Not only does reasoning, especially 

through open discussion in the classroom, encourage students to participate in 

algebraic thinking, they also learn in the process powerful and meaningful 

mathematics which can be of use in future. Students negotiate meanings, share 

ideas among themselves and are exposed to various strategies and their expla-

nation and justification.  

In the teaching approach adopted in this study, certain tools comprising of 

concepts and rules were provided as aids to the reasoning process of the stu-

dents through explicit teaching. The purpose was to use them repeatedly in 

situations which would lead to a stable understanding of expressions and 

would also support the intuitions and strengthen the concepts and rules them-

selves. The focus being on expressions, which is one of the core elements in 

algebra, activities revolved around various aspects of expressions, arithmetic 

as well as algebraic. Further, these tasks could be considered to be of two ma-
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jor kinds: reasoning about expressions and reasoning with expressions. Stu-

dents reasoned about expressions when they evaluated expressions by choos-

ing an appropriate strategy of computation. This required an understanding of 

the ways in which the value can be found, which was articulated through dis-

cussions regarding when changing the order does not make any difference to 

the value etc. It included engaging with expressions containing brackets (34-

(12+7) or 3×(5+4) etc.) and understanding the ways in which brackets make a 

difference to the value of the expression. Reasoning about expressions was 

also involved when they compared two expressions, generated expressions 

equal to a given one or judged for equality of two expressions with and with-

out computations. These activities provided the context where students ex-

plained their solutions to each of the tasks and discussed more strategies and 

reasoning styles which would involve generalizations about operations. The 

engagement of the students in such reflective activities with regard to syntactic 

based transformations was to begin the separation of the meaning from the 

value of the expression in the context of arithmetic itself. Although, this is not 

essential within arithmetic, it lays the ground for further algebra learning (see 

Arzarello et al., 2001). Disparate looking expressions could have the same 

value with different information/ relation contained in them and similar look-

ing expressions could have different values. Thus, transformation of algebraic 

expressions using valid rules would keep the value same but change the mean-

ing contained in it, which is an important step in learning algebraic manipula-

tion and working on algebraic problems. Also, violating the constraints on op-

erations would change the value of the expression.  

Reasoning with expressions involved representing the situations using expres-

sions and transforming them to derive inferences. These contexts required 

simple representation of relationships between quantities, pattern generaliza-

tions and justifying and proving certain patterns. It was expected that to ex-

plain their understanding of the situations and tasks, students would engage in 
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articulating their explanations verbally, create representations which can be 

used to communicate in the classroom and use the concepts and rules which 

had been taught earlier to work on the representation. In this way the teaching 

sequence afforded to incorporate students’ ideas and symbols as well as push 

it towards the direction of formal algebraic symbols. 

3.3 Bridging arithmetic and algebra 

3.3.1 Exploiting the ‘structure sense’ to connect arithmetic 
and algebra 

As mentioned, the teaching approach exploited the structure inherent in arith-

metic expressions to connect arithmetic with algebra using the familiar sym-

bols, thereby giving the letter a referent of number. Further the approach 

sought to provide visual and conceptual support to the students to perceive the 

structure of an expression correctly. At this point it is important to clarify that 

‘structure’ in the above sentence does not mean the broad algebraic structures 

but the particular structure of expressions. In the course of exploring the struc-

ture of expressions, elements of algebraic structure do not become transparent, 

although aspects are implicitly focused: commutativity, associativity, distribu-

tivity and at times the notions of inverse and identity. In the context of this 

study, following Kieran (1989a) and Hoch and Dreyfus (2004), structure sense 

means the ability to think of an expression as having a value, to identify the 

components of an expression (surface structure) and to see the relationships of 

the components in an expression among themselves and with the value of the 

whole expression (systemic structure). Surface structure is important to per-

ceive the expression or equation and for analyzing the components in it. 

Knowledge of systemic structure, on the other hand, allows one to act on the 

interpretation of the surface structure. In particular, understanding the ‘=’ sign, 

equality of expressions and properties of operations are important aspects of 

structure sense. It includes understanding possibilities and constraints on op-

erations and overlaps with and is facilitated by certain aspects of ‘operation 
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sense’ (Slavit, 1999). It has also been called relational understanding by some 

researchers (Fujii and Stephens, 2001). This is in contrast to procedural 

knowledge which only focuses on ability to correctly execute procedures and 

not test for the understanding of expressions or relationships within an expres-

sion or among expressions.  

The reason for emphasizing the structure of expressions in the teaching ap-

proach was to link procedures with a sense of structure, so that instead of be-

ing two separate skills one following the other, they complement each other to 

form an integrated knowledge structure. The once emphasized dichotomy be-

tween procedural knowledge and conceptual knowledge (which in the case of 

algebra includes an understanding of structure) no longer appear to be valid as 

concepts feed into the formulation of procedures which in turn strengthen the 

concept. That is one reason why it has become important not to ignore proce-

dures and instead integrate the two aspects, procedure, concepts and/ or struc-

ture. This would also allow the possibility of turning the familiar symbols and 

processes on them into objects (Sfard, 1991) which have their own properties 

and which can be further manipulated to lead to higher order mathematics. 

Moreover, knowledge of structure of expressions provides an explanation for 

the procedures and scope for flexibly exploring procedures and strategies for 

computing expressions, rather than applying the conventional rules for evalua-

tion, which are rigid.  

In traditional curricula, it is expected that students would abstract the structure 

of the expressions on their own by repeated use of standard procedures on ex-

pressions. But this does not occur with most students, as seen in the numerous 

studies quoted in the previous chapter. One reason could be that students are 

not exposed to situations where such a skill or knowledge is important, com-

puting and arriving at answers being the goal of mathematics. Therefore, it is 

essential that tasks which can induce students to develop and apply structure 

sense must be a part of the instructional sequence. Since the emphasis on 
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computation hampers perception of structure (as seen in sections 2.3.4 and 

2.6.2) the tasks need to focus away from computations. As has been noted ear-

lier, students by the end of primary school form sufficient understanding of 

arithmetic, even if they are not expressed in the standard computational tasks. 

Such understanding can be formalized and guided towards the development 

and use of new symbols in algebraic expressions.  

The perception of structure seems to be determined by the length and com-

plexity of expressions, the kind of operations involved in the expression and 

the feasibility of calculation as a way to arrive at the answer in the situation. 

An expression which is long involving more than one operation on numbers 

which are also large poses a challenge for computation. Only then does one 

attend to the structure of expressions. For example, an expression like 234 + 

125×347 - 129 is more likely to attract students’ attention to structure, if they 

are required to judge the equivalence of this expression with another expres-

sion like 125 + 234×347 – 129. In contrast, comparing an expression like 12 + 

4×6 with 4 + 12×6 is less likely to elicit attention to structure since students 

can take recourse to calculation. This was observed in the initial trials. Appen-

dix-I gives the list of tasks that were used in the trials, the tasks in the domain 

of ‘reasoning about expressions’ are relevant in the context of the above dis-

cussion on connecting procedure and structure of expressions and arithmetic 

and algebra.  

3.2.2 Role of structural concepts: ‘Term’ and ‘equality’ 

In order to understand the structure of an expression, learning to parse the ex-

pression correctly is an important skill which needs to be developed. In this 

study, students were provided with a set of concepts which allowed them to 

correctly identify the units of the expressions and further understand the con-

tribution of each part of the expression to the value of the whole expression. 

Also, gradually these concepts helped in reformulating the rules for order of 

operations and bracket opening in structural terms, thus integrating the proce-
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dures more closely with structure. It was expected that the various tasks such 

as evaluating/ simplifying expressions, comparing, identifying equal expres-

sions etc., would draw on these concepts and in turn reinforce them. These 

tasks sometimes involved the use of only surface structure and at other times 

included both surface and systemic structure, in the senses described earlier. 

The two concepts of ‘term’ and ‘equality’ which helped in making the struc-

ture explicit were identified during the study. ‘Term’ in the traditional Indian 

school text books is used for no other purpose but to identify like and unlike 

terms for simplifying algebraic expressions. Its full potential lies in parsing 

expressions correctly: arithmetic or algebraic, thus also connecting arithmetic 

and algebra. Figure 3.2 (read from top to bottom) shows the use and the place 

of ‘terms’ in the present study. The two concepts of ‘term’ and ‘equality’, 

which have been called ‘bridge concepts’ (Subramaniam and Banerjee, 2004; 

Subramaniam, 2004) enable the students to explore properties of operations on 

numbers and possibilities and constraints on transformations as well as to 

carry out the various tasks which require manipulating expressions and judg-

ing their equality. The concept of term plays a crucial role in delineating the 

surface structure of an expression whereas the concept of equality is important 

for understanding the deeper systemic structure of expressions.  

Terms are units of the expression demarcated by ‘+’ or ‘–’ signs, the ‘+’ and 

the ‘–’ signs attached to the number following it, which can be transposed 

without changing the value of the expression. For example, in the expression 

12 + 3×5, +12 and +3×5 are the two terms, with the former being called a 

simple term and the latter a product term. Terms are of two kinds: simple 

terms and complex terms. Complex terms include product term and bracket 

term (For example, –(3+5)). The factors of the product term can be numerical 

(like +2×3) or variable (like +2×a). +a or –a can also be rewritten as product 

term (±1×a) with one variable factor and the other factor being 1. 
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Figure 3.2: Role of terms in the teaching approach. (This is a modified version 
of the map found in Subramaniam, 2004) 

The rules for evaluating expressions are reformulated structurally using the 

idea of combining terms, replacing the usual precedence rules. Combining 

terms is based on the idea of compensation, that is, equal and opposite terms 

cancel each other. Simple terms can be combined easily like the following. 

12-5 =                   =        

Product terms can be combined with a simple term by converting the product 

term into a simple term.  

4+5×2 =                   =                    =            

+12 –5 +7 

+4 +5×2 +4 +10 +14
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Two product terms can be combined if they have a common factor using the 

distributing property. 

3×2 + 7×2 =                            =                    =               =             

Further, the idea of combining terms, together with the intuitive idea that posi-

tive terms increase the value of the expression while negative terms decrease 

it, is a step towards making the processes of addition and subtraction into ob-

jects. Also, by attaching the numbers with the signs, new symbols have been 

created from the old ones but with meanings which can preserve and guide 

students’ intuitions and expectations. As can be seen, this approach subsumes 

both, the operations on the signed numbers as well as allows for flexible 

evaluation of expressions by allowing terms to be combined in any order. This 

approach is called the ‘Terms approach’. 

Implicitly, by attaching ‘+’ and the ‘–’signs to the terms, integers are always 

added while terms are being combined and there is no subtraction operation on 

integers. The newly formed structural rules for evaluating expressions are 

equivalent to the precedence rules which are commonly used. The various 

types of terms have been defined in such a way that there is no contradiction 

in the two ways of solving an expression. It simply replaces with the structural 

counterpart the procedural terminology of evaluation like ‘do multiplication 

first’ and ‘move from left to right in the case of expressions with only + and – 

signs’ or acronyms like BODMAS7. For example, in an expression 14-5+3, 

5+3 cannot be computed first according to the conventional precedence rules, 

but many students make this error called detaching the ‘–’ sign (Linchevski 

and Herscovics, 1996). In such cases the ‘Terms approach’ not only parses the 

expression in an unambiguous way (which otherwise is only possible through 

                                                 
7 In fact, the acronym BODMAS (computing an expression in the order – starting with 
Bracket, Of, Division, Multiplication, Addition and lastly Subtraction) is misleading as it sug-
gests that addition should be done before subtraction which may not always lead to correct 
answer. 

+3×2 +7×2 +(3+7)×2 +20+10×2
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the use of brackets and not very helpful in the context of algebraic expres-

sions) but also provides the flexibility to compute in any order leading to the 

same value.  

The formulation of these two concepts strengthened the syntactic aspect of 

teaching-learning sequence. They not only created meaning for the operations 

but also afforded a more direct approach to tackling the structural errors which 

have been widely cited in the literature (Chaiklin and Lesgold, 1984; 

Linchevski and Herscovics, 1996; Linchevski and Livneh, 1999; Kieran, 

1989a). The approach provided the tools in the form of concepts, rules and 

symbols to ‘reason about expressions’ without computations. For example, by 

identifying the terms in the expression 27 – 34×12 + 17, one can see what 

components make up the expression as well as see how the components affect 

the value of the expression. The positive terms +27 and +17 would increase 

the value of the expression whereas the negative term which is quite large in 

magnitude -34×12 would decrease the value of the expression. It is also possi-

ble to observe that interchanging the positions of 27 and 34 would not only 

change the value of the expression but also that the resulting expression 34 – 

27×12 + 17 would be greater than the original expression as the negative term 

is now smaller in magnitude (and hence decreases the value of the expression 

by a lesser amount) as well as one of the positive terms have increased. It is 

thus clear that such a transformation would not keep the value of the expres-

sion invariant. But other transformations like combining terms in any order, 

transposing the terms, extracting a common factor from two terms (simple or 

product) are possible and would keep the value of the expression same. It is in 

this manner that the approach attributes meaning to the operations and proce-

dures as well as strengthens students’ procedural and structural understanding.  

Bracket was another symbol which was given a lot of attention. Its signifi-

cance lies both in enclosing parts of the expression which get precedence in 

operation and can be replaced by a number on evaluation, as well as in afford-
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ing an important transformation: removing brackets from the expression using 

bracket opening rules to get equal expressions. Students need to be comfort-

able with these two meanings of brackets to be able to appreciate the structural 

difference in two expressions like 34-(12+5) and 34-12+5, as well as to use 

brackets as a tool for representation purposes. In the context of symbolic alge-

bra and transformation of algebraic expressions, the second meaning related to 

transforming to obtain equal expressions is more important, since it is not pos-

sible to always evaluate the expression inside the bracket. However, in the 

various contexts which lead to algebra, one needs to use brackets to enclose 

parts of the expression which in principle need to be evaluated prior to carry-

ing out further operations. For example, the instruction ‘add two to a number, 

and then multiply the result by three’ cannot be written as x+2×3 but must be 

written as (x+2)×3. In this study, the bracket opening rules were reformulated 

using the concepts of term and equality in conjunction with the ideas of in-

verse and multiples. A leading ‘–’ sign for a bracket term indicates that the 

inverse of the bracketed expression (or its value) is to be taken. With this ex-

tension, the whole of integer addition and subtraction is brought under the 

terms approach. For example, the inverse of 4+6 is –(4+6) which is equal to -

4-6 and -10 is the inverse value of the expression 4+6. A number multiplying 

the bracketed expression indicates that a multiple must be taken. For example, 

3×(4+8) is three times the sum 4+8 which is equal to 3×4+3×8 and 36 is three 

times 12 (the sum of 4+8). The same concepts and rules are used in the context 

of algebraic expressions by exploiting the structural similarity between the two 

kinds of expressions with the number being the referent for the letter.  

Further extensions 

Another extension is required to include the division operation in the teaching 

approach, although it was not dealt in the present study. Division by a number 

can be considered as multiplying by the multiplicative inverse of the number 

and thus can be represented as a fractional notation. Therefore,  
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35÷6 has one term                  or                

7+15÷3 contains two terms         and                   or          and              .  

The challenge in this case is firstly to make the students understand the 

equivalence of fraction/ rational number notation with division/ sharing. Stu-

dents would also need to appreciate the equivalence of the two notations: ex-

plicit product term notation (with unit fraction as one of the factors) and the 

fraction notation (can be called the ‘fraction term’). In this way, again by em-

phasizing the structure of the expressions, tendencies to sequentially process 

information in the expression will be reduced as well as will help in convert-

ing the division into fraction notation. This is important keeping in mind that 

algebraic expressions will soon have rational numbers as coefficients and the 

letter will also take rational numbers as referents, for which meaning has to be 

created so that manipulation can be performed on them. The rules for combin-

ing the terms will be similar to the existing ones and will also need to be ex-

tended to deal with the complexities of the fraction notation. A fraction term 

can be combined with a simple term only if it can be converted into a simple 

term. Else, the value of the expression can be represented as a mixed fraction 

or an improper fraction. Two fraction terms with common denominator can be 

combined in a manner similar to combining two product terms with a common 

factor. Two fraction terms which cannot be converted into simple terms or do 

not have a common denominator, will have to be converted into equivalent 

fractions so that they have common denominator and then the two fraction 

terms can be combined. Further, the explicit parsing will enable students to 

distinguish expressions like x2+22 from (x+2)2 and eventually may lead them 

to use the correct rules in expressions like         and not simplify it as x–3, ei-

ther by considering x2–9 = (x–3)2 or considering          =     –       . 

+35/6 +35×1/6  

+7 +15×1/3  +7 +15/3 

x2–9
x–3

x2–9
x–3

x2

x
9
3 
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3.3.3 Explicating connections between arithmetic and alge-
bra 

Using the ‘terms approach’, on the one hand, arithmetic operations were being 

reified, with the ability to look at relations between the terms without 

necessarily computing them at each step and using properties of operations for 

combining them, and on the other, manipulation of algebraic expresions and 

the meaning of the symbols was being developed on this understanding of 

arithmetic. One of the important differences between arithmetic and algebra is 

that the processing of the information given in an algebraic expression cannot 

happen sequentially, unlike in arithmetic. The approach (the concepts together 

with reformulated rules) prepared the students to become flexible in perceiv-

ing the information, interpreting the relationships and further simplifying it 

using the same rules, properties and constraints on operations. Some prepara-

tory steps need to be carried out while simplifying algebraic expressions be-

fore the rules can be applied, for example, separating the like terms from the 

unlike terms. In this context it is essential to know which transformations can 

be carried out without changing the denotation of the expression. For example, 

to simplify an expression 8×x + 15 – 3×x – 7, the two terms +8×x and -3×x can 

be combined as they are the only two product terms in the expression with a 

common variable factor and this is possible because the denotation does not 

change by changing the order of terms. Also the terms +8×x and +15 cannot 

be combined as one is a simple term and the other a product term with no 

common (variable) factor between them. In a paper-and-pencil situation, the 

validation of such knowledge can only be in the context of arithmetic where 

there is a possibility of evaluating the expressions and checking for equality. 

This is not possible in the context of algebra, where the rules of transforma-

tions are generalized from the context of arithmetic. In fact, the act of substi-

tuting a value for the letter to verify the correctness of the answer takes one 

back to arithmetic. 
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Further, manipulating algebraic expressions would lead to equivalent algebraic 

expressions (like, 2×x+8=2×(x+4)) that may occasionally be more compact 

(like 2×x+5×x=7×x), but not to closed single number answers as in arithmetic. 

This involves a strong understanding of the concept of equivalence of alge-

braic expressions. Permissible transformations on an expression do not change 

the value of the expression, and each step in the simplification process keeps 

the algebraic expressions equivalent, which is an important idea in algebra. 

Many of the difficulties in manipulating expressions in algebra can be attrib-

uted to the lack of this important concept. Inconsistent and arbitrary use of 

rules for manipulation stems partly from the fact that the students do not know 

that each step leads to equivalent expression.  

The equivalence of algebraic expressions is defined as functional equivalence; 

on substituting the same value of the variable, both expressions result in the 

same value. However, operationally, equivalent algebraic expressions are ob-

tained by making valid transformations on the expressions. It is important 

therefore to ensure that transformations find a place even in working with 

arithmetic expressions, so as to allow students to integrate the concept of 

equivalence with valid transformations. This is an essential part of the terms 

approach, and the flexible approach to evaluating arithmetic expressions to-

gether with anticipating results of operations prepares students for this impor-

tant concept.  

It was decided not to use the compressed notation of algebra (concatenation) 

and keep the ‘×’ notation as in arithmetic, thereby maintaining the similarity in 

notations and bridging the gap between arithmetic and algebra in the syntactic 

world. Nunes (1997) pointed out that compression of representations open 

new relationships which can be understood only by connecting them to the 

new operations, making it hard for students to understand them. Discussion 

and verbal explicitations of aspects of notations with regard to algebraic ex-

pressions and comparing and contrasting with arithmetic play an important 
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role in making sense of the expressions and their transformations. Once again 

reasoning about expressions could be a key to understand these links. 

3.4 Creating contexts for algebra 

The tasks described above belong to the category of ‘reasoning about expres-

sions’ and could take the students from the ‘inventive-semiotic’ stage to the 

‘template driven’ (Sfard, 2000) phase of ‘structural development’ (Goldin and 

Kaput, 1996). To move the students to the ‘autonomous’ (ibid.) or ‘object me-

diated’ stage (Sfard, 2000), tasks belonging to the category of ‘reasoning with 

expressions’ were used (see Appendix-I). This is not to claim that ‘reasoning 

about expressions’ cannot take the students to this advanced stage but this path 

was not considered suitable for this study. For example, complex operations 

on algebraic expressions, thinking of algebraic expressions as functions and 

anticipating changes in function are good activities in the ‘autonomous’ stage. 

The second part of the study consisted of exploring students’ use of the letter 

and expressions in situations which lent meaning and purpose to algebra. The 

contexts chosen for ‘reasoning with expressions’ were of generalizing, proving 

and verifying. The important ideas to be grasped in this part are (i) the impor-

tance of representing situations for general cases, (ii) knowing that justifica-

tion/ proof needs a general argument/ explanation (verbal or symbolic) not 

specific to particular cases, (iii) appreciating the purpose of transformation on 

a representation, (iv) transforming the representation using valid rules and (v) 

interpreting the result. Most students do not appreciate that situations can be 

represented in a general manner without instantiating it. For example, to repre-

sent Mohan is four years older than Shalini whose age is represented by k 

years, students often choose a value for ‘k’ (say 15 years) and then find the age 

of Mohan (in this case 19 years). Booth (1984, 1988) pointed out that this 

happens because students have very primitive means, symbols as well as pro-

cedures, of working on situations which does not allow them to represent gen-

eral procedures. A good grasp of processes of arithmetic and articulation of 
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structures of relationships between numbers is essential prerequisite for using 

algebra (Stacey and MacGregor, 2001). This allows one to translate the infor-

mal processes or arithmetic structures into formal arithmetic or algebraic sen-

tences. However, Balacheff (2001) argues that students’ familiarity and com-

fort with arithmetic could itself be an obstacle for expressing generalities as 

they may not feel the necessity to use algebra where the problem could have 

an arithmetic solution.  

Even if students manage to represent the situation using letters, they may not 

know how to use the representation or to manipulate it in order to obtain a 

meaningful result. They have difficulties in both constructing a proof and in 

following it using deductive logic (Healy and Hoyles, 2000). Further, they are 

not convinced about the truth of the solution arrived by manipulating the alge-

braic expression (Liebenberg et al., 1999b, Cerulli and Mariotti, 2001). Instead 

they often substitute the letter by a number and check for the correctness. The 

purpose of algebra is not clear to most students and there are many hindrances 

in the path. Similar is the case with generalization. Students do not see the rea-

son behind generalizing patterns and expressing it for purposes of prediction. 

They use methods which are not suitable for predicting the value of an un-

known position (English and Warren, 1998; Stacey, 1989; Sasman et al., 

1999). These issues have been discussed earlier in sections 2.7.1 and 2.7.3. 

In this context, the tension between arithmetic and algebra emanates from the 

fact that arithmetic solutions begin and end in number manipulations without 

ever establishing the generality of the result. Algebra is the only way by which 

one can prove and justify general results and solutions. In this study, the effect 

of knowledge of syntactic transformations on representing situations and ma-

nipulating them in the given context to arrive at conclusions was explored, that 

is, to use Kieran’s (2004) terminology, the role of transformational activities 

on global/ meta-level activities.  
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Students, in this study, were first engaged in simple representation tasks simi-

lar to the CSMS test items so that they could learn that representations could 

be made when all quantities were not given, with the letter/s denoting one or 

more of the unknown quantities in the situation. Continuing with the spirit of 

the study which follows a generalized arithmetic approach, students worked 

on tasks which required generalizations of patterns and relationships between 

numbers. These situations were further exploited to give way to ‘reasoning 

with expressions’ which expected them to conclude some general idea/ rule 

from their representation (e.g. Take three consecutive numbers. Show that the 

sum of the first and the last is twice the middle number). In such an example, 

the students can indeed work with numbers and see the truth of the statement 

but it cannot be proved for all cases unless algebra or some visual/ verbal ex-

planation, which is general enough, is used.  

The purpose behind the use of these tasks was also to explore possible ways of 

making the role of algebra accessible to the students. One way to circumvent 

students’ inability to deductively work on representations was to engage them 

in articulating the problem and their explanation for it. In the process, symbols 

other than formal algebra could be used to communicate and convince oneself 

of the explanation. The use of arithmetic (number) representations was al-

lowed in this study which students were familiar with and which they could 

relate to meaningfully as the problems dealt with number patterns arising from 

many contexts. Also the general proof was closer to the particular numerical 

instances. The belief was that such actions would enable the students to see the 

‘general in the particular’ (Mason, 1996) and gradually move to the symbolic 

level by appreciating the goal of the task. At this point, they could use their 

knowledge of syntactic transformations. As with any other aspect of mathe-

matics learning, it is important to consider the process of arriving at the proof, 

and not only emphasize proof as a product (Healy and Hoyles, 2000; Heinze, 

2004). The same is true for generalization; one must look at the process of ar-
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riving at the generalization rather than just the general rule in the form of an 

algebraic expression. 

In the following two chapters, the methodology of the study and the evolution 

of the teaching approach will be described. In further chapters, analysis of the 

data will be carried out in the light of this framework in order to explore the 

extent to which the students displayed the requisite understanding across the 

three trials of the main study.  
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Chapter 4: Description of the design experiment 

4.0 Methodology 

Identifying a design for conducting research which would adequately help in 

answering the research questions is crucial for carrying out any research. The 

design chosen is not only the one suited to answer the questions being raised 

in the research study, but also reflects the assumptions underlying the re-

search. It captures the development in understanding of the field under study 

and the theoretical and methodological advancements made in the areas of 

learning and teaching in education. Over the years, methods of conducting 

research have changed from largely quantitative experimental designs to 

qualitative (descriptive studies, case studies etc.) and mixed method designs. 

Researchers are no longer content with laboratory experiments with strictly 

controlled variables and they have moved into complex settings such as 

school systems, classrooms, workplaces where it is no longer possible to an-

swer the questions using traditional designs (Kelly and Lesh, 2000a). They 

point out that “the needs of learning and teaching, and the descriptive, ana-

lytic, and communication needs of the community of researchers should help 

bring forth and test a diversity of research methods. These methods may in-

clude those borrowed from other traditions (e.g. anthropology) as well as 

those emerging from within the practices of mathematics and science educa-

tion research (e.g. teaching experiments, design experiments, action research)” 

(ibid., pp. 35-36).  

One can find two reasons for changes in the research design. First, there is a 

growing interest in answering questions which are more complex, like means 

and mechanisms of learning in the context of tasks or learning environments 

in the classroom within a socio-cultural context. Recent studies not only pro-

vide empirical results about certain processes under investigation but also en-

hance theoretical understanding of the area concerned (Collins et al., 2004; 
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Shavelson et al., 2003; Lobato, 2003). Second is the view that the researcher 

is a participant in the whole process and not an outsider, co-constructing 

knowledge with the students and the teacher in a dynamic environment. The 

purpose of the research is to understand and describe the complexity of the 

system, develop models of thinking about learning and teaching and analyze 

the change in the participants’ understanding of subject matter and their mean-

ing making process. The data is collected iteratively over cycles observing 

complex behaviour, and also accepting theory ladenness of both observation 

and method in the research (Kelly and Lesh, 2000a). 

There are various ways to investigate the complex system of teaching-

learning. Teaching experiments are a class of research methodologies which 

encompass varied research foci: development of students, development of 

teachers, development of ideas in groups, teams, individuals, classroom in-

structional environments, and instructional activities including use of software 

(Kelly and Lesh, 2000b). What binds them together is the fact that all these 

“focus on development within conceptually rich environments that are de-

signed to optimize the chances that relevant developments will occur in forms 

that can be observed” (ibid., p. 192). The time range of such experiments is 

flexible (from few hours to months) and so is the setting (interview sessions to 

whole class learning environments).  

4.1 The design experiment 

The focus of this study was to develop among students an understanding of 

symbolic algebra, using their knowledge of arithmetic as a foundation. Design 

experiment (e.g. Cobb et al., 2003) was found to be the most suitable for this 

particular research as there did not exist a fully formed teaching-learning 

module which could be tested against a control group. Such a module was to 

evolve over time. A few characterizations/ definitions of “design experiment” 

are: 
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Design experiments are extended (iterative), interventionist (innovative and de-
sign based) and theory oriented enterprises whose “theories” do real work in 
practical educational contexts (Cobb et al., 2003, p. 13).  

Design experiments, based on prior research and theory and carried out in edu-
cational settings, seeks to trace the evolution of learning in complex, messy 
classrooms and schools, test and build theories of teaching and learning, and 
produce instructional tools that survive the challenge of everyday experience 
(Shavelson et al., 2003, p. 25).  

As is clear from above, design experiments are conducted for the purpose of 

formative evaluation of research and it systematically tries to study learning 

processes in a context defined by the means of supporting them (Collins et al., 

2004; Cobb at al., 2003). The design is put into practice and tested and revised 

based on experience to lead to the development of some local domain-specific 

theory; addressing theoretical questions and issues delineating why it works or 

understand the relationships between theory, artifact and practice (Collins et 

al., 2004; Brown, 1992; Cobb et al., 2003; DBRC, 2003). The theory intends 

to “identify and account for successive patterns of student thinking by relating 

these patterns to the means by which their development was supported and 

organized” (Cobb et al., 2003, pp. 11). Gravemeijer’s (2001) methodology of 

developmental research embodies fundamentally the same ideas.  

The present study started with a conjecture (due to its evolving nature it is not 

a hypothesis, Confrey and Lachance, 2000) of finding the extent to which 

arithmetic could be used for the purposes of teaching children algebra. The 

assumptions/ conjectures had to be progressively tested in order to bring about 

the necessary coherence in the teaching sequence. Previous literature in the 

field of algebra education had shown the difficulties students face while tran-

siting to algebra if they did not know arithmetic well, especially if they lacked 

the understanding of the structure of expressions. These have been discussed 

in detail in Chapter 2. The difficulties, their reasons and the non-existence of a 

well elaborated model of teaching and learning of algebra using arithmetic led 

to the formulation of this research study to systematically explore the effect of 
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arithmetic on teaching and learning of algebra. To build the sequence, it was 

required to first identify suitable teaching-learning materials and then to 

elaborate it by making the required connections between arithmetic and alge-

bra. The elaboration and modification of the approach was carried out through 

a series of five teaching trials. Over each of the trials that was conducted, 

strengths and limitations of the concepts, ideas and tasks were identified lead-

ing to a suitable modification of the sequence in the next trial of teaching. 

This was continued till there was some connection seen between arithmetic 

and algebra in students’ understanding as well as in the teacher-researcher’s 

judgment. 

The first two trials were more exploratory in nature and the last three trials 

formed the main study which aimed at making the teaching learning sequence 

coherent. The research aimed to study the developing understanding of stu-

dents in a context where the teaching approach explicitly built bridges be-

tween arithmetic and algebra, by giving visual and conceptual support for the 

understanding of expressions. This was to be achieved by building strong 

structure and procedure sense of arithmetic and algebraic expressions. The 

study further intended to explore the connections between procedure and 

structure sense; and between arithmetic and algebra. The teaching learning 

sequence co-evolved with the developing understanding of the researchers 

about the phenomena under study as well as with the growing understanding 

of the students as evidenced from their performance and reasoning on various 

tasks. The study did not aim to measure the efficacy of the approach taken vis-

à-vis the traditional method of teaching algebra or any other approach. Nor 

did it aim to show its efficiency in terms of time taken for teaching. In fact the 

teaching approach took some time to evolve and attain the required level of 

coherence and completeness due to the nature of the study. Evidence for un-

derstanding and use of the concepts introduced during the study in the stu-

dents’ performance in various tasks was looked for, with a focus on the links 
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between understanding of arithmetic and algebra. In particular, the study 

hoped to identify concepts that facilitated students’ understanding in both do-

mains, namely ‘bridge concepts’ and loci of transfer. Another intended out-

come was to identify principles for teaching and learning of algebra and to 

operationalize these principles through a detailed teaching learning sequence.   

4.2 Research questions 

• What kind of arithmetic understanding would help in learning symbolic 

algebra? 

o How should the teaching of arithmetic expressions be restructured to 

prepare for a transformational capability with algebraic expressions? 

o How effective is such a teaching learning sequence in understanding 

beginning syntactic algebra? 

o Which tasks of the ones identified are more effective in making the 

shift possible from arithmetic to symbolic algebra? 

• Does understanding the syntax and symbols of algebra support students in 

understanding the purpose of algebra and in the application of algebra for 

generalizing and justifying? 

• What meanings do students attach to letters, expressions and syntactic 

rules of transformations in this learning approach?  

• How do procedural understanding and structure sense of expressions mu-

tually support one another? 

4.3 Sample and location of the study 

The study was conducted in the research institute with grade 6 students (11-12 

year olds). The students came from nearby English and Marathi medium 

schools which catered to students from low and middle socio-economic back-
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grounds. Four schools (E1, E2, E3 and M1) were involved in the study at 

various stages. Schools E1, E2 and E3 were English medium schools and M1 

was a  medium school. Out of these four schools, two schools (E1 and M1) 

were involved throughout the study. The choice of the schools was based on 

convenience, the first reason being their proximity to the centre and the sec-

ond, due to a need for long term collaboration and support from the school to 

carry out the study. The students were called to the institute (Homi Bhabha 

Centre for Science Education) during the vacation periods of the school in 

Summer (April-May) and mid year (October-November) for 11-15 days with 

each session lasting approximately one and a half hour. The academic session 

of the schools start in the Summer (June). Application forms were distributed 

in some nearby schools before each of the vacation periods of the school. The 

students for the program were then randomly selected from the applications 

received from interested students of these schools.  

The differences between the schools were not systematically studied as part of 

the research being reported here. The school E2 catered to people working in a 

prestigious government organization, the schools E3 and M1 were state gov-

ernment aided schools and E1 was a missionary school funded by the Church. 

The school E2 followed the national curriculum and the text book provided by 

the central government and the other schools followed the curriculum of the 

state and the text book prescribed by the state government. The students in all 

the English medium schools came from various parts of the country and there-

fore did not share a mother tongue, unlike the school M1. Although these stu-

dents in the English medium school understood English, most of them were 

not fluent in the language to be able to explain their thoughts. But all of them 

understood and spoke Hindi, the national language of the country. In this 

study, they were allowed to discuss and respond in any of the two languages - 

English or Hindi. The students from the school M1 were taught in the same 

language ( medium, Marathi) in the study as their medium of instruction in the 
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school. They had good command over the language they spoke. Further, dur-

ing the teaching intervention, the students from E1 were found to be less effi-

cient in systematic writing than students in M1. Many of the students in M1 

appeared for the scholarship tests conducted by the state for which they were 

given special training by the school. 

Granting that there were differences among the groups of students, no effort 

would be made to explicate the reasons for difference in their performance 

during the study, as that is not the focus of this study. It is acknowledged that 

the exact nature and reason for the difference would be interesting to pursue in 

a separate study. The  medium students (M1) were better to start with as seen 

from their pre-test performance and they continued to perform well in the 

study. The aim here was to trace the understanding and use of the concepts by 

the students during the various trials.  

Students’ participation and continuation in the study were both voluntary and 

low pressure. They had no pressure of either completing home work or pre-

paring for the tests during this study compared to the school situation, which 

made it a fun filled situation. In the school they are forced to complete the 

home work. Much of the time is spent in routine mechanical computations and 

they have to commit to memory a whole lot of information for the tests. The 

time spent in the teaching sessions was considered to be sufficient for learning 

the concepts and skills introduced and they were not required to prepare for 

the tests. Although the students knew that they had to appear for a pre and a 

post test in the beginning and the end of each trial, this did not bother them. 

Small tests were also conducted from time to time during the trials about 

which the students were not intimated in advance. Teaching was conducted as 

a whole group activity and the tasks were mostly done individually by the stu-

dents, although they were free to talk to their peers. After they had finished 

working on the task and were ready with their solutions, students typically had 

to explain their strategies and solutions in whole group discussions. A few ac-
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tivities, which were considered challenging, were carried out in pairs. This too 

was followed up by the whole class discussions.  

In the school during grade 6, students learn integer operations, evaluation of 

arithmetic expressions, manipulation of algebraic expressions, evaluation of 

algebraic expression upon substitution and solving linear equations in single 

variable. Text books following both the state and the national curriculum treat 

these areas as distinct without making any explicit connection, presents them 

as formal bodies of knowledge, explaining the rules/ properties which govern 

the operations. The text books give examples of situations which require the 

use of integers or letters to represent events/ phenomena. Further, problem 

solving is restricted to situations leading to simple linear equations in one 

variable. Classrooms are largely teacher directed and focused on students 

mastering the rules of transformation and learning to solve the problems in the 

respective areas. Teachers follow the text books and try to explain the solved 

examples and the problems given in the exercises at the end of each unit. All 

students then appear for tests which are conducted periodically by the school 

and success and failure is determined by their scores in the test.  

4.3.1 The trial cycles 

In all, the study consisted of five trial cycles. Each trial cycle involved be-

tween 11-15 days of teaching, with approximately 1.5 hours of teaching per 

day. The first two trials were pilot trials and were more exploratory in nature 

(PST-I, PST-II) and the last three trials form the main study (MST-I, MST-II, 

MST-III).  

Pilot study trials (PST) 

The first trial of the pilot study (PST-I) was conducted in Summer (April) 

2003, with students from only one school (E1). The trial was announced in the 

school before their summer vacations and students were invited to volunteer 

for the course. The students were finally selected randomly from the list of 
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applicants. Eighteen students participated in this trial. The students had just 

finished their grade 5 exams and were awaiting their results. The students had 

not as yet had any instruction (especially in algebra) for grade 6 in school. The 

course lasted for 13 days with sessions of one hour each. I was the only 

teacher in this trial and the students were taught arithmetic.  

The second pilot study trial (PST-I) was held in October-November 2003, 

with 82 students in three groups (25+23+34) from three schools (E1, E2, M1) 

participating in the trials. The trial was, as before, announced in the schools 

before their mid-year vacations and students randomly selected from the ap-

plications for the trial. A few students who had participated in the earlier trial 

from school E1 chose to participate again in this second trial. The students 

were in the middle of their grade 6 in the school and had recently had some 

instruction in arithmetic expression evaluation and integer operations before 

they came for the trial. The students from schools E1 and E2 were mixed and 

then divided into two equivalent groups (Group-I and II) based on their pre-

test performance and given separate treatments. Group-I was taught both 

arithmetic and algebra whereas Group-II was taught only algebra with some 

instruction in an unrelated domain (geometry), to maintain the total interaction 

time among the two groups. The students from the school M1 formed the last 

group-III and were given the same treatment as to Group-I. Four researchers 

from the centre including me, were involved in the teaching and formed the 

research team. The units of arithmetic and algebra were taught by two differ-

ent teachers in Group-I but by one teacher in Group-III. Algebra and geometry 

were also taught by two different teachers in Group-II. The course lasted 11 

days with each session being one and a half hours long.  
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Table 4.1: Sample used for the study in the five trials (* indicates group not 
followed and reported in the study) 

Notes: I-III, A1-A3, B1-B3, C1-C2 = Groups which participated in the study. E1, 
E2, E3, M1 = Schools which participated in the study 

Table 4.1 gives an overview of the sample used in the five trials of the study: 

number of groups, number of students who participated in each trial, number 

of sessions, duration of each session and the sample for the final analysis. 

Main study trials (MST)  

The first trial of the main study (MST-I) was conducted in Summer (April) 

2004, with 90 students from three schools (E1, E3, M1) participating in the 

study. This was a fresh batch of students who had just finished their grade 5 

exams and were waiting for their results. The trial was announced in the 

schools and students volunteered to attend it as earlier. The students from 

schools E1 and E3 were combined and two equivalent groups: Group A1 (23 

students) and Group B1 (29 students) were formed8. Students belonging to 

school M1 formed the Group C1 (38 students). Groups A1 and C1 followed the 

                                                 
8 The number of students in the equivalent groups is not the same as some students dropped 
out before or on the last day, when the post test was held. 

 Pilot study trials Main study trials Final 
analysis 

 PST-I PST-II MST-I MST-II MST-III  

English I: 18 
(E1) 

I: 25 
(E1+E2) 

A1: 23 
(E1+E3) 

A2: 28 
(E1) 

A3: 21 
(E1) 

English: 
15 (E1) 

 - II: 23 
(E1+E2) 

B1: 29 
(E1+E3) 

C2 
(E1)* 

-  

Marathi - III: 34 
(M1) 

C1: 38 
(M1) 

B2: 42 
(M1) 

B3: 22 
(M1) 

Marathi: 
16 (M1) 

Total 
students 

18 82 90 70 43 31 

Sessions 13×1 hr 11×1.5 
hrs 

16×1.5 
hrs 

13×1.5 
hrs 

11×1.5 
hrs 

40×1.5 
hrs 
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same teaching-learning sequence whereas Group B1 followed a slightly differ-

ent approach but the same core ideas were taught. Groups A1 and C1 were 

taught both arithmetic and algebra whereas group B1 was taught mostly arith-

metic and a little algebra. Four teachers were involved in this phase as well, 

with three of them being researchers and collaborators in the project from the 

institute. One high school teacher was involved in this phase who taught 

arithmetic to Group A1, algebra being taught by me. The other groups were 

taught by a single teacher. The course lasted for 16 days with a session of one 

and a half hour each day.   

In continuation of the first trial, the second trial of the main study (MST-II) 

was organized in October-November, 2004. Two schools (E1 and M1) and 

two groups of students were involved in this phase. Only those students from 

these two schools who had earlier attended the trial MST-1 were invited again 

to attend this follow up trial. The sample was restricted to only two neighbor-

ing schools due to the cumbersomeness of the design with large number of 

students. Students from Groups A1 and B1 who attended MST-I were com-

bined and a group of 28 students (Group A2) made for MST-II. A few new 

students joined Group C1 of MST-I and the new group was called Group B2 in 

MST-II with 42 students. These groups then followed the same teaching-

learning sequence. Students during this phase were in the middle of grade 6 

and had received some instruction in school on evaluating arithmetic expres-

sions and had been recently introduced to integers. A fresh batch of students 

was also called during this trial and 26 students attended the programme to 

form the Group C2. They were taught both arithmetic and algebra using the 

same core ideas as the other groups but a slightly different sequence. Since 

this group was not followed, I would not report the results of this group but 

would point out some interesting ideas that emerged from this trial as part of 

the evolution of the approach and the teaching-learning sequence which will 

be suggested in the end. Three teachers (researchers and collaborators from 
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the centre) were involved in this cycle with each of them taking care of a 

group and they taught both arithmetic and algebra to the respective groups. 

The course involved 13 teaching sessions of one and a half hour each. 

The third and the final trial of the main study (MST-III) was held in Summer 

(April) 2005. The same students who had attended the first and the second tri-

als (MST-I and II) were invited for this final phase of the course. 21 students 

of Group A2 (henceforth A3) and 23 students of Group B2 (henceforth B3) at-

tended the trial. These students had just finished their grade 6 exams and had 

been participating in this study for a year. In the course of the instruction in 

school in Grade 6, students in group B3 had been introduced to evaluation of 

algebraic expressions for a given value of the letter and manipulation of alge-

braic expressions including addition and subtraction of two algebraic expres-

sions. These were carried out in the traditional way by collecting like and 

unlike terms separately and further extracting the common factor between the 

like terms. Two teachers (researchers and collaborators from the centre) were 

involved in this last trial taking care of a group each. The course lasted for 11 

days with sessions of one and a half hour each day.  

Sample used for analysis 

Amidst this constant inflow and outflow of students, throughout the trials, it is 

important to analyze the performance of those students who were constant 

across the main study. At the end of the main study, two groups of students 

from two different schools (E1 and M1) had participated in all the trials, which 

lasted a year. These were 15 students from the English school E1 and 16 stu-

dents from the  school M1. The reason behind having two groups of students 

was not for the purpose of comparing them but to broaden the study. It was of 

interest to see how the two groups of students would respond to the teaching-

learning sequence and how they progressed with time. In the thesis, the focus 

will be on the performance of only these students who had participated in all 

the trails, which will be tracked and discussed. This is essential so as to limit 
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and make sense of the large amount of data that was generated due to the in-

volvement of many students over various trials. Moreover, in the present de-

sign of the study, where the teaching learning sequence progressively evolved, 

discussion of the performance of those students who did not go through the 

entire study trials would be incomplete with respect to some aspect of the 

learning sequence.  The contribution of the other students who participated in 

each of the trials will be considered as part of the overall development of the 

teaching-learning sequence, their responses providing valuable feedback in 

each of the trials.  

4.4 Data collection 

A part of the data was collected by administering pre and post tests to the stu-

dents during each trial phase. The tests were modified in each trial as the 

teaching-learning sequence changed or evolved, although many basic con-

cepts and the corresponding items remained the same or were similar. The 

concepts, skills and procedures tested were:  

(i) evaluating and simplifying arithmetic and algebraic expressions,  

(ii) filling in the blank to make two expressions equal,  

(iii) comparing expressions with and without calculations,  

(iv) judging equality of a given expression to other expressions,  

(v) using the letter to make simple representations and  

(vi) problem solving tasks embedded in context.  

The tests consisted of items which had to be solved with the working shown, 

as well as items which had multiple options. The students were required to 

mark right or wrong against each of the options. The post test in each trial in-

cluded most of the questions asked in the pre test together with the concepts 
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and skills taught and learnt during the particular trial. The post tests had an 

average of 25 questions and usually students worked on them for two hours. 

(See Appendix – IIA, B, IIIA, B, IVA, B for pre and post tests of MST-I, II, 

III respectively). The tasks used in the study and the items in the test were 

fairly new for the students, except simplifying and evaluating arithmetic and 

algebraic expressions which some students had encountered in the school.  

Interviews were also conducted with the students at the end of MST-II and 

MST-III to get a better picture of students’ understanding and reasoning about 

numbers, operations, expressions and symbols and how they used the concepts 

and skills learnt during the trials to respond to the tasks. The students chosen 

for the interview performed at an average and above average level in the tests 

and were active (but not necessarily correct) in the classroom discussions. In-

terviews were not conducted with very low performing students. The written 

responses of many of these students in the post test of MST-II showed inter-

esting errors and inconsistency in reasoning across tasks. Fourteen students (6 

English medium and 8  medium) were interviewed after 8 weeks of the end of 

the second trial of the main study (MST-II). Although the overall performance 

of these students improved in the post test of MST-III, they were interviewed 

again after MST-III. These students and some additional students totaling to 

seventeen (8 English medium and 9  medium) were interviewed 4 months af-

ter the end of the final trial of the main study (MST-III). Three of the students 

interviewed had not appeared for one of the three post tests but had partici-

pated in all the trials.  

The students interviewed after MST-II were posed tasks only in arithmetic 

whereas the students interviewed after MST-III were posed tasks both in 

arithmetic and in algebra. The tasks that were common in both the interviews 

were of evaluating expressions and identifying expressions equal to a given 

expression. In the second interview, students’ responses to some other tasks 

related to their understanding of the use of letter, algebra and transformation 
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of algebraic expressions were also explored. Contexts of think-of-a-number 

game and pattern generalization were used to elicit their understanding of the 

use of algebra and letter, which they were familiar with. The interview was 

largely structured with minor changes made at the time of the interview de-

pending on the students’ response (See Appendix – VA and B for the inter-

view schedule used after MST-II and III respectively). The students were first 

asked to complete some tasks on a sheet of paper and then in a one-on-one 

conversation with the interviewer the student explained his/ her answer/ solu-

tion for the task and responded to further additional probes. In the case of 

tasks of evaluating arithmetic expressions, the additional probe consisted of an 

explanation for an alternative solution, its correctness (MST-II and III) or a 

request for another way of finding the solution and whether two ways of 

evaluating would give the same answer (MST-III). In the task of judging 

equality of an expression to a given list of expressions, the additional probe 

consisted of asking for the reasons for the students’ judgment (equal or not 

equal) (MST-II and III) and if the expressions were judged unequal, to com-

pare them for more/ less (MST-III). Students were also explicitly asked 

whether the value of the two expressions being compared will be the same if 

they are equal (MST-III). In the context based tasks embedding algebra, be-

sides solving the task, students were additionally probed with respect to their 

understanding of algebraic expressions, transformations on them and their 

equivalence.  

Data was also collected by recording students’ daily work and coding their 

responses each day on a sheet of paper. Also the teacher-researchers main-

tained a log file of the daily proceedings in the classroom. All classes were 

video taped for later transcription and analysis of the required portions. The 

interviews were also video and audio taped and later transcribed and coded for 

analysis.  



 144 

4.5 Data analysis 

The data from different sources was analyzed with a focus on the nature of 

responses, the type and number of errors and the students’ reasoning as in-

ferred from their responses to written tests or explanations given in the inter-

view. The analysis was carried out to ascertain the extent of students’ under-

standing in different task domains of concepts, rules and procedures: 

• Understanding of procedures: Evaluation/ simplification of arithmetic 

and algebraic expressions 

• Rules for transforming expressions with brackets 

• Understanding of structure – tasks based on ‘=’ sign, identifying ex-

pressions equal to a given expression from a list without computation, 

generating equal expressions 

• Context based tasks – letter number line, calendar patterns, think-of-a-

number game, pattern generalization  

The tasks which have been categorized as ‘procedural’ required the students 

to use the rules and procedures for operating on expressions taught during the 

study, in the context of arithmetic and algebraic expressions to lead to nu-

merical answers or simpler expressions. Although the rules themselves were 

structurally formulated, they could be procedurally applied to evaluate/ sim-

plify the expressions. The tasks categorized as ‘structural’ deemphasized 

computations and instead focused students’ attention on the structure of ex-

pressions, and on identifying relations among expressions and within an ex-

pression. In the process, the tasks elicited students’ intuitive understanding of 

operations and anticipations with respect to simple transformations like in-

creasing and decreasing number/ terms, rearranging numbers, terms and signs.   
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The analysis of the different kinds of tasks sought to throw light on the fol-

lowing specific aspects of students’ understanding: order of operations, trans-

formation of expressions, understanding of ‘=’ sign, equality/ equivalence of 

expressions, meaning of letter, ideas about representing a situation using the 

letter and manipulating the expression to arrive at a conclusion. The effort was 

to examine students’ use of the concepts and rules that they had learnt during 

the trials in the various tasks and the extent to which their learning facilitated 

performance on various tasks. This is compared and contrasted with what is 

reported in the literature about students’ difficulties with formal syntactic al-

gebra, structure sense of expressions and their knowledge of rules of trans-

formation and equivalence. The analysis of the data leads to an understanding 

of the extent to which the approach used for transiting from arithmetic using 

‘reasoning about expressions’ based on syntactic transformations to algebra is 

effective. Further, it gives a sense of the nature of the concepts required to 

make the transition from arithmetic to algebra. For a complete understanding 

of algebra, it is essential for students to be able to use algebra in contexts. 

Therefore, data was analyzed to see if knowledge of syntactic transformations, 

which have been attributed some meaning in the context of transformations 

and invariance of value, would help in ‘reasoning with expressions’. Since the 

study is a design experiment, I would try to capture the changes in students’ 

responses as the teaching learning sequence evolved with respect to the above 

mentioned aspects.  

The data from all the sources, that is, pre and post tests, students’ daily work-

sheets, video recordings of classroom, teacher’s log file and interview tran-

scripts were used for the analysis. The performance of the students in the pre 

and the post tests in each of the trials was analyzed both quantitatively and 

qualitatively.  The percentage of correct responses was calculated for each of 

the items as discussed earlier. Also the quantitative data was used to find if 

there was a significant difference in the performance between the pre and the 
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post tests on similar items using t-tests. Correlation between procedure and 

structure tasks, and arithmetic and algebra tasks were found. Graphs were 

plotted to illustrate the data wherever suitable. The responses of the students 

in the tests on various items were coded to explicate the extent of facility as 

well as the difficulties students faced while working on the tasks. All inter-

views were transcribed and coded for the correctness of the solution to a task, 

the appropriateness of the explanation to an additional probe (alternative solu-

tion, explanation for a judgment, identifying more/ less of two expressions) 

and the changes made by the students during the interview on a particular 

task. Video recordings of classroom sessions were transcribed whenever re-

quired to clarify certain points. Data from the classroom and interview tran-

scripts will be used to corroborate and explain the results obtained from the 

post test as well as to give a glimpse of the capabilities the students demon-

strated at various points while working in groups. Actual interview transcripts 

will be used to illustrate the nature of explanations given by students to vari-

ous tasks. 
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Chapter 5: Evolution of the teaching approach 

5.0 Introduction 

The teaching approach evolved over five trials between 2003 and 2005. The 

aim was to develop a sequence which builds bridges between arithmetic and 

algebra and strengthens students’ sense of the structure of expressions. As has 

been discussed in Chapter 3, the development of the teaching sequence fol-

lowed a set of principles, and the content had a set of characteristics which 

were to act as a guide in the teaching intervention. Of course, the teaching ap-

proach did not start with a full fledged list of principles and characteristics; 

rather they evolved as a result of the trials. The feedback received through stu-

dents’ classroom responses and performance in the tests, and the subsequent 

discussions between the teacher-researchers, led to decisions to continue, 

change and modify parts of the sequence, the tasks and approach to ideas, 

which were incorporated in the next trial. This was repeated till some coher-

ence was observed in the sequence of tasks and the concepts and skills re-

quired for working on them, inferred from students’ consistency in responding 

to various tasks.  

The process may be termed a ‘mathematics teaching cycle’, as described by 

Simon (1995). The first teaching trial was based on an understanding of the 

major areas of concern in algebra and the difficulties students face in learning 

algebra. It was also motivated and guided by some of the existing intervention 

studies, which have been reported in Chapter 2. A teaching sequence was con-

structed which aimed at identifying instructional material as well as testing 

their efficacy, sequencing and identifying pre-requisite concepts or skills 

needed for developing structure sense. Tasks were chosen, adapted and modi-

fied from the existing literature for the trials. Students’ intuitive as well as 

formal ideas about operations, symbols and procedures were given due impor-

tance in the classroom, allowing the students to articulate their reasoning, so as 
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to be able to build on them. During the enactment of the teaching sequence in 

the classroom, the students were engaged in making sense of the tasks and the 

expectations from them (e.g. that they have to explain their solution, that they 

have to understand the explanations given by others) and the teacher was en-

gaged in observing and making sense of the students’ responses and actions. 

This led to changes not only in the subsequent trials but also small immediate 

changes, with regard to examples, and explanations in the same trial. Accord-

ingly, the ‘hypothetical learning trajectory’, that is, the teacher’s prediction as 

to the path by which learning might proceed (ibid.) was suitably adjusted each 

time. In the following pages, discussion specific to the evolution of the teach-

ing approach through the five trials will be taken up.  

Figure 5.1: The process of evolution of the teaching sequence through the five 
trials 
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Figure 5.1 is a schematic depiction of the evolution of the teaching approach 

through the five trials. It highlights the focus of the trials (in the oval shaped 

figures) and the outcome of the trial (in the rectangular boxes).  

5.1 Pilot study trials 

5.1.1 Pilot study trial-I 

The first trial cycle of the pilot study (PST-I) was aimed at exploring instruc-

tional material which can induce a sense of structure of arithmetic expressions 

among students. The trial began with an introduction to simple two and three 

term arithmetic expressions and verbalizing their meaning. The purpose was 

to inhibit students from computing expressions spontaneously as a result of 

many years of practice with arithmetic expressions. This was supposed to be 

the first step towards building an appreciation for structure of expressions. 

Students wrote expressions for a given number and verbalized its meaning. 

For example, they learnt that 5 + 8 stands for the number 13 and conveys the 

information that it is ‘8 more than 5’. They could use many ways to express 

the same information (e.g. sum of 5 and 8), which led to an exploration of dif-

ferent phrases like ‘more than’, ‘sum’, ‘difference between’, ‘less than’, 

‘product of’, ‘times’ and ‘quotient’. Different expressions could stand for the 

same number, conveying different information about the number. They also 

learnt to write arithmetic expressions for a relation expressed verbally. The 

key idea was to understand that the expression stands for a number which is 

the value of the expression and contains some information about the number 

which is stated as a relationship between two or more numbers.  

Rules of evaluating simple expressions, like 13 – 5 + 8 and 6 + 2 × 4, were 

explained to them in the traditional fashion by explicating the precedence 

rules. For an expression containing only ‘+’ and ‘–’, the computation had to 

be carried out from left to right and for expressions containing ‘×’ and ‘+’ or 

‘–’ sign, multiplication was to be carried out first.  These procedures of 
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evaluation were further reinforced by differentiating the meaning of the ex-

pressions by verbally stating them. For example, 9 – 3 + 4 is four more than 

the difference between nine and three whereas 9 – (3 + 4) is difference be-

tween nine and the sum of three and four, suggesting the difference in the way 

the computation is be carried out. The rules of order of operation reflected and 

determined the meaning of the expressions. Of course, stating the meaning of 

all expressions was not always easy but sensitivity towards differences in 

meaning was created. The division operation was not used and the examples 

were carefully chosen so as not to lead to an answer involving negative num-

ber as these students had no acquaintance with integers. In the subsequent tri-

als however, although students learnt the meaning of expressions, the proce-

dures for evaluating expressions were not connected with their meaning.  

Another major aim in the first trial of the pilot study was to elaborate the 

meaning of the ‘=’ sign as a symbol denoting the structural relation between 

two expressions. Like in many of the studies discussed in Chapter 2, students 

in this study too had an operational understanding of ‘=’, taking it to separate 

the question from the answer of the problem. Tasks were designed so that stu-

dents understood the symbol as a relationship between two expressions on the 

two sides of the ‘=’ sign. The students were required to compare expressions 

like 23 + 4 and 27 – 1 using the signs <, =, > or fill in the blanks so that the 

expressions on both sides of the ‘=’ sign are equal (e.g. 25 + 8 = ___ + 12). 

The belief that when students are pushed to work on tasks without calcula-

tions, they can focus on the structure of expressions, led to formulation of 

tasks where students had to judge whether pairs of expressions, which were 

related like 27 + 32 and 29 + 30, were equal or unequal. While working on 

this task, students were comfortable in anticipating the answers as long as the 

expressions involved only positive terms but this anticipation broke down 

when it involved a negative term like in 56 – 6 and 57 – 9 or 56 + 58 + 1 and 

57 + 59 – 1. They could not anticipate the change in the result because of the 
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simultaneous transformation required on both the numbers in the presence of 

the ‘–’ sign and inability to keep track of the transformations. They tended to 

use the same kind of reasoning as in the case of only ‘+’ sign (27 + 32 and 29 

+ 30), leading to wrong comparison in the presence of ‘–’ sign.  

It was felt that there was a need for better understanding of the syntactic as-

pects of expressions, especially knowledge of brackets could give the students 

tools necessary to reason about such expressions. Hence bracket opening rules 

were introduced by comparing expressions involving brackets with other ex-

pressions (e.g. 12 – (6 + 4) with 12 – 6 – 4 and 12 – 6 + 4) and identifying ex-

pressions whose value did not change. The rules were arrived at by inductive 

generalizations based on such comparisons. Verbal meaning of the expres-

sions was again used as a means to explain the reasonableness of the rules. In 

the above example, sum of 6 and 4 is to be subtracted from 12 and therefore if 

6 has been subtracted from 12 then 4 more needs to be subtracted from it, to 

keep the value same. All bracket opening rules were based on such meaning 

and were named ‘adding a sum part by part’ (13 + (3 + 4)), ‘adding a differ-

ence part by part’ (13 + (5 – 2)), ‘subtracting a sum part by part’ (12 – (6 + 4)) 

and ‘subtracting a difference part by part’ (12 – (6 – 4)).  

Subsequently, a different version of the earlier comparison task on judging 

equality/ inequality of pairs of expressions was introduced: finding the value 

of an expression given the value of a related expression (e.g. If 234 + 487 = 

721, then 235 + 488 = ?) (adapted from van den Heuvel-Panhuizen and 

Gravemeijer, 1993). This task had a well defined goal of finding the value of 

an expression (with which they are more comfortable due to their experience 

in arithmetic) compared to the earlier one which only required one to compare 

two expressions without reference to their answers/ values. Students could 

readily give verbal justification for these questions, but the symbolic justifica-

tion introduced by the teacher was not very easy for them to understand, nor 

would its relevance have been apparent to them. The presence of negative 
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numbers continued to trouble them in these exercises. At this stage the idea of 

terms, as components of expressions, was introduced to them and they quickly 

verified and learnt that rearranging terms does not change the value of the ex-

pression. The students identified terms in expressions and wrote them by us-

ing commas as separators (e.g. in 12 + 4 – 3 the terms are +12, +4, –3). The 

idea was used by them to even generate expressions equal to a given expres-

sion by rearranging the terms. This concept opened the possibility of using it 

in all the other tasks the students had been working prior to this like compar-

ing expressions, finding the value of the expression given the value of a re-

lated expression, which required some rearrangement of terms to justify the 

answer as well as help in avoiding the problem with the negative numbers.  

Lessons learned and implications 

The completion of this preliminary trial indicated the modifications required 

for evolving the teaching-learning sequence and the need for better under-

standing of developing and using the structure sense built in the context of 

arithmetic for purposes of learning algebra. The teacher-researcher’s insis-

tence on using standard procedures and symbolic expressions for communi-

cating the reasons for tasks, like comparing arithmetic expressions without 

computation or finding the value of an expression given the value of a related 

expression, made it difficult for students to appreciate the role of the symbols. 

Thus it failed to tap the students’ intuitive understanding about operations and 

their verbal explanations which could be fruitfully used to build structure 

sense and deepen the meaning of the various symbols. Besides this, it pro-

vided important feedback regarding the concepts and skills which would be 

required to build this sense. It was clear that the concepts of ‘term’ and ‘equal-

ity’ would play an important role in building not only structure sense but also 

combine with it a sense of operations required to make judgments about ex-

pressions (e.g. comparison of expressions, judging equality). Terms and 

equality could be subsequently used in the context of algebra to identify terms 
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in an expression and equivalent algebraic expressions derived by rearranging 

terms. But the utility of ‘terms’ was thought at this stage to be restricted to 

only comparison based tasks and not in computational tasks. Its potential to 

make computations flexible requiring mental/ physical rearrangement of terms 

was not realized. The students were supposed to make the connection between 

the perception of structure learnt in the context of comparison based tasks and 

the computation procedures on their own. At this stage no algebra was taught 

and the role of arithmetic in learning algebra was not very clear, especially in 

view of the skepticism expressed by various researchers about using arithme-

tic for the purposes of algebra (e.g. Lee and Wheeler, 1989; Linchevski and 

Livneh, 1999).  

5.1.2 Pilot study trial-II 

A two group experimental design was formulated in the next trial (PST-II) to 

explore the extent of effect of arithmetic knowledge (procedure and structure) 

on algebra learning. On the basis of the pre-test performance, students from 

the English group were divided into two equivalent groups. One of the groups 

(Group I) was given instruction in both arithmetic and algebra and the other 

(Group II) was given instruction only in algebra with some experience in an 

unrelated topic – geometry. An additional group (Group III) was chosen and 

was given the same instruction as Group I. Overall, nearly the same amount of 

time was spent in each topic (arithmetic and algebra) for each of the groups, 

Group II getting some extra time for simplifying algebraic expressions as they 

had no instruction in arithmetic. The algebra part was taught by the same 

teacher for groups I and II and arithmetic was taught by a different teacher to 

Group I. 

The instruction covered the following topics: (i) meaning of arithmetic and 

algebraic expressions, (ii) evaluation of arithmetic expressions, (iii) simplifi-

cation of algebraic expressions, (iv) comparing expressions with and without 

computation, (v) filling the blank with and without computation to make two 
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expressions equal, (vi) identifying equal expressions from a list of expressions 

and (vii) tasks requiring the use of letter in simple representations.  As in the 

previous trial, students who received instruction in both arithmetic and algebra 

started by forming expressions and verbalizing the meaning of expressions. 

They also wrote expressions for verbal sentences, restricted to two term ex-

pressions. This was immediately followed by elaborating the meaning of the 

‘=’ sign from the ‘do something’ instruction to include a relation of equality 

between two sides of the ‘=’ sign. The tasks used were those as earlier: com-

paring expressions using ‘=’, ‘<’, or ‘>’ signs, or equalize by filling the blank. 

Students learnt to evaluate arithmetic expressions in the traditional manner 

following precedence rules and working with expressions whose answers 

were positive numbers.  

The concept of ‘term’ was introduced next, first, to parse expressions and 

then, to use in the contexts of identifying equal expressions and comparing 

expressions. It was assumed that students would be able to connect proce-

dures, with structure of the expression without any explicit connection in the 

teaching sequence. Students identified terms in expressions like 14 + 5 × 6 

and 13 – 4 + 7 as +14, +5×6 (a simple term and a product term) and +13, –4, 

+7 (all simple terms) respectively. It was verified that rearranging terms does 

not change the value of the expressions and this was used to identify equal 

expressions from a list of expressions and to generate expressions equal to a 

given expression. For example, they identified an expression like 79 + 13 × 65 

+ 91 to be not equal to 13 + 79 × 65 + 91 and generated an expression like 243 

+ 357 – 129 as an expression equal to 243 – 129 + 357 (similar to tasks used 

in Chaiklin and Lesgold, 1984; Linchevski and Livneh, 1999). They further 

had to compare expressions of the type 25 + 18 and 26 + 18 or 35 – 18 and 36 

– 19 using the signs ‘<’, ‘=’, ‘>’ giving reasons for their choice of the sign. 

The students learnt to use the concept of term as a tool to deal with these 

tasks. Students gave verbal reasons for these tasks which were further modi-
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fied and elaborated by the teacher. An extension of this task was to fill the 

blank with a term so that the expressions on both sides of the ‘=’ sign are 

equal (for e.g. 26+36 = 25+35__). This extended their ideas about the ‘=’ sign 

as well as required them to look at relationships between terms and expres-

sions. 

Bracket opening rules were taught by situating them in contexts where the use 

of brackets would be meaningful. The contexts were such that two ways of 

computing will lead to the same correct solution. For example, ‘Team A has 

scored 23 runs and then batsman B1 scores 4 and batsman B2 scores 2 runs. 

How do we write the score of Team A?’ This could be represented as 23 + (4 

+ 2) or 23 + 4 + 2. On computing both the expressions, they were found to be 

equal. The rule induced was: signs are not changed if there is ‘+’ sign to the 

left of the bracket. A similar example for ‘–’ sign to the left of the bracket was 

‘Team A has scored 59 runs. Then one of the umpires fines the team for 

breaking a rule and reduces the score by 4 runs. Later it was also found that 

the score board had been showing 2 runs more than the actual. Now what is 

the score of Team A?’ This could be written as 59 – 4 – 2 as well as 59 – (4 + 

2). Again both these expressions were found to be equal as their values were 

equal. The rule induced from such pairs of expressions was that if there is a ‘–

’ sign to the left of the bracket then the signs inside the bracket are changed. A 

situation for distributive property was also created and the same principle of 

representing and solving it in two ways was used. For example, ‘if Anita buys 

5 notebooks at Rs 4 each and then she buys 3 more at the same price, then 

how much money did she pay?’ This can be written as (5 + 3) × 4 or 5 × 4 + 3 

× 4 which would give the same answer. The students also counted the number 

of dots in arrays in two different ways and represented it. This was called the 

Distributive Property of multiplication over addition or subtraction. The stu-

dents then practiced such tasks of bracket opening. It was hard for students to 

understand that it is only the ‘–’sign to the left and not to the right, which 
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leads to a change in sign of the terms inside the bracket on removing it. But 

distributive property is applicable for ‘×’ sign to the left and right of the 

bracket.  

After the students had some exposure to evaluation of arithmetic expression 

and the basic activities with regard to ‘=’ sign, students studied arithmetic and 

algebra simultaneously. They were introduced to algebra in a traditional man-

ner through a variety of context such as the following:  

• ‘Guess-the-number’ game:  Students guessed the number which will 

replace the box in equations like  + 3 = 13. The box was soon re-

placed by a letter and they had no trouble in associating the letter with 

the number to be found.  

• Representing simple situations of area and perimeter using a letter: 

These were similar to the CSMS (Booth, 1984) test items. The letter 

could take many values in these situations and the meaning of simple 

algebraic expressions as describing a relationship and standing for a 

number could be conveyed through this task.  Students were encour-

aged to verbalize the meaning of such expressions as generated above 

and also to write expressions for verbal sentences. For example, x + 3 

is a number which is ‘three more than x’.  

• Simplification of algebraic expressions: Students used the idea of mul-

tiplication as repeated addition to understand addition and subtraction 

of monomials. They added such monomials by writing the products as 

sum of ‘singletons’. For example, 2 × c + 3 × c = c + c + c + c + c = 5 

× c. The take away model was used for subtraction of monomials, 6 × 

d – 2 × d was understood as 2 d’s taken away from 6 d’s, leaving 4 d’s 

(6 × d – 2 × d = d + d + d + d + d + d = 4 × d). Subsequently, simplifi-

cation of multi-termed algebraic expressions was taught by identifying 

like and unlike terms and then using the rules of monomial addition 



 157 

and subtraction as discussed earlier. They were told the conventions of 

algebra, like +3 and +4×d cannot be combined to get 7×d and verified 

through substitution. As in arithmetic, students here also identified ex-

pressions equivalent to a given algebraic expression. The ‘×’ sign was 

replaced by ‘•’. Students also applied bracket opening rules learnt in 

the context of arithmetic while simplifying expressions. 

• Contexts for algebra: Lastly students were given some context in 

which they could use algebra, namely the think-of-a-number game. 

They learnt to use the letter to represent the number thought by any 

person and write the corresponding algebraic expression. They had to 

simplify the expression to prove the result.  

The control group (Group II) did not learn any arithmetic. They were intro-

duced to algebra in a similar manner to the other groups, that is, through 

Guess-the-number game. Verbalizing the meaning of expressions, writing the 

product as repeated addition, identifying terms and like and unlike terms and 

simplifying expressions were done in the same way as in the other groups. 

The teaching approach was similar to that in the school textbooks and was 

rule based emphasizing manipulation of algebraic expressions without refer-

ence to procedures in arithmetic expressions. The fact that rearranging terms 

does not change the value of the expression (required to simplify algebraic 

expressions) or that 8 × t – (6 × t + 2) = 8 × t – 6 × t – 2, were merely told 

without any explorations regarding the values of the expressions as a result of 

these transformations. A lot of time was spent in revising and practicing these 

rules for bracket opening and simplification of the expressions. Think-of-a-

number game and a session on pattern generalizing was introduced to situate 

algebra in a meaningful context.  
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Lessons learned and implications 

At the end of the second trial, students in groups I and III, who had received 

instruction in arithmetic and algebra, showed substantial improvement in the 

post test in the arithmetic tasks over the pre test as well as performed better 

than Group II (Subramaniam and Banerjee, 2004). In the structure based tasks 

also, the groups I and III performed better than Group II and were able to un-

derstand ideas of equality/ equivalence of expressions better but even these 

groups had limitations in their understanding of structure. In expressions with 

more complicated structure involving brackets, they could not anticipate the 

results of the operations mentally. The two groups (especially, Group I) were 

also able to apply their understanding of the structure of the expression using 

the concept of terms to identify equivalent algebraic expressions where Group 

II was again not as successful. However, Group II performed better than the 

other two groups in simplifying algebraic expressions where a lot of time had 

been spent in practice exercises.  

Even though students in the arithmetic+algebra groups (Groups I and III) ap-

preciated the similarity in the surface structure of arithmetic and algebraic ex-

pressions, it was hard for them to simplify the expressions. The ‘algebra only’ 

group (Group II) made more structural errors like ‘conjoining’ while simplify-

ing expressions and could not understand the meaning of the expressions. As 

the vocabulary being used for the two kinds of tasks, evaluation/ simplifica-

tion (procedural) and identifying equal expressions (structural) were different; 

students, in this trial, on their own could not make the required connections. 

Also, there was a difference in the procedure for manipulating arithmetic and 

algebraic expressions, the first one being based on the rules of order of opera-

tions and the second one based on collecting like terms and adding and sub-

tracting the monomials. Besides the disparity which has been discussed above, 

the difference in the teacher teaching the two units could have also made some 

impact in physically separating the two domains of arithmetic and algebra. 
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It was evident that knowledge of arithmetic could be fruitfully used in the 

context of algebra but the link between arithmetic and algebra had to be much 

stronger than what was embodied in the approach of the 2nd trial. This was 

needed in order to exploit the properties developed in the context of arithmetic 

in algebra. Arithmetic helped develop the structure sense for expressions and 

meaning for the expressions. The concepts of ‘term’ and ‘equality’ were seen 

to be important to bridge the gap between procedures and the structure of the 

expressions. The second change required was in better and explicit connection 

between the procedures of arithmetic and algebra. Also a better understanding 

of negative numbers and operations on them was proving to be necessary. 

Further, the contexts created for learning bracket opening rules were found to 

be quite cumbersome and could not be used to remember the rules. The con-

texts were distracting, with too much information which did not allow the 

structure to become apparent. Nor was it feasible to translate each expression 

with brackets into the contexts created to understand them, so students largely 

relied on rules, over-generalized them and applied them wrongly.  

A negative outcome of the instruction was seen in the students’ inability to see 

simple expressions like x + 2 as both a relation ‘2 more than x’ and an instruc-

tion for computation ‘add 2 to x’. They could see it only as a relation due to 

the emphasis on this type of reasoning in the trial. This needed to be handled 

in future trials and could have been the consequence of separation of the pro-

cedural and structural skills, with emphasis on the latter. Over five Thursdays 

during the months February and March 2004, the same students from one of 

the English medium schools (E1) were called and an activity with the number 

line was tried. It was called the letter-number line (Carraher et al., 2001) and 

was constructed by generalizing the relations between the consecutive num-

bers on the number line and denoted the distance of that point from ‘x’. The 

letter number line was thought to embody both: a process and a relation. The 

act of moving on the number line indicated the process of adding or subtract-
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ing a number to/ from ‘x’ or any other position on it (e.g. moving five steps to 

the right of x, one reached the position x+5 and moving three steps to the left 

of x-1, one reached the position x-1-3=x-4). Each point on it also signified a 

relation: x+1 is one more than x and x-2 is two less than x. Constructing the 

letter-number line and finding and representing the relations between the 

points on the letter-number line formed the crux of the activity. This activity 

was incorporated as a key element of the instructional sequence in the next 

trial. 

5.2 Main study trials 

5.2.1 Main study trial-I 

The first trial of the main study (MST-I) began with a fresh group of students 

and with the feedback from the earlier trials. Groups A1 and C1 were given 

instruction in both arithmetic and algebra. For these two groups, the concepts 

of ‘term’ and ‘equality’ were made the central theme of the teaching-learning 

module. The focus in group B1 was largely on arithmetic but used the same 

core concepts as the other two groups. An effort was being made in Group B1 

to develop an approach to teach operations on negative numbers, which had 

been identified to be critical for learning algebra. Again two separate teachers 

taught the units of arithmetic and algebra to group A1. One of the main aims 

of the trial was to make the teaching learning sequence more coherent with the 

minimum number of rules and procedures to manipulate expressions in both 

arithmetic and algebra.  

The first exercise of learning to write expressions for a number, expressing its 

meaning verbally and vice versa was carried out as was the practice in the ear-

lier trials. The number line (with both positive and negative numbers) was in-

troduced next to reinforce these multiple meanings of the expressions: as an 

instruction to compute a number and as a relation between two numbers to 

denote a third number. For example, the depiction 11 – 3 = 8 on the number 
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line meant ‘eight is three less than eleven’, or ‘eleven is three more than 

eight’, ‘three is eight less than eleven’, ‘three steps to the left of eleven is 

eight’ and ‘three steps to the right of eight is eleven’. Students compared the 

numbers on the number line, found the magnitude of the difference between 

two points and made the corresponding arithmetic expression as in the above 

example. Although they were introduced to negative numbers in this program, 

they had no knowledge of operating with these numbers. It was therefore nec-

essary to carefully choose the expressions so that at each step one arrived at a 

positive answer.  

In contrast to the earlier trials, the concept of term was introduced before stu-

dents learnt to evaluate expressions. They learnt two kinds of terms: simple 

terms and product terms. The terms were put in boxes to increase their visual 

salience for the students.  

For example, the terms of 19 – 7 + 4 were written as                             .          

Although the rules of evaluating expressions included a step of identifying 

terms, they were largely precedence based. For an expression containing only 

simple terms, it was to be solved from the left to the right direction.  

For example, 24 – 6 + 8 =                           = 18 + 8 = 26.  

For expressions containing a product term, the product term was first ‘simpli-

fied’ to yield a simple term and then the expression with only simple terms 

was to be simplified as above.  

For example, 15 + 3 × 4 =                      = 15 + 12 = 27.  

If the expression contained brackets, then terms were to be identified after the 

expression was free of brackets by first solving the bracketed sub-expression.  

+19 –7 +4 

+15 +3×4

+24 –6 +8
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Students were exposed to the same tasks as discussed in the previous trial en-

hancing their understanding of equality and ‘=’ sign. Some of these tasks were 

based on computation (comparing expressions using <, =, > and filling the 

blank to equalize two expressions) and some required them to attend to the 

structure of the expression and had to be completed without computation 

(comparing simple two termed expressions, identifying equal expressions 

from a list and generating equal expressions). As before, the students used the 

concept of terms to identify equal expressions in a list and generated equal 

expressions by rearranging terms. This was the only transformation used to 

generate equal expressions in this trial. The comparison of expressions like 

34-17 and 35-16 or 28+47 and 29+46 was carried out using the concept of 

terms by the students, the judgments often supported by verbal reasoning. 

This was also the first time that the teacher made efforts to support students’ 

verbal reasoning using symbols by denoting the change with the help of inte-

gers. For example, while comparing the expressions 34-17 and 35-16, one can 

note that both the terms in the second expression has increased and the change 

can be denoted as +1+1=+2. Other strategies like using the ‘take away’ model 

was also used in such situations. This was simple enough for the students to 

understand and use in their own reasoning and began the process of creating 

new symbols. The negative sign continued to trouble the students due to their 

poor anticipation with respect to the minus operation and very little under-

standing of negative numbers as well.  

Students were taught bracket opening rules, which had been identified through 

the earlier trials as important for both procedural and structural understanding 

of expressions. Constant effort was being made to improve the teaching of 

brackets and get across the multiple meaning of brackets to the students. 

Compared to the earlier trials where these rules were situated in a context, 

students now learnt them in the context of equal expressions by comparing 

and matching the values of some expressions without bracket with a given 
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bracketed expression. The rules were induced by repeatedly computing the 

value and checking when the values of two expressions are the same.  For ex-

ample, they compared the value of 21 – (4 + 5) with 21 – 4 + 5 and 21 – 4 – 5. 

After a series of such comparisons, it was concluded that for a negative sign to 

the left of the bracket, the signs of the terms inside the bracket changes and for 

a positive sign to the left of the bracket, the signs of the terms inside the 

bracket does not change. Distributive property of multiplication over addition 

and subtraction was derived in the context of area of rectangles. Students rep-

resented the area of the rectangular figures (see Figure 5.2) in two ways and 

since both the ways gave the same result and represented the same area, the 

expressions were equal. The model was not very effective because of stu-

dents’ poor understanding of the concept of area. They knew it only as a mul-

tiplication of two numbers without any understanding of the rationale behind 

it and the quantities which are to be multiplied.  

 

 

Figure 5.2: Area model for distributive property 

To connect the procedures of evaluating/ simplifying arithmetic and algebraic 

expressions, students were asked to evaluate expressions like 83 – 5 + 28 + 5, 

76 + 38 + 24 – 8, 18 × 6 + 12 × 8 + 18 × 2, where one could find easier ways 

of computing them by focusing on the relationship between the terms, than by 

using precedence operations. Non-sequential computation is an important 

stepping stone for simplification of algebraic expressions. This task required 

the use of procedures and rules and structure sense for expressions. The effec-

tiveness of this task was restricted as the students did not possess the flexibil-

ity to work on this task. The students had to mentally/ physically rearrange the 

terms of the expressions in such a way that they could solve parts of the ex-

pression easily. This was counter intuitive, as they had learnt to evaluate ex-

4 cm 

3 cm
Area = 4 × 3 + 2 × 3 

Area = (4 + 2) × 3 

(4 + 2) × 3 = 4 × 3 + 2 × 3 
2 cm
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pressions sequentially, where the role of terms was restricted to identifying the 

precedence rule to be applied. Students’ lack of knowledge of integer opera-

tions was another factor restricting their performance in this task, reinforcing 

the experience of the earlier trials.  

Students were also taught algebra simultaneously with the arithmetic instruc-

tion, trying to build on their recently acquired knowledge of procedures and 

structure of expressions. Algebra or the use of letters was once again intro-

duced through the Guess-the-number game and open ended expressions like x 

+ y =12. The letter-number line (as discussed in section 5.1.2, PST-II, pp. 159-

160) was soon constructed to reinforce the notion that the letter stands for a 

number and that it can take any value. Five 45-minute sessions were devoted 

to the discussion of the letter-number line and other tasks on it. Students at 

first responded by treating the letters as alphabets (already identified in the 

literature), by denoting the number to the right of ‘x’ as ‘y’. The fact that the 

letter stood for a number and could be used for representing relationships be-

tween numbers was not apparent to them. This was seen even though they had 

been briefly exposed to the idea of letter standing for a number through work-

ing on simple guess-the-number game (e.g. x+6=19, x=?) and completing 

open sentences like if x+y=16, then x=?, y=? as mentioned above. After some 

discussion, it was accepted that x, x+1 (one more than x), x+2 (two more than 

x and one more than x+1), x-1 (one less than x), x-2 (two less than x and one 

less than x-1) could represent the numbers on the letter-number line. These 

expressions were the simplest examples of unclosed expressions and could be 

easily accepted by students.  

Students carried out similar activities on the letter-number line as they did on 

the number line. They compared the expressions on the letter-number line and 

calculated the magnitude of the difference by counting the number of jumps 

between the two points. This was extended leading to symbolizations like m + 

4___ = m + 1 or m – 2 ___= m + 1, or writing the complete representation for 
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single step journeys as shown in Figure 5.3 (x-2+5=x+3). The students were 

encouraged to verbalize the meaning of these sentences as well, for example 

the first sentence means ‘m+4 is 3 more than m+1’. This again reinforced the 

duality of expressions: something which could be operated upon and con-

veyed a relation.  

 

Figure 5.3: The letter-number line and simple journey 

Simplification of algebraic expressions was carried out as earlier; writing mo-

nomials as sum of singletons (3 × a = a + a + a) and by collecting like terms 

in multi-termed expressions, followed by either extracting the common factor 

or using the rules of adding/ subtracting monomials. In another effort to con-

nect the manipulation procedures in arithmetic and algebra, which students 

failed to see spontaneously, the task of evaluating algebraic expressions for a 

given value of the letter was introduced. In order to reduce the conjoining er-

ror while transforming algebraic expressions, it was emphasized that since a 

product term cannot be added to a simple term before converting it into a sim-

ple term; therefore 3 + 4 × d cannot be written as 7 × d. However, students did 

not seem to have difficulty in appreciating the similarity in surface structure of 

arithmetic and algebraic expressions and identified and generated equivalent 

expressions to algebraic expressions using the idea of rearranging terms with 

ease. These three tasks of evaluating algebraic expressions for a value of the 

letter, simplifying algebraic expressions and identifying equivalent expres-

sions were considered to be complementary and were thought to be sufficient 

to understand the connection between arithmetic and algebra.  

Students’ knowledge of manipulating algebraic expressions was put to test 

with the activity of finding the distance/ difference between two points on the 

letter-number line by representing it as an algebraic expression and manipulat-

ing it to find the difference. Two 45-minute sessions were devoted to the 

x x+1 x+2 x+3 x+4 x+5 x+6 x–1 x–2 x–3 x–4 
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think-of-a-number game, which allowed the students to use algebra as a tool 

for justifying/ proving. Both these tasks not only required them to represent 

situations using a letter but also manipulate the expressions to arrive at a con-

clusion. Another task which required only representation was of finding the 

area and perimeter of rectangles with one of the dimensions being a letter. The 

students found creating symbolic representations quite difficult in all the 

tasks, and were more successful in verbal statements describing the situations. 

They lacked not only a sense of the letter and its purpose but also the meaning 

of the operations on the letter. All of this was introduced to them too soon, 

without adequate preparation 

Group B1 received instruction mostly in arithmetic – integer operations and 

evaluation of simple arithmetic expressions. The idea was to develop an ap-

proach to introducing operations on negative numbers, which was being ex-

cluded in each trial till now and the need for this understanding was being felt 

strongly. Integer operations were introduced in this group using a context 

where negative numbers were represented as outstanding electricity bills and 

positive numbers were considered to be the income that a farmer earned or 

received. A lot of time was spent in developing this context and subsequently 

using this context to operate on integers. The model was found to be quite dif-

ficult for handling integer operations and was dropped from later trials. This 

group also worked on the number line and the letter-number line, learnt 

evaluation/ simplification of arithmetic and algebraic expressions and bracket 

opening rules in a similar manner as was done in the other two groups but 

spent less time on this part of the instructional sequence.  

Lessons learned and implications 

At the end of the first trial of the main study, although the instructional se-

quence had become somewhat better compared to the pilot trials, it had still 

many loose ends and had scope for further improvement and coherence. It was 

believed that the visual salience of terms and using it in both procedural and 
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structural tasks would help students in making the required connections be-

tween arithmetic and algebra for the students. The arithmetic and the algebra 

parts of the teaching sequence used different vocabularies for evaluation and 

simplification which tended to confuse students and added to their uncertainty 

about how to approach the task. The concepts of term and equality were used 

in both the domains but to different extents. In the arithmetic part, these con-

cepts had been used in all contexts but the use itself was more rule/ procedure 

bound rather than giving any real sense of structure which could be used 

flexibly in any situation. Therefore, the transfer of these to the algebra context 

was limited. For example, students did not spontaneously see the similarity in 

the structure of the expressions and why the same rules of transformation 

should be used while simplifying the expressions 3 + 4 × d and 3 + 4 × 2. 

There were differences also in the ways they solved/ simplified the expres-

sions. In the case of 3 × 5 + 6 × 5 students first solved the product terms and 

then added the simple terms, but in the case of 3 × b + 6 × b, they decomposed 

them as singletons and found the number of b’s in the sum.  

Students also did not see the notational similarity between 3+3 and x+x spon-

taneously, on which much of the algebraic manipulation was based. Notational 

difficulties (for example, is t+t+t+t+t equal to 5×5 or 5×t or 5+t?) continued to 

trouble students and these indicated serious misunderstandings about the letter. 

Students’ responses to a few items of adding and subtracting monomials like 

5×b-b and 8×c+c point to the source of difficulty for the students. Their re-

sponses consisted of 5, 0 and 4×b for the first one and 7×c, 8×c and 9×c for 

the latter one. They evidently failed to make sense of the ‘singletons’ ‘b’, ‘c’. 

The teacher’s emphasis on the right answers leading to rules of procedures and 

very few discussions focusing on the wrong answers hampered understanding 

and the progress of students. Students repeatedly committed the same errors. 

The similarity seemed to be forced by the teacher. The simplification of alge-
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braic expressions still remained a mechanical procedure governed by seem-

ingly arbitrary rules.  

The tasks of evaluating algebraic expressions for given values of the letter and 

evaluating arithmetic expressions by easy ways were devised to bridge this 

gap, which also did not prove to be successful. Lack of proper understanding 

of the letter and rigidity in rules of evaluating arithmetic expressions together 

with rule bound understanding of structure of expressions were adjudged to be 

the reasons behind this. This is seen from the analysis of the students’ re-

sponses to the various tasks and the classroom responses from the video re-

cordings (more discussion in Chapters 6 and 7). The students failed to see the 

continuity and commonality between the tasks which had to be explicated by 

the teacher time and again. Procedural and structural understanding did not 

complement each other and remained two different aspects. Definitely, only 

the presence of some structural notions in the teaching-learning sequence was 

not sufficient for students to understand the connection between arithmetic 

and algebra and treat algebra as generalized arithmetic.  

The students also could not use their knowledge of syntactic transformations 

on algebraic expressions in the context activities. They could not spontane-

ously identify the terms of the expressions generated in context and simplify 

the expressions using valid transformation rules and neither were they encour-

aged to do so. There was a big gap between syntactic transformations and 

making sense of them in contexts which required a much more sophisticated 

understanding of use of symbols as tools. It was unclear at this moment what 

could help bridge this gap. It was assumed that their knowledge of simplifica-

tion processes could be used in the contexts without any support/ help. The 

answer to this problem could not be settled at this point as students’ under-

standing of transformations on expressions and their sense of structure was 

also unstable. In the next trial, another effort toward removing some of these 
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problems and designing an effective and coherent teaching-learning sequence 

was made. 

5.2.2 Main study trial-II 

In the second trial of the main study (MST-II), those students who had at-

tended the first trial of the main study (MST-I) were invited and two groups 

were formed (A2 - English and B2 - Marathi) as explained in the previous 

chapter (see section 4.3.1, pp. 138-139). Two teachers took care of the differ-

ent batches and taught both arithmetic and algebra. A fresh batch of students 

formed Group C2, who were also taught arithmetic and algebra by a separate 

teacher but followed a slightly different sequence with the aim of exploring 

different approaches. Since the students in the groups A2 and B2 had previous 

exposure to the course, the trial began with a two day revision of the main 

ideas they had learnt in the first trial. A delayed post test, which was con-

ducted four months after the end of the first trial MST-I (not being reported in 

the study) showed that there was almost no retention of the concepts, proce-

dures or rules they had learnt in the first trial. The revision session was con-

ducted just to ascertain the extent of retention/ forgetting. Most of the con-

cepts, rules and procedures were not taught again but only posed as tasks in 

the classroom to which the students as a group responded. They had not com-

pletely forgotten the basic concepts that they learnt in the summer trial (MST-

I), but they never got the opportunity to use them in the school. They did not 

remember any of the algebraic manipulation they had learnt as they had failed 

to develop an understanding of the rules of transformation in algebra in MST-

I. A pre test was subsequently conducted after the two days of revision.  

Some minor but important changes were made during the revision with re-

spect to the procedures of evaluating expressions and bracket opening rules. 

The vocabulary of adding and subtracting terms in an expression was replaced 

by the vocabulary of combining terms. Since they were in the middle of grade 

6, they had been introduced to integer operations in the school. Although they 
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began combining terms with the use of rules of integer operations learnt in the 

school, this did not give them the required flexibility to work on the tasks. 

Soon they were introduced to the ‘annihilation’ model of adding integers 

through the use of positive and negative cards. Thus integer addition got sub-

sumed in the ‘terms approach’. The fact that two equal and opposite terms 

(terms with opposite signs) compensate each other was used as the guiding 

principle for combining terms. The key observation here is that positive terms 

increase the value of the arithmetic expression and negative terms decrease 

the value. The same number of negative and positive cards cancelled each 

other, more number of positive cards in the collection left behind positive 

cards after cancellation, more number of negative cards left behind negative 

cards after the cancellation. For example, to compute 12-5, it was thought of 

as consisting of two terms +12 and -5. When these terms are combined, five 

pairs of positive and negative cards get cancelled and seven positive cards are 

left behind resulting in the answer +7. Similarly, in the case of -12+5, five 

pairs would get cancelled as before, but seven negative cards would be left 

behind resulting in the answer -7. This change brought about many other 

changes due to the possibilities it gave rise to in the classroom. Now the stu-

dents were free from the rigid left to right evaluation procedures and could 

combine the terms flexibly, the only constraint being the structural rules al-

ready described for identifying and combining terms.  

The rules for evaluating arithmetic expressions were reformulated using this 

more structural vocabulary of combining terms. Simple terms could be com-

bined directly and a product term could be simplified into a simple term which 

could then be combined with other simple terms. Further, two product terms 

could be combined if they have a common factor using the distributive prop-

erty. Implicitly, the idea of combining terms also meant computing in any or-

der, not adhering to a particular direction, but it took some more time for the 

students to reach this stage. This was facilitated by their newly acquired 
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knowledge of integer operations, which was nothing but combining two sim-

ple terms. The purpose of writing the terms was not restricted to deciding the 

order of operations but to work with those units themselves. This modification 

was inspired by the difficulties students faced while working on the task of 

evaluating using easy ways in the earlier phase. It brought out the possibility 

of integrating the evaluation of simple expressions and more complex arith-

metic expressions using easy ways by freeing the students from following 

precedence rules or any specific sequence of computation.  

Thus students could now evaluate expressions like 28 – 12 + 32 + 12 by men-

tally cancelling -12 and +12, without the need to move in a fixed direction. 

They could also be initiated to manipulate expressions in a goal directed man-

ner, thereby building anticipatory skills, an important aspect of algebra learn-

ing. Students were required to work with more complex expressions, for ex-

ample, to show an expression like 19 × n – 8 – 5 × n + 1 to be equal to 7 × (2 

× n – 1). The effort in this trial was to integrate the two domains of arithmetic 

and algebra and highlight the similarity in procedures in the two domains, 

with the structure of the expression being the only deciding factor in the 

choice of the procedure.  

 

 

 

 

 

Figure 5.4: Students’ solutions to arithmetic expressions during MST-I 

The difference in their solutions to these types of expressions after MST-I and 

MST-II can be seen in Figures 5.4 and 5.5. It is not difficult to notice the 

flexibility in students’ solution (students’ responses and errors in these tasks 

will be discussed in the next chapter). The rule for combining the product 

a

c

b
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terms could also be used for combining product terms with variable factor in 

the case of algebraic expressions, which is what most students preferred and 

chose to do later, when the task was introduced, than to break the product 

terms into sum of singletons and rewriting the result as a product, as was done 

in the earlier trials.  

 
 
 
 

 

 

 

 

Figure 5.5: Students’ solutions to arithmetic expressions during MST-II 

The other change made during these two days of revision was with regard to 

the bracket opening rules. The concept of ‘bracket term’ was introduced at 

this stage to make explicit the role and the significance of the bracket and to 

reduce errors in evaluating expressions with brackets. For example, in the ex-

pression 12 – (5 + 2), +12 and –(5+2) are the terms, the latter one being 

named the ‘bracket term’ which were further classified as positive or negative 

bracket term. In this trial, the emphasis was on equality between the two ex-

pressions, one with bracket and the other without bracket. The students were 

told to focus on the relation between the terms inside the bracket and the terms 

after the bracket has been removed. They subsequently framed the rules for 

opening bracket when a positive or negative a sign was to the left of the 

bracket, that is, for a positive or a negative bracket term. It was hoped that 

highlighting the bracketed term would take care of ignoring the bracket as 

well as over generalization of the rules which the students were often seen to 

make earlier - not only changing the sign for a negative bracketed term but 

also a positive bracketed term, and associating the ‘+’ and the ‘–’ sign to the 

right of the bracket. Similarly, rules for distributive property of multiplication 

a

b 

d

c

e
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over addition and subtraction for expressions of the form 8 × (9 – 4) were 

made. The students spontaneously saw expressions like the one above as one 

single term, a product term with a bracketed factor, and the term could be 

positive or negative. Equality of expressions, like 8 × 9 –  4 or 8 × 9 – 8 × 4, 

were judged against the expression 8 × (9 – 4) and the rule formulated. This 

was accompanied by a verbal explanation for the rule: ‘eight times the differ-

ence between 9 and 4 is same as the difference between eight times nine and 

eight times four’. This is because eight times nine is greater than eight times 

the difference between nine and four, and to compensate for that effect one 

needs to subtract eight times four and not just four.  

Some more ideas for introducing bracket opening rules were tried with a sepa-

rate group of students (Group C2). These were based on students’ intuitions 

and pattern perceiving abilities. From the information that 8 – 4 + 3 = 7, the 

students inferred that –8 + 4 – 3 = –7 or an expression which could stand for –

7 would be –8 + 4 – 3. These expressions were understood as ‘inverses’ of 

each other. The negative sign outside a bracket was interpreted to mean ‘take 

the inverse value of the expression in the bracket’ or equivalently ‘take the 

inverse expression’. So –(8 – 4 + 3) = –8 + 4 – 3. Taking the inverse of the 

expression meant changing the sign of each of the terms inside the bracket. A 

plus sign before the bracket meant ‘take the value of the expression in the 

brackets’ so that no part of the expression needed to be changed. Similarly, 

the students referring to the expression 8 – 4 + 3 (=7) inferred that 16 – 8 + 6 

= 14 or an expression which would stand for 14 is 16 – 8 + 6. This actually 

meant doubling the expression 8 – 4 + 3, that is, 2 × (8 – 4 + 3) = 16 – 8 + 6, 

where each of the terms have been doubled.  

One of the important activities added in this trial was to generate equal ex-

pressions for a given expression, the expressions involving only simple terms 

or simple and product terms (e.g. 23-35+49, 16-12×7+34), thereby exploring 

the possible transformations which would keep the expression equal. In the 
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process, it was expected that they would learn the constraints and the possi-

bilities on transformations. The idea was also to separate the meaning of the 

expression from the denotation, which is not necessary in the case of arithme-

tic but is a difficult idea to understand in the context of algebra, where one 

needs to interpret expressions flexibly (Arzarello et al., 2001). Disparate look-

ing expressions could stand for the same value and similar looking expres-

sions could have different values. In this task, as the surface structure of the 

expression was changed repeatedly, the value remained invariant. Students 

used various transformations, like re-ordering the terms, putting brackets, 

splitting a term into sum, difference and product, adding and subtracting the 

same number, increasing and decreasing two or more terms in such a way that 

they compensate each other. This was a good ground for revisiting and dis-

cussing the various rules of evaluating expressions and bracket opening, the 

need for brackets, as well as anticipating results without necessarily calculat-

ing it. They also identified whether expressions in a list were equal to a given 

expression where the transformations were not restricted to reordering terms 

but many other transformations, as were seen in the classroom. The intention 

was to push the students to look at expressions in various ways, other than 

those which they could think of, and attend to the transformations which keep 

the value invariant. The same task was carried out for algebraic expressions as 

well once they had some familiarity with manipulating algebraic expressions 

which is discussed below. This task too depended on students’ competence 

and flexibility in performing integer operations (esp. addition) and mentally 

carrying out various operations on the terms (e.g. combining/ splitting) and 

their ability to handle brackets.  

Continuing with the structure based tasks, as in the previous trials, students (i) 

compared expressions without calculations using the signs <, =, > and (ii) 

found the value of expressions given the value of a related expression. The 

small efforts which were made in the previous trial to introduce symbolism in 
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students’ justifications to these questions were further systematized. Students 

were gradually directed to use only symbols in order to substantiate their re-

sponses. In the process, the possibility of capitalizing on their intuitions and 

converting their verbal explanations into symbolic representations was recog-

nized, which has larger implications for reasoning and arguing in mathematics 

classroom. 

Simultaneously, students worked on the letter-number line (4 sessions of 45 

minutes each). Attempts were made to consolidate students’ understanding of 

the letter-number line which they had failed to grasp in the earlier trial. Their 

correct reproduction of the letter-number line was more a result of memoriza-

tion than understanding, which could be seen in their inability to correctly find 

out numbers to the left or right of a given number (like whether the number to 

the left of 53 is -52 or 52). The relation between them was strengthened 

through a repeated replacement of the letter in the letter-number line by a 

number and completing the ‘portion’ of the number line (given the number 27 

on the number line, fill three numbers to the left and right of it). The fragility 

in their understanding of the relations between numbers on the number line 

was revealed through this task but by the end of the trial they had successfully 

learnt the order relations in integers as well as the meaning of the letter-

number line.  

 

 

Figure 5.6: Journey on the letter-number line 

Two activities were carried out on the letter-number line: (i) the journey on 

the letter-number line (Figure 5.6) and (ii) calculating the distance between 

two points on the letter-number line. The ‘journey’ task was an extension of a 

similar task in the last trial where students completed sentences like x-2___ = 

x+3. The multi-step journey task required the students to represent a depicted 

x x+1 x+2 x+3 x+4 x+5 x+6 x–1 x–2 x–3 x–4 
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journey using an algebraic expression, which was a simple sequential repre-

sentation. Further, they had to simplify the expression to verify if the end 

point of the journey corresponded to the one shown in the diagram. For exam-

ple, if the expression representing the journey was x – 2 + 5 – 4 +2, then they 

would verify by simplification that the end point for this journey would be x + 

1. Students’ responses to these tasks will be taken up for discussion in Chapter 

8. 

 

 

 

Figure 5.7: Calendar task 

With the realization that a simple representation task (e.g. representing area of 

a rectangle with a dimension unknown) is not sufficient to necessitate the use 

of algebra, another activity was introduced where algebra could be used as a 

tool. This was the calendar patterns task (Bell, 1996) (3 sessions of 45 minutes 

each) where students had to represent the relation between the numbers in the 

rows and columns, find patterns in the arrangement of numbers in a calendar 

(e.g. in Figure 5.7, A+H=C+F=2x), represent them and justify that the pattern 

would hold for all similar arrangements of numbers. This was a very challeng-

ing task and quite difficult for students to succeed. Discussion of students’ 

work on this task will also be taken in Chapter 8. 

Lessons learned and implications  

The arithmetic-algebra module finally seemed to have evolved to a level 

where the approach adopted (‘Radical terms’ approach) allowed the students 

to attach meaning to expressions containing numbers as well as letters. It also 

gave them the required flexibility and opportunity to use the concepts learnt 

during the trials in various situations and tasks thus making the unit coherent. 

10 17
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Many of the tasks, like evaluation using easy ways, generating equal expres-

sions, required both procedure and structure sense and therefore these two as-

pects got complemented, rather than one following the other. By the end of 

this trial, there was continuity and coherence in the various tasks between 

symbolic manipulations in arithmetic and algebra as well as with regard to 

procedural and structural tasks. The approach also made it possible to turn the 

familiar operations like addition, subtraction into objects (positive term and 

negative term) which could themselves be manipulated (combined in any or-

der). It was possible for them to suspend the operations at each step and look 

for relations between the terms and then decide to combine them. The con-

cepts of ‘term’ and ‘equality’ gave students not only visual support but also a 

vocabulary for communicating their reasoning about expressions.  

It was realized that integer operations which are indispensable for algebra can 

get absorbed into the terms approach. Some ways of relating the concepts and 

the rules were also found in the ideas of ‘inverse’ and ‘multiple’. These ideas 

were tried with only a small group of students and still needs more systematic 

exploration for its effect on the evaluation/ simplification tasks. Each group 

was taught by one teacher, which would have made some difference in stu-

dents’ understanding. At least there was no physical separation of the domains 

– arithmetic and algebra, for students to internalize. What this module still 

lacked was continuity between symbolic algebra and using these manipulation 

skills in the situations/ contexts created for using algebra (reasoning with ex-

pressions). The students failed to spontaneously use in the contexts of repre-

senting and proving/ justifying, the manipulation skill that they had already 

acquired. The time spent on these activities was also minimal. There are vari-

ous issues other than manipulating expressions when tasks require algebra as a 

tool for proving, justifying and generalizing. The next trial focused on these 

aspects of the teaching sequence.  
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5.2.3 Main study trial-III 

In the third and final trial of the study (MST-III), only those students who had 

attended the earlier two trials were invited. As in the last trial, they formed the 

two groups, A3 (English) and B3 (Marathi) with a different teacher for each 

group. These students had by now completed grade six in the school. The fo-

cus of this trial was on verbalization and articulation of various procedures 

and rules of evaluating/ simplifying expressions, rules of opening brackets and 

use of the concepts and rules learnt till now in situations. Students were en-

couraged to point out the major mistakes which students might make while 

evaluating simple and the more complex arithmetic expressions or explain dif-

ferent ways of evaluating expressions, thus developing their meta-cognitive 

abilities. Quite a lot of time was spent in discussing with students the evalua-

tion of arithmetic expressions involving brackets, which often required a 

greater analysis of the terms and coordinated use of more than one rule for 

computing the value. Efforts were made to build among the students flexibil-

ity in understanding brackets: as precedence operation and substituting the 

bracketed part by an equal expression, which could be used while evaluating 

the expressions.  

The idea behind continuing the structure oriented tasks was the same. The 

emphasis in this trial was on verbalizing the general principles which would 

keep the value of the expression invariant. Students’ ability to reverse opera-

tions mentally so as to see which transformations lead to the same value and 

which change the value could be observed on such occasions (students’ re-

sponses will be discussed in Chapter 7). The tasks based on ‘=’ sign were 

changed from the earlier trial and elaborated to use the structure of expres-

sions while justifying the response. Examples of these tasks are:  37 + 52 = 39 

+ 51 ____, and 327 + 239 = 329 ____ (see Stephens, 2004a). Students were 

helped by the teachers to write full symbolic sentences as reasons for filling 

the blank by a term, gradually transforming students’ verbal explanations into 
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expressions which looked like the ones below (i). The purpose here was to 

gradually shift the students to complete symbolic representation from the 

shortened ones they were familiar with till now. This was not simple for them 

to write on their own and they made errors in the process, but they seemed to 

make sense of these expressions. For example, in 37 + 52 = 39 + 51 ____,  

39 + 51 = (37 + 2) + (52 – 1) = (37 + 52) + (2 – 1) = (37 + 52) + (1) ……(i) 

Students could read the relations in these kinds of sentences, like ‘39 + 51 is 1 

more than 37 + 52’ and therefore the blank should be filled by –1 or in case of 

37 + 52 ___ = 39 + 51, the blank would be filled by +1 as ‘37 + 52 is 1 less 

than 39 + 51’. This was another occasion where the expressions were being 

treated as an entity, not simply as computational procedures. Although this 

elaborate reasoning with formal arithmetic expressions was accessible to the 

students, they often used a shortened version of the symbolic reasoning keep-

ing track of the transformations on each of the terms (Figure 5.8).  

 

 

Figure 5.8: A student’s solution to the problem 

The aim in this module was not just to make the connection between arithme-

tic transformations and syntactic algebra but also for them to appreciate the 

power of the symbols for purposes of reasoning. Although the above task 

deals with invariance of values and can be considered to be part of reasoning 

about expressions, this task also systematically attempted to use transforma-

tions on arithmetic expressions for reasoning to arrive at the conclusion, that 

is, reasoning with expressions. The arithmetic sentence as in (i) above needs to 

be flexibly interpreted as a relation between the two expressions so that one 

distinctly sees the term which when used to fill the blank would make the ex-

pressions equal. This is an important skill, especially in algebra, to shift one’s 

37 + 52 = 39 + 51 ___  
                 +2 – 1 
      = +1 
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attention to see different meanings/ sense in an expression as per the require-

ment of the task or the demands of conclusion to be drawn. 

This time, the ‘representation only’ tasks were not used at all and instead two 

activities were used which enabled one to reason with expressions, using the 

rules and procedures learnt till now in the context of syntactic transformations. 

The students worked on two tasks of ‘think-of-a-number’ game (2 sessions of 

45 minutes each) and pattern generalization from geometric shapes (4 sessions 

of 45 minutes each). The ‘think-of-a-number game’ required the students to 

justify the pattern in the answer with respect to the starting number arrived by 

following a sequence of instructions. For example, ‘Think of a number. Sub-

tract 2 from the result. Multiply it by 2. Add 8. Subtract the original number. 

Subtract 1. Subtract the original number. Add 2. What do you get? Explain 

why everyone gets the same number’. This was repeated in order to exploit 

the rich possibilities for explanation/ justification which it offers and had not 

been capitalized upon during MST-I. The teacher guided the students to form 

an algebraic expression as a representation for the situation, again converting 

their verbal arguments into symbols. Subsequently, they were encouraged to 

make similar problems for their peers in pairs, which strengthened their un-

derstanding of inverse operations as well as the use of verbal explanations to 

keep track of the transformations on the starting number and the need to 

switch to symbolic representations with increasing complexity of the prob-

lems.   

The pattern generalization task was also carried out in pairs and required them 

to first continue the pattern for a couple of positions and then predict the value 

for distant numerical positions before making the generalized rule. Two ex-

tensions of the activity were carried out: to show the equivalence of the differ-

ent rules for the same pattern, and to predict the rules for positions n+1, n+2 

etc which laid the ground for substitution of ‘n’ by ‘n+1’. This was also an-
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other context where verbalizations of generalizations could lead to the forma-

tion of symbolic rules and further reason with them.  

Both the tasks used in this trial were dependent on students’ understanding of 

the letter, the expression and the use of algebra (esp. for proving, justifying 

and generalizing) besides knowing syntactic manipulation. These tasks gave 

rise to opportunities to discuss the need for brackets, the use of bracket open-

ing rules, the correctness of the rules and symbolic conventions and the mean-

ing of the letter. Allowing students to verbally explain their reasoning and us-

ing them to generate symbolic representations allowed students to make sense 

of the activity as well as better participation of the students in the tasks in the 

classroom compared to the previous trials. Students’ responses and perform-

ance in these tasks will be discussed in Chapter 8. 

Lessons learned and implications 

The third trial brought an end to the series of trials. The concepts of ‘term’ and 

‘=’ were found to be useful in giving meaning to the operations and strength-

ening the structure sense even in the more complex situations, as were used in 

this trial. The students also comfortably used these ideas whenever required. 

Although the students confidently explained syntactic transformations in tasks 

of reasoning about expressions, they did not display the same ability in tasks 

of reasoning with expressions. The contexts chosen for conveying the mean-

ing and purpose of algebra were quite challenging and required further delib-

erations about ideas of proof, generalization to understand the requirements of 

the task. Syntactic transformation of the symbolic representations was only 

one aspect of the task, which seemed to fall in place once the requirement of 

the task was clear to the students. There was indeed a dilemma here: if the 

situation considered was simple enough for students to comprehend, then they 

preferred to give verbal explanations and did not find the use of algebra nec-

essary; and if the situation was complex, then it did not allow the students to 
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proceed. This is an important constraint on the design of the teaching se-

quence. 

5.2.3 Conclusion  

After these five trials, a sufficient number of activities and tasks had been 

tried out which could make possible students’ transition from arithmetic to 

algebra with some understanding. In the trials in the main study, some con-

cepts or tasks where the performance or understanding was not very satisfac-

tory were modified or elaborated and repeated. For other tasks, students did 

work on the tasks with some extensions and complexities added as the trials 

progressed.  

The trials firstly, led to the formulation of a teaching learning sequence for 

beginning algebra based on developing a structural understanding for arithme-

tic and algebraic expressions and further using them in situations which fo-

cused on meaning and purpose of algebra. A teaching guideline based on the 

above experience is proposed in Appendix VI. Students in the process learnt 

to use symbols in various ways and for different reasons: reasoning about ex-

pressions while working on tasks based on syntactic transformations, and rea-

soning with expressions while working on contexts using algebra as a tool. 

Secondly, the trials were instrumental in developing a framework for the re-

search study as well as in identifying the principles which would allow the 

transition from arithmetic to algebra. The methodology adopted made it pos-

sible to engage with the teaching learning process over a long period of time 

and also teacher-researchers’ reflections on the actions led to subsequent 

modifications in the conjectures, choice of the tasks and understanding of stu-

dents’ responses and actions.  

The discussion in this chapter did not include students’ responses and their 

performance in the tasks, which will be taken up in the next three chapters. 

The focus here was on an analysis of the teaching sequence and progressive 
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development in it. The data for the pilot studies will not be analyzed further. 

The first chapter discussing the analysis will deal with students’ understanding 

and performance in various procedural tasks of evaluating/ simplifying arith-

metic and algebraic expressions and their knowledge of rules of transforming 

expressions with bracket. The second chapter would deal with their under-

standing and performance in the predominantly structural tasks, that is, their 

understanding of equality. The third analysis chapter deals with students’ per-

formance in contexts where algebra is used as a tool. 
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Chapter 6: Analysis I: Understanding of rules and 
procedures in arithmetic and algebraic expressions 

6.0 A brief overview of the chapter 

This chapter deals with analyzing and describing students’ understanding of rules 

and procedures in the context of arithmetic and algebra and the connections that 

they make between the two domains while transiting to symbolic algebra from 

arithmetic. As discussed earlier (see Chapter 2, esp. sections 2.3.3 and 2.3.4), 

many of the difficulties with symbolic algebra arise due to non-appreciation of 

and inconsistent use of the arithmetic rules and procedures. The procedures and 

rules for evaluating arithmetic expressions were reformulated in the teaching ap-

proach in more structural terms, rather than as precedence rules, to include the 

important ideas of unambiguous parsing of expressions and flexible ways of oper-

ating on the expression resulting in equal values (described in Chapter 3, section 

3.2.2). Procedures for transforming algebraic expressions were generalized from 

arithmetic expressions by explicitly pointing out the similarity in the structure of 

the expressions and hence the rules to be applied for manipulating the expres-

sions. The letter, in the process, took number as its referent. In this way students’ 

intuitive understanding of arithmetic was taken into account and developed as a 

template on which a new symbolic system of algebra was built, to help the stu-

dents move from the ‘inventive-semiotic’ stage of representation to the phase of 

‘structural development’ (Goldin and Kaput, 1996).  

In this chapter, students’ performance will be analyzed to explore the extent of the 

use of the concepts, rules and procedures taught during the study by them while 

solving tasks which were predominantly procedural. In the process, students’ 

achievements and their failures in making connection between the procedures in 

arithmetic and algebra during the three trials of the main study (MST-I, MST-II, 
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MST-III) will be explored. This will also indicate partly the effectiveness of the 

teaching approach in building among students transformational capability for al-

gebraic expressions. The effectiveness will be judged on the basis of the students’ 

ability to simplify algebraic expressions, the strategies used to simplify them and 

their explanation of the simplification process of algebraic expressions together 

with their ability to move flexibly between the two domains as required. Other 

facets of this arithmetic-algebra connection will be explored in the next two chap-

ters. The tasks which will be analyzed in this section are: (a) parsing of expres-

sions (b) evaluation of arithmetic expressions – simple expressions, expressions 

with brackets and more complex expressions using easy ways, (c) understanding 

of rules of bracket removing, (d) simplification of algebraic expressions, and (e) 

evaluation of algebraic expressions for a given value of the letter. These tasks are 

categorized as procedural because (i) they require the students to apply rules and 

procedures that they have been exposed to on the expressions and (ii) the solution 

has a clear direction in which it proceeds, that is, towards a numerical answer or 

the simplest algebraic expression and in that sense procedural and algorithmic. 

Some of these tasks, however, especially the task of evaluation of arithmetic ex-

pressions using easy ways, reveal student responses that go beyond mere applica-

tion of procedure and are based on structure sense. These will be discussed later 

in the chapter.  

The quantitative analysis of student responses consists of the data from the 15 

English medium and 16 Marathi medium students who attended all the trials 

(N=31), that is, of the pre and the post test scores before and after each trial. The 

qualitative data will be drawn from the written responses of students in the tests, 

interviews with a subset of the students, daily practice sheets and classroom dis-

cussion. The interviews tried to elicit students’ responses to tasks similar to the 

ones in the post test. Students first wrote the responses to certain questions and 
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then in a one-on-one interview explained their solution as well as answered the 

additional probes used by the interviewer.  

The results of a delayed post test conducted after some months of MST-I showed 

that the retention of the concepts, procedures and the rules was quite poor among 

most students. The data from this test will not be analyzed here. It was therefore 

decided to conduct the pre test in MST-II after exactly two days of revision. The 

concepts, rules and procedures were not completely forgotten but had been un-

used for a long time. This together with interference from the school learning 

could have resulted in the low delayed post test scores. The students had recently 

been exposed to evaluation of expressions and some ideas about integers in the 

school, when the students came to attend MST-II. The concepts and the proce-

dures taught, and the vocabulary used in the school was quite different from those 

adopted in this approach. To some extent, interference due to these different ap-

proaches was inevitable. This factor must be kept in the background while inter-

preting the results. The pre test for MST-III was conducted on the first day of the 

trial. 

6.1 Evaluation of expressions 

6.1.1 Parsing of expressions  

As explained in Chapter 3 (section 3.2.2), in the teaching approach the parsing of 

an expression into terms was a basic step for implementing the procedures of 

evaluation and simplification as well as for analyzing the structure of expressions. 

Students learnt reasonably well to parse the expressions by identifying the terms 

of an expression early in the first trial. The retention of this concept among stu-

dents was very high. Figure 6.1 shows the students’ performance in identifying 

terms of expressions in the three trials in the three kinds of expressions: those 

containing only simple terms (e.g. 19-6+7), simple and product terms (e.g. 
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2+3×4), and algebraic expressions (e.g. 3×x-4+6×x+10) (See for example, Q.20 in 

Appendix IIB, Q.12 in Appendix IIIA). The performance of the students in this 

task is nearly perfect with occasional errors like splitting the product term or for-

getting the sign of the term or not attempting an item, especially during MST-I. 

Competence in this task did not always lead to improved performance in tasks 

which depended on this ability. In the sections below, implications of this ability 

for other tasks will be explored. 

 

 

 

 

 

 

 

Figure 6.1: English and Marathi medium students’ performance in the three trials 
in parsing expressions of three kinds (nenglish=15, nmarathi=16) 

Note. There was one item of each kind in each of the trials. There was no such 
item in the pre-test of MST-I. I-Post = Post-test (MST-I), II-Pre = Pre-test (MST-
II), II-Post = Post-test (MST-II), III-Pre = Pre-test (MST–III), III-Post = Post-test 
(MST-III). 

6.1.2 Evaluating simple arithmetic expressions 

Simple arithmetic expressions contained either only simple terms (e.g. 19-3+6) or 

a simple term and a product term (e.g. 7+3×4) (For example, see Q.3, Appendices 

IIA, IIB, IIIA, IIIB). The students initially (MST-I) learnt to evaluate simple 

arithmetic expressions by analyzing the terms to decide the precedence rule. Due 
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to students’ unfamiliarity with negative numbers, expressions were so chosen that 

computation would lead a positive answer. This was a constraint on the nature of 

problems and discussions which could follow. Gradually (MST-II and III) they 

learnt to combine terms flexibly to evaluate expressions, without focusing on the 

precedence rules. Figure 6.2 shows the percentage of correct responses for evalua-

tion of simple arithmetic expressions in the three trials of the main study.  

 

 

 

Figure 6.2: English and Marathi medium students’ performance in evaluating 
simple expressions in the three trials (nenglish=15, nmarathi=16) 

Note. There was one item of the type ‘simple and product terms’ in each of the 
trials. There was one item of the type ‘simple terms only’ in the Pre-test and Post-
test of of MST-I and Pre-test of MST-II. Thereafter, there were two such items. I-
Pre = Pre-test (MST-I), I-Post = Post-test (MST-I), II-Pre = Pre-test (MST-II), II-
Post = Post-test (MST-II), III-Pre = Pre-test (MST–III), III-Post = Post-test (MST-
III). 

Pre-test performance of the Marathi group is high for these simple expressions in 

the beginning of the first trial of the main study. Further, it reaches a high level of 

performance at the end of MST-I and this is maintained, except for post test of 

MST-I in the expression 19-3+6 where this performance was lower than in the 

pre-test. The errors in the post test of MST-I however were all calculation errors 

(discussed later). The English group gained steadily in proficiency. It must be 

noted that in this task and in others, the Marathi group was better than the English 

group even at the beginning of the study. Both the groups gained significantly (at 

.01 level in MST-I and at .05 level in MST-II in the t-test) in the items after the 
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instruction. In MST-III, the English students’ performance in the post test was 

slightly lower than in the pre-test in one item.  

Sample 
item 

Errors MST-I MST-II MST-III 

  Pre Post Pre Post Pre Post 

7+3×4 LR 18 6 5 2 3 1 

 CE 0 2 0 0 1 3 

 Others  4 0 1 0 1 0 

 Not done 5 2 1 0 0 0 

19-3+6 Detachment 3 0 3 0 2 3 

 CE 2 7 3 4 3 2 

 Others  1 0 0 0 1 0 

 Not done 5 3 1 0 0 0 

Table 6.1: Number and type of incorrect responses in solving simple arithmetic 
expressions across the trials (N=31) 

Note. LR = Left to right error, CE = Calculation error,Others = Errors which 
could not be classified as LR/ CE, Not done = number of instances of not attempt-
ing the item. 

The analysis of error patterns also shows a trend of increased competence in these 

tasks (see Table 6.1). Expressions with only ‘+’ and ‘–’ signs (e.g. 19-3+6 ) do 

not create much conflict with students’ intuitive ways of evaluation, that is, mov-

ing from left to right sequentially. Sometimes, due to the presence of certain 

numbers coupled with over generalization of the rules of operations (associativity 

and commutativity) or incorrect integer addition/ subtraction operation, students 

solve an expression like 19-3+6 as 19-9=10, detaching the negative sign from the 

succeeding number (‘detachment’ error). Even with the ‘terms’ approach where 

the terms could be combined flexibly, this error could not be dealt with, mainly 

due to students’ poor knowledge of integer addition and subtraction operations. 

Integer operations were not extensively dealt in the study but many approaches 
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were tried across the study. By the end of MST-II, it was realized that it could be 

subsumed in the terms approach and indeed the students’ solutions to evaluating 

such expressions in the post test do not show any detachment error but resurfaces 

in MST-III.  

The expressions with ‘×’ (e.g. 7+3×4) on the other hand, creates a situation of 

conflict for the students as it can no longer be solved from left to right sequen-

tially (as 10×4=40, ‘LR’ error) and the only correct way of solving it is to first 

simplify the product term. Despite instruction on the rule and analyzing the ex-

pression by identifying the terms of the expression, many students made the error 

in MST-I, which gradually reduced in the subsequent trials. The visual cues with 

regard to correct parsing of expressions, leading to forming the correct units in the 

expression (‘terms’), were not internalized easily by the students. One reason for 

this could be that in MST-I, the concept of term was used to decide the prece-

dence of operations – a procedural interpretation, rather than a more structural 

interpretation which allows flexibility in combining terms as in MST-II (see dis-

cussion in Chapter 5, section 5.2.2). The impact of such an approach on other 

tasks will be discussed in the sections below. However, both the structural errors 

do resurface in more complicated situations where students tend to find quick 

ways of finding solutions without paying enough attention to the structure of ex-

pressions. 

 

 

 

Figure 6.3: Examples of students’ solutions of evaluation of simple arithmetic 
expressions in Post test: a-e: MST-I; f-h: MST-II 
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Figure 6.3 shows some solutions by students in the post test of the two trials. The 

solutions are representative of the students’ ways of evaluating simple expres-

sions. The solutions (a) to (e) are from MST-I and (f) to (h) are from MST-II (so-

lutions in MST-III are similar to the later). As described in Chapter 5 (section 

5.2.1), in MST-I students used the concept of terms only for identifying the condi-

tions for applying precedence rules and therefore one does not see the solutions to 

be integrally linked with the concept of terms, as in MST-II. Students made struc-

tural errors (‘LR’) in MST-I which are well known and have been discussed in 

Chapter 2 and did not completely accept the idea of writing terms and using it to 

minimize the errors. They continued to solve sequentially and many did not iden-

tify the terms. Even in MST-II, there were a couple of instances of not identifying 

terms or making structural errors despite writing the terms. But largely, the shift 

in emphasis from procedural precedence rule based computation to learning to 

effectively use the structural analysis of the expression giving flexibility to 

evaluation of expressions could have made some difference in the acceptance of 

the ‘terms approach’. Solutions like (f) and (g) in Figure 6.3 were never seen dur-

ing MST-I. 

Students’ understanding of evaluation of simple expressions as 
revealed through the interview 

The nature of changes that were taking place in the students’ understanding with 

respect to evaluation of such simple expressions as has been discussed above can 

be clearly seen in their interview responses. Fourteen students (6 English and 8 

Marathi) were interviewed after two months of completing MST-II and seventeen 

(8 English and 9 Marathi) after four months of completing MST-III and their abil-

ity to evaluate and explain the computation of simple arithmetic expressions was 

explored. The students were asked to evaluate two simple expressions in the in-

terview: one consisting of a simple term and product term and the other consisting 
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of only simple terms (similar to those in the test). The interview procedure as de-

scribed in Chapter 4 (Section 4.4) was used which consisted of the student solving 

the expression and explaining it followed by an additional probe requiring the 

student to judge whether an alternative solution is correct or asking the student to 

find another way of solving the expression (see Q.A (1 and 2) and Interview 

schedule (Tasks 1 and 3) in Appendix VA, Arithemtic test Q.1 (A and B) and In-

terview schedule: arithmetic (Tasks 1 and 2) in Appendix VB). 

Table 6.2 summarizes the students’ responses to the evaluation of the above two 

kinds of expressions (that is, with only simple terms or with a product term) in the 

last two trials (MST-II and III). The first column (‘Solution’) indicates the cor-

rectness or incorrectness of students’ written response to the task. The second 

column (‘Probe’) describes the students’ response to the additional probe (usually 

a wrong solution if the student had correctly solved or vice-versa). The third col-

umn (‘Changes’) records the number of changes and the type of changes that the 

student made to the solution during the interview. The table suggests that the ex-

pression with a product term (item 1 in both trials) was the easiest and the least 

confusing for students to evaluate and explain in both the trials. Also, for expres-

sions with only simple terms (item 2 in both trials), all the students, except one, 

correctly evaluated the expression in their written responses before the interview. 

The only incorrect written response during MST-II was corrected during the in-

terview. Looking at the responses for all the items, three students after MST-II 

(one in item 1 and two in item 2) and one after MST-III (one in item 2) changed 

their incorrect response to the additional probe to the correct one during the inter-

view. There is only one student in MST-II who changed his correct solution (item 

1) to an incorrect one. Two students after MST-II incorrectly judged the alterna-

tive solution (one each in items 1 and 2) used in the additional probe and could 

not give a satisfactory explanation with respect to them.  
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In the interview after MST-II, thirteen of the fourteen students clearly indicated in 

these items their knowledge of the fact that an expression has a unique value. This 

guided their acceptance or rejection of the alternative solutions to the expressions 

shown to them. Broadly, two reasons were seen in their explanation: one, that the 

rule applied is correct or wrong; and two, that the value arrived at by the two 

ways is the same or different. Six of these fourteen students displayed some level 

of uncertainty, at least in one of the two items being discussed, while identifying 

the correctness of an alternative solution shown to them or explaining their own 

solution. In contrast, the students after MST-III, could show different ways of 

evaluating an expression and could distinguish a correct solution from a wrong 

solution. They frequently justified their solution methods for evaluating such ex-

pressions by stating rules they had learnt during the study. All those students 

probed with an alternative solution 22-7+9=22-16 confirmed its incorrectness and 

some others gave another solution in which -7 and +9 were combined to get +2. 

Most of the responses were clearly articulated; the reasons usually stated were – 

change in terms (7+9=16 instead of -7+9=2) (7 students in MST-II and 11 in 

MST-III) or the need for a bracket around 7+9 (two students each in MST-II and 

MST-III) – for the proposed solution to be correct. All of them were also confi-

dent that two different but correct ways of evaluation would always lead to the 

same answer and a few of them indicated the conditions when the answer/ value 

of the expression would change, like putting brackets around 7 and 9 or changing 

the sign of the terms. Some excerpts from the interviews with the students 

(marked with an asterisk in Table 6.2) will be discussed below9. The excerpts 

from the interview will illustrate the explanations given by the students as well as 

the coding of the students’ responses as seen in Table 6.2. 

                                                 
9 The interviewer’s questions are in normal font and students’ responses have been italicized.  
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 MST-II MST-III 

Name Item 1: 15+6×5 Item 2: 25-10+5 Item 1: 5+3×6 Item 2: 22-7+9 

 Solution Probe Changes Solution Probe Changes Solution Probe Changes Solution Probe Changes
BP* C SEC IACA C UE NC C SE NC CE SE CEC 
PD* C SE NC C OC IACA C SE NC C SE NC 
BK* C SE NC C SE NC C SE NC C SE NC 
AY C SE CSISCS I SE ISCS C SE NC CE SE CEC 
NN C SE NC C NE CAIACA C SE NC C UE NC 
SG C SE NC C SE NC C SE NC CE SE NC 
NW C SE NC C SE NC C SE NC C SE NC 
RG C SE NC C NE NC C SE NC C SE NC 
AS C SE NC C SE NC C SE NC C SEC IACA 
AN C SE NC C SE NC C SE NC C SE NC 
SV C SE NC C SE NC C SE NC C SE NC 
MC C SE NC C IJ NC C SE NC C SE NC 

AB* C IJ NC, 
CSIS C SE NC C SE NC C SE NC 

BM C SE NC C SE NC C SE NC C SE NC 
PG - - - - - - C SE NC C SE NC 
JS - - - - - - C SE NC CE SE NC 
TJ - - - - - - C SE NC C SE NC 

Table 6.2: Responses of the students interviewed in the two items of evaluating expressions after MST-II and III (* in-
dicates students whose interviews are discussed in the text) 

Written solution to the evaluation task (Solution): 
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(C) Correct – the solution given for the expression is correct 

(I) Incorrect – the solution given for the expression is incorrect 

(CE) Calculation error – solution procedure is correct but contains calculation error 

Explanation to the alternative solution (Probe):  

(SE) Satisfactory explanation – able to explain correctly own solution as well as the alternative solution and displays the knowledge of 
rules and concepts (based on terms and combination of terms, brackets)  

(SEC) Satisfactory explanation with changes – able to explain correctly own solution as well as the alternative solution but involves a 
change in the answer during discussion 

(UE) Unsatisfactory explanation – creates an ad-hoc explanation suitable for the specific situation at hand and may involve frequent 
change of answers from one to another 

 (NE) No explanation – cannot give any explanation for the alternative solution and only knows own solution  

 (OC) One correct – choosing an answer because only one solution can be correct 

 (IJ) Incorrect judgment – making an incorrect judgment about the alternative solution 

Changes made by the student during the interview (Changes): 

(NC) No changes made 

(CEC) Calculation error corrected – the subject corrects the calculation error 

(ISCS) Incorrect solution to correct solution – the subject changes his/ her incorrect solution for the expression to a correct one  

(IACA) Incorrect alternative to correct alternative – the subject changes his/ her incorrect answer for alternative solution to a correct an-
swer 

(CSIS) Correct solution to incorrect solution – the subject changes his/ her correct solution for the expression to an incorrect one  

(CAIA) Correct alternative to incorrect alternative – the subject changes his/ her correct answer for alternative solution to an incorrect an-
swer 

(CAIACA) Correct alternative to incorrect alternative to correct alternative – the subject changes his/ her correct answer for the alternative 
solution to an incorrect answer to back again to a correct answer 
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Faced with the task of solving 5+3×6 and finding another solution to it, the stu-

dent AB (MST-III) explains why he thinks 5+3×6 cannot be solved by any way 

other than the way he solved it (5+18=23) to the interviewer SN.  

SN: Can it be solved in any other way? 

AB: First if we multiply 5 and 6, then 5 6za 30, it will be wrong. 

SN: If you do 5×6, then it will be wrong? 

AB: Yes. 5 6za 30, add 3 to it 33, this is not possible. 

…  

SN: Are these two questions the same [5+3×6 and 5×6+3]? 

AB: No. Because this [×6] is not a product term. Terms are only positive or 
negative. 

Although he himself proposed the second solution for the expression, he agreed 

that it was wrong. This realization would have followed his encounter with two 

different answers/ values of the expression. Later he went on to give a more struc-

tural justification as to why his solution is not correct, understanding that the fac-

tors of the product term cannot be separated. He used the same argument of 5+3 

not being a term to explain why 8×6 is also not a correct solution (coded as satis-

factory explanation ‘SE’).  

A typical response in both the trials to justify the solution to an expression like 

25-10+5 is illustrated by the following. The student BK (MST-II) explains her 

reasoning very clearly as to when a simplification 25-10+5 to 25-15 would be cor-

rect. This was one kind of reasoning evidenced for this question; another was the 

reason that -10+5 must be -5 and cannot be -15.  

RJ: One boy did it like this. 25-10+5 this is the question. He did it like this 25-15. 
So the answer is 10. Is this correct? 

BK: No teacher. 

RJ: Not correct. Why? 
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BK: Teacher, it is not bracket. If there is bracket [around 10+5] we can do like 
this.  

This student definitely understands the change that will be produced in this ex-

pression when the brackets are present and anticipates the result of the computa-

tion. Further, she shows her ability to solve the expression by flexibly combining 

terms leading to the same answer (solving the expression 25-10+5 as 30-10=20, 

collecting the positive terms first). The student AN (MST-II) took another line of 

argument for the above situation and explained why 25-15 cannot be the solution 

for 25-10+5: ‘Writing 25 for 25 is correct but -10 and +5 can never be added… It 

has to be subtracted, -15, -5 should be the answer’. She insisted that -10 and +5 

cannot be ‘added’ and that they should be ‘subtracted’. Even though she is using 

the idea of terms and is well versed with the idea of combining terms, she uses an 

operational language to explain it, which could be due to the influence of school 

instruction. Her own solution to the expression was 30-10=20. 

On the other hand, a student BP (MST-II) gave a correct solution to 25-10+5 by 

sequentially moving from left to right and was further asked by the interviewer RJ 

whether 25-15 is a correct solution for it.  

RJ: …Ok, so you have got +15. So if someone did it like this, that 25-10+5, so he 
did it like this 25-10+5 is 15, then he got the answer as 10. So is this correct? 

BP: No  

RJ: Why? 

BP: Teacher, because you have compared this [10+5]. 

RJ: Combined these. 

BP: Teacher, there is –10, and it is +25, so it is bigger, so you have to combine 
these first. 

…  

RJ: So you are sure this is right [-10+5=-15] or this is wrong? 

BP: Teacher, wrong. 

RJ: This is wrong. Why? You don’t know? 
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BP: (in Marathi) 25 is bigger, we do not have to combine –10 and 5, but combine 
25-10, +25 is bigger, so combine 25 and –10. 

She was unclear about why the alternative solution is wrong although she was 

sure that it is wrong. The interviewer guided her to use the correct language 

‘combine’ and not ‘compare’. Her explanation did not indicate any reasoning 

based on rules of integer operations; rather she created ad-hoc reasoning for the 

specific situation in hand (coded unsatisfactory explanation ‘UE’). Four students 

of the fourteen in MST-II could not offer any explanation for why the proposed 

solution was not correct but they were sure that it is incorrect. This situation did 

not occur in MST-III. 

In MST-III as well BP began explaining why 22-7+9 cannot be solved as 22-16 

hesitantly; saying 22 is bigger number and therefore has to be done first. But then 

she clarified her answer soon.  

RB: Another student wrote it as 22-16, 7+9 is 16, equal to 6. Is this correct? 

BP: No. 

RB: No. Why? 

BP: Because +22 is bigger number. So we have to first do this.  

RB: Acha. What do we have to do first? 

BP: First we do 22-7 or we put bracket and do -7+9. 

RB: What will come then if we put -7+9 in bracket? 

BP: Put 7+9 in bracket. 

RB: What will happen if we put 7+9 in bracket? 

BP: 16. 

RB: So if here [22-(7+9)] there is a bracket then only it will be 16. If bracket is 
not there then what will happen?  

BP: +2. 
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She had improved her understanding and could now explain the correct and mul-

tiple ways of solving the expression. She could also clarify that in the presence of 

the bracket around 7+9, the answer would be 16.  

Another student PD (MST-III) tried to give an explanation for the same question 

as above. She had solved the expression as 22-7+9=22+2=24 and showed another 

way of solving it as 15+9=24 during the interview.  

RB: Now what you have done. 22-7 and then added 9. So you got the same an-
swer. Hmm. Would you always get the same answer if you solve it by different 
ways? Every time you would get the same answer when solved in different 
ways?  

PD: No. 

RB: No? When is it that the answer will not be the same? Because you have just 
seen by solving in two different ways -7+9 and 22-7. You have got the same an-
swer. Can you give me an example when you will not get the same answer?  

PD: Here -22 and here +7.  

RB: Acha. If we do like this, you think we would not get the same answer. If I do 
it like this 22-16, how did we get 16, 7+9, equal to 16. Is this a correct way of 
solving this?  

PD: No 

RB: What have I done?  

PD: You got 16 by doing -7+9. But -7 is a smaller number, if we take 9 positive 
cards and -7 positive cards, negative cards, and make pairs then we are left with 
-2, +2. 

She displayed her awareness of different ways of solving the expression and also 

conditions under which the answer will change. For her, changing the terms is one 

criterion which changes the answer of the expression. She also shows her under-

standing of integer operations and was the only student who explained computa-

tion on integers using cards. A few more students (3) gave such examples to illus-

trate when answers change, to answer the question whether two different ways of 

evaluation would give the same answer. They mostly identified changing terms or 

putting brackets with negative sign outside as reasons for change in value of the 



 201 

expression. Some others pointed out that different but correct ways of evaluation 

would lead to the same answer.   

During MST-II, for some students explaining their own solutions and alternative 

solutions to these items was quite hard and they repeatedly changed their explana-

tion, not always successful in the end (see Table 6.2). At times they made incor-

rect judgments regarding the alternative solution without feeling the need to 

change it. The rules for evaluating such simple expressions were not as clear and 

transparent and they were on shaky grounds, also because of their weak knowl-

edge of integer operations. This could be explored only as a result of exposing the 

students to multiple solutions and allowing them to reflect on their solutions and 

the procedures they had learnt. These students can be thought to be in the ‘partici-

patory’ phase, restricted to the situation they are working in, and have not moved 

up to the ‘anticipatory’ phase which requires them to reflect on the procedures 

and being able to construct a more generalized understanding of rules and proce-

dures and validity of transformation (Tzur and Simon, 2004). These issues were 

probed further in the next trial MST-III.  

The situation after MST-III is slightly different. Table 6.2 shows evidence of their 

comfort with such simple expressions and their ability to mentally think about 

processes and actions and to anticipate the consequences of these. Compared to 

the interview sessions with students after MST-II which saw them changing their 

responses often, the students after MST-III were more confident and less hesitant 

in stating their judgments and their arguments for or against a solution. Barring a 

single case where an unsatisfactory explanation was given, all others gave well 

articulated and convincing arguments to support their case. Also, once the stu-

dents realized their error, it was easy enough for them to correct their responses. 

In the due course more examples will be given to substantiate these results as well 

as to show situations when this breaks down. 
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6.1.3 Bracket opening rules and evaluating expressions with 
brackets  

Brackets, as a concept and as a parsing device explicating the structure of expres-

sions form an important aspect of expressions as has been explained in Chapter 3 

(Section 3.3.2). The teaching approach focused on both static and dynamic use of 

brackets. The static use of brackets dealt with treating them as precedence opera-

tion on the part of the expression enclosed in the bracket (‘do brackets first’) and 

the dynamic use requires one to use equivalence relations embedded in such ex-

pressions with brackets, that is, equality of a-(b+c) with a-b-c or a×(b+c) with 

a×b+a×c (Linchevski and Livneh, 1999). Although brackets can easily be under-

stood as a precedence operation, it is not always possible to use this conception in 

the context of reasoning about expressions and manipulation of algebraic expres-

sions. Therefore bracket opening rules were given much importance in the teach-

ing learning sequence. These rules were reformulated using the concept of terms: 

for a negative bracketed term, signs of all the terms change on removing the 

bracket (e.g. 23-(8+9)=23-8-9); and distributive property is applied for a product 

term with a bracketed factor (e.g. 3×(7-5)=3×7-3×5). Students worked on two 

kinds of tasks: writing an equal expression for a bracketed expression and evalua-

tion of bracketed expressions. 

Students’ understanding of bracket opening rules 

The students were given a task in which they had to write an expression equal to 

an expression containing a bracket (e.g. 23-(7-3)=?) (for example, Q.25 in Ap-

pendix IIB, Q.16 in Appendix IIIA, Q.14 in IIIB). The performance of the stu-

dents in this task in the three trials is shown in Figure 6.4. Due to the prevalent 

inconsistency in responses seen among the students in the first two trials with re-

spect to bracket opening rules, the open format of the question (write an expres-

sion equal to a given one with brackets) was changed to a multiple choice format 
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in which the students had to mark one of the two expressions equal to the given 

one (see Q. 11 in Appendix IVA and Q.13 in Appendix IVB).  

 

 

 

 

 

 

 

Figure 6.4: English and Marathi medium students’ performance in bracket open-
ing rules in the three trials with respect to the different kinds of expressions    

(nenglish=15, nmarathi=16) 

Note. There were two items each of the types ‘negative bracketed term’ and 
‘product term with a bracketed factor’ and one item each of the other two types. 
This task was not posed in the pre-test of MST-I. I-Post = Post-test (MST-I), II-
Pre = Pre-test (MST-II), II-Post = Post-test (MST-II), III-Pre = Pre-test (MST–
III), III-Post = Post-test (MST-III). 

The graphs show that the Marathi medium students performed better than the 

English medium students. The Marathi medium students learnt these rules by the 

end of the second trial (MST-II) and then maintained their performance. The Eng-

lish medium students gradually learned these rules over the three trials. Both the 

groups recorded a low performance in the pre test of MST-II which was con-

ducted after some months of MST-I. The rules were over-generalized to expres-

sions when it was a positive bracketed term (see Figure 6.4 (c) and (d)) not only 

in the pre-test of MST-II but persisted in the subsequent tests as well. The errors 

in Figure 6.4 (a) and (b) are the expected ones: not changing the signs of all the 
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terms inside the bracket after it is removed or not distributing the common factor 

over both the terms. The structural difference between the kinds of terms (nega-

tive or positive bracketed term or a product term with a bracket factor) in the ex-

pressions was probably not captured by the students and the rules inappropriately 

applied. This has implication for evaluating expressions with brackets, although in 

this study one does not find any direct relation between students’ performance in 

the above task and the use of these rules while evaluating expressions.  

Evaluation of bracketed expressions 

Students’ performance in evaluation of expressions which contained brackets also 

improved significantly in the post test compared to the pre test in all the trials. 

Students were asked to evaluate a simple expression with brackets (e.g. 5×(9+3)) 

in all the pre and post tests, except in the post test of MST-II (see Q.3B in Appen-

dix IIA, IIB, IIIA, Q.2(4) in Appendix IVA, Q.5(4) in Appendix IVB). Table 6.3 

shows the performance of students for a simple expression with brackets. In the 

post test of MST-II and MST-III, some more complex items of this kind were 

added.  

Sample 
item 

MST-I MST-II MST-III 

 English  Marathi  English  Marathi  English  Marathi  

 Pre Post Pre Post Pre Post Pre Post Pre Post Pre Post 

5×(9+3) 7 73 44 69 60 - 81 - 67 80 81 94 

Table 6.3: Performance (in percentage) of the students in the trials in correctly 
evaluating expressions with brackets (nenglish=15, nmarathi=16) 

Note. No such item was posed in post test of MST-II and in the other tests there 
was only one item of this kind. 

Nearly half of the Marathi students knew the solution of such an expression when 

they came for the course for the first time (pre-test MST-I). But most of the other 
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students in this group as well as the students in the English group ignored the 

bracket completely and computed the value of the expression from left to right. 

These students either did not know the significance of the bracket or were using a 

wrong rule for opening the bracket, the possibility of the latter being low as these 

students had not as yet been introduced to such rules. In the post test of the same 

trial, only four students ignored the bracket or forgot the correct rule of removing 

the bracket (‘incomplete distribution’) with the remaining errors being calculation 

mistakes. But in the pre test of MST-II the performance of the students was rea-

sonably good and all the students who succeeded solved inside the bracket first, 

using it as a precedence operation. A majority of the errors in this simple item 

with brackets were due to calculation mistakes. Similarly, in MST-III, students 

performed well in the post test, the errors being in computation. Error in applying 

the distributive property was rare. In the first two trials, most students preferred to 

solve inside the bracket first (BF – 61% in post test of MST-I and 84% in pre test 

of MST-II) than opening the bracket using distributive property (BO – 29% in 

post test of MST-I and 10% in the pre test of MST-II). In the last trial, during the 

pre test almost equal number of students used each of the strategies (BF – 42% 

and BO – 39%) but in the post test most students opened the brackets in this sim-

ple expression also (BF – 19% and BO – 81%).  

 BF BO BO+BF Other Total  

English 6 (*4) 7 (*6) 1(*0) 1 (*1) 15 (*11) 

Marathi 8 (*3) 5 (*2) 3 (*2) 0 16 (*7) 

Total  14 (*7) 12 (*8) 4 (*2) 1 (*1) 31 (*18) 

Table 6.4: Number of student responses by type of strategy in evaluating the ex-
pression 27-3×(5+7) in Post-test of MST-II (*Numbers in the bracket denote the 

number of incorrect responses, nenglish=15, nmarathi=16)  

Note. BF = Solving the bracket first, BO = Opening the bracket first, BO+BF = 
Using a combination of both these strategies, Other = Other strategies. 
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The item being considered very simple for students was dropped from the post 

test of MST-II. Instead, the item was replaced by a more difficult expression with 

brackets: 27-3×(5+7) (see Q. 3B in Appendix IIIB). The performance of the stu-

dents in this item was poor with only 27% of English medium students and 56% 

of Marathi medium students succeeding in this task. This expression required 

more than one rule of opening bracket to solve the expression correctly, if the stu-

dent decided against solving the bracket first. Compared to the pre test, where 

most students preferred to solve the bracket first, here many students tried to re-

move the bracket first before simplifying and in the process committed errors by 

not changing the sign of the terms inside the bracket. Table 6.4 shows the strate-

gies used by students to evaluate the expression 27-3×(5+7). Each of the strate-

gies – solving the bracket first (BF) or opening the bracket (BO) – was used by 

almost equal number of students, with slightly more errors in the case of opening 

bracket (BO). Some of the students started solving by removing the bracket but 

midway changed the strategy to solve the bracket first (BO+BF in Table 6.4).  

 Correct ID Sign not 
changed 

Sign not 
changed + 

ID 

Calculation 
error 

Others 

English 4 0 4 1 5 1 

Marathi 9 0 2 0 4 1 

Total 13 0 6 1 9 2 

Percentage 42 0 20 3 29 6 

Table 6.5: Number of student responses by type of error in evaluating the expres-
sion 27-3×(5+7) (Pos-test MST-II) (nenglish=15, nmarathi=16, N=31) 

Note. ID = Incomplete distribution.  

The number of students who made particular kinds of error in this item is given in 

the Table 6.5. The ‘incomplete distribution’ error (multiplying only the first term) 

was rare (one instance) and some made calculation errors which include errors in 
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signs after computation. Many errors are due to calculation mistakes followed by 

the mistake of not changing the signs after removing the bracket. The new learn-

ing and emphasis on rules of removing brackets seemed to have interfered with 

the knowledge of brackets that they already possessed.  

Some examples of students’ solutions from the post tests of the first two trials are 

given in Figure 6.5. Figures (a) and (b) are from MST-I and (c) to (f) are from 

MST-II. Both (a) and (b) describe solutions based on precedence of brackets but 

in (b) the bracket is first removed and then the solution is carried out by adding 

inside the bracket. This could be an indication of the ambiguity students sense in 

the expressions; for them an expression with and without bracket could mean the 

same thing.  Figure (c) shows a simple straight forward solution to the expression 

27-3×(5+7) and the others (d) to (f) are based on opening bracket. They are more 

complex and have more scope for errors, whether in applying the distributive 

property (f) or in changing the sign of the terms inside the bracket (e). Figure (d) 

shows a correct solution.  

 
 
 
 
 
 
 
 
 
 
 

Figure 6.5: Sample of evaluation of bracketed expressions by students in post test 
of MST-I and MST-II (a-b: MST-I; c-f: MST-II) 

 

 

 

a

b

c

d

e
f
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S.No. Item English Marathi 

  Pre Post Pre Post 

1. 25-(4+3×5) 0 47 44 87 

2. 34-6×(9-5) 53 53 62 75 

3. 28-(13-7+5) 27 27 56 87 

4. 19-2×(3+6×7) - 40 - 37 

Table 6.6: Performance (in percentage) of students in correctly evaluating expres-
sions with brackets in MST-III (nenglish=15, nmarathi=16) 

Note. The item 19-2×(3+6×7) was not posed in the pre-test of MST-III and there 
was only one item of each type. 

Items similar to the above requiring more than one rule of removing bracket were 

used in the post test of MST-III (see Appendix IVB, Q. 5(5-8)). The performance 

of the students in such items had a large variation. A table showing the perform-

ance in each of the items is given above (Table 6.6). In MST-II, post test perform-

ance on an item closest to 34-6×(9-5) was 27% for English medium and 56% for 

Marathi medium students.  

 BF BO Not 
done 

Total  

25-(4+3×5) 12 (*7) 19 (*3) 0 31 (*10) 

34-6×(9-5) 9 (*3) 22 (*8) 0 31 (*11) 

28-(13-7+5) 11 (*9) 20 (*4) 0 31 (*13) 

19-2×(3+6×7) 10 (*3) 19 (*14) 2 31 (*17) 

Total  42 (*22) 80 (*29) 2 124 (*51) 

Table 6.7: Number of student responses by type of strategy in evaluating brack-
eted expressions in Post-test of MST-III (*Numbers in the bracket denote the 

number of incorrect responses) (N=31) 

Note. BF = Bracket solved first, BO = Bracket opened first, Not done = number of 
instances of not attempting an item. 
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As one may expect, the least level of performance were seen in the more complex 

expressions 28-(13-7+5) (the English group) and 19-2×(3+6×7) (both groups). 

The performance of the English medium students was much lower than the Mara-

thi group, except for the last expression. Most students preferred to open the 

brackets to evaluate such expressions than to solve the bracket first. Some stu-

dents used the two methods flexibly (solving brackets as precedence rules or us-

ing bracket opening rules) while evaluating the expressions. Table 6.7 shows the 

strategies students used to evaluate expressions of this kind – solving the bracket 

first (BF) and opening the bracket (BO). The number of students choosing a strat-

egy varies slightly across the items. Students who solved inside the bracket were 

successful only half the time; they made structural, computational and other errors 

which are not easy to classify. The rate of error (36%) among students who 

opened the bracket was less than those who solved inside the bracket. In contrast, 

in the item in MST-II (comparable to item 2 in MST-III, Table 6.4), the use of the 

two strategies BO and BF were almost equal, with slightly more errors while 

opening bracket. The overall performance in MST-III has improved compared to 

MST-II. Moreover, the percentage of bracket opening errors and calculation er-

rors has slightly reduced in MST-III but has led to resurfacing of structural errors 

in this context which is a result of the items used in MST-III (see Table 6.8).  

Table 6.8 shows the predominant errors made by students while evaluating such 

expressions. It is clear from the table that a majority of the students committed 

errors either due to incorrect application of bracket opening rules or incorrect 

parsing of the sub-expression inside the bracket. Most errors while opening 

brackets had to do with the sign changing rules rather than applying distributive 

property. The errors in evaluating inside the bracket, largely by the English me-

dium students, were ‘LRB’ (left to right inside bracket) and the ‘detachment’ er-

rors. So for expressions embedded inside brackets, they were unable to perceive 
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the separation of the simple term and the product term. Calculation errors and 

some other errors which were a combination of the above mentioned structural 

and bracket opening errors accounted for another large majority of the errors. The 

Marathi group of students did not commit the structural errors like ‘LR’ and de-

tachment and displayed a better understanding of the bracket opening rules.  

Item Correct  Sign not 
changed 

Sign 
changed 
inside 
bracket 

ID LRB De-
tach-
ment  

Calc. 
error 

Others Not 
done 

25-(4+3×5) 21 2 2 0 4 0 1 1 0 

34-6×(9-5) 20 5 0 1 0 1 2 2  0 

28-(13-7+5) 18 2  2 0 0 4 1 4  0 

19-2×(3+6×7) 12 3 1 2 0 0 6 5  2 

Total 71 12 5 3 4 5 9 13 2 

Percentage  57.25 Bracket opening errors: 
16 

Structural er-
rors: 7.25 

7.25 10.5 1.75 

Table 6.8: Number of student responses by type of error in evaluating bracketed 
expression in Post-test of MST-III (N=31) 

Note. ID = Incomplete distribution, LRB = Left to right inside bracket, Others = 
Combination of structural and bracket opening errors, Not done = instances of not 
attempting an item. 

Figure 6.6 shows some solutions by students of expressions with brackets in 

MST-III and instantiates the errors as discussed above. The figures demonstrate 

some of the typical errors committed by students. Students evidently preferred to 

open the brackets using the rules than to solve inside the bracket. Although all 

students used the concept of term to analyze the expressions, not all of them were 

successful. Whereas Figure 6.6(c) is an example of deeper analysis of the sub-

expression, Figures 6.6(b) and (d) are examples of structural error in the sub-

expression embedded inside the bracket. Some students were also found to change 

the sign of the terms inside the bracket while retaining the bracket as in Figure 
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6.6(d): 28-(13-7+5)=28-(-13+7-5) (figure contains correction made by the 

teacher; the answer was correct). A sample of correct solutions is also shown 

(Figures 6.6(a) and (e)). 

 
 
 
 
 
 
 
 
 
 
 

Figure 6.6: Sample of students’ solution of expressions with brackets in post-test 
of MST-III 

Students’ understanding of evaluating expressions with brackets 
as revealed through the interview  

Students were also interviewed on the evaluation of arithmetic expressions with 

brackets. Two such items were posed after both the trials: one had a negative sign 

to the left of the bracket (a negative bracketed term) and the second had multipli-

cation sign outside the bracket (product term with a bracket factor) (see Q.A (3 

and 4) and Interview schedule (Tasks 4 and 6) in Appendix VA), Arithemtic test 

Q1. (C and D) and Interview schedule: arithmetic (Tasks 3 and 4) in Appendix 

VB). Students had more trouble in these expressions compared to the simple 

arithmetic expressions discussed earlier – first, in evaluating simple expressions 

with brackets and then in justifying their solution, and further explaining the cor-

rectness or the incorrectness of an alternative solution. Table 6.11 summarizes the 

students’ responses to the two items in this task in the interviews after the two tri-

als MST-II and III. As before, this table also describes correctness or incorrect-

ness of students’ written solution (‘Solution’), their response to the alternative so-

a b c

d e
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lution of the same expression (‘Probe’) and finally, the changes they made in the 

process (‘Changes’). The table shows that four students out of fourteen made er-

ror at least once in evaluating such expression after MST-II but they succeeded in 

correcting their solutions. In six instances students made incorrect judgments, 

with or without an appropriate explanation, for the alternative solution. Only two 

instances could be satisfactorily resolved during the interview. Out of the remain-

ing four, one student could not correct the judgment and another used the unique 

value of the expression as the criterion for changing her judgment, however not 

appreciating the equality of the expressions. Two students held the belief that re-

moving the bracket always results in change of sign, irrespective of what sign is 

before the bracket.  

After MST-III, twelve students (out of 17) were readily seen to use both ways of 

evaluating the expressions with brackets, that is, either solving the bracketed part 

first or removing the bracket by using an appropriate rule indicating that they un-

derstood the equivalence of these two procedures. These students also knew the 

rules of opening bracket well. The other five students could not successfully solve 

the expression with the negative sign outside the bracket, but the item with multi-

plication sign was error free.  Except for two students who failed to be convinced 

about the incorrectness of their solution, the other three corrected their solution 

easily when given an opportunity to do so. These students also knew the correct 

rules, but two of them were unsure about the equality of the two ways of evalua-

tion (that is, evaluating inside the brackets, or opening the brackets). One of them 

stressed that although such bracket opening rules can be used to evaluate the ex-

pressions, the expression enclosed by the bracket should be given precedence. In-

terview excerpts of students marked with an asterisk in Table 6.9 will be dis-

cussed below.  
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 MST-II MST-III 
Name Item 1:  25-(10+5) Item 2: 6×(2+3) Item 1: 22-(7+9) Item 2: 5×(3+8) 

 Solution Probe Changes Solution Probe Changes Solution Probe Changes Solution Probes Changes
BP* C SE NC I SE ISCS C SE NC CE SE CEC 
PD I SE ISCS C UE IACA C SE NC C SE NC 
BK C SE NC C SE NC C SE NC C SE NC 

AY* I SE ISCS C IJ, 
NE NC C SE NC C SE NC 

NN I UE ISCS, 
CAIACA C SE NC I SE ISCS C SE NC 

SG* C SEC IACA C UE IACA I SE ISCS C SE NC 
NW C SE NC C SE NC C SE NC C SE NC 
RG C SE NC C SE NC C SE NC C SE NC 
AS C UE NC C NE NC I SE ISCS C SE NC 
AN C SE NC C SE NC C SE NC C SE NC 
SV C SE NC C SE NC C SE NC C SE NC 
MC C SEC IACA C NE NC C SE NC C SE NC 

AB C SE NC C SE NC I IJ ISCS, 
IACA C SE NC 

BM C SE NC C SE NC C SE NC C SE NC 
PG - - - - - - C SE NC C SE NC 

JS* - - - - - - I IJ, 
UE ISCS C SE NC 

TJ - - - - - - C SE NC C SE NC 

Table 6.9: Responses of the students interviewed in the two items of evaluating expressions with brackets after MST-II 
and III (* indicates students whose interviews are discussed in the text) 
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Written solution to the evaluation task (Solution): 

(C) Correct – the solution given for the expression is correct 

(I) Incorrect – the solution given for the expression is incorrect 

(CE) Calculation error – solution procedure is correct but contains calculation error 

Explanation to the alternative solution (Probe):  

(SE) Satisfactory explanation – able to explain correctly own solution as well as the alternative solution and displays the knowledge of 
rules and concepts (based on terms and combination of terms, brackets)  

(SEC) Satisfactory explanation with changes – able to explain correctly own solution as well as the alternative solution but involves a 
change in the answer during discussion 

(UE) Unsatisfactory explanation – creates an ad-hoc explanation suitable for the specific situation at hand and may involve frequent 
change of answers from one to another 

 (NE) No explanation – cannot give any explanation for the alternative solution and only knows own solution  

 (OC) One correct – choosing an answer because only one solution can be correct 

 (IJ) Incorrect judgment – making an incorrect judgment about the alternative solution 

Changes made by the student during the interview (Changes): 

(NC) No changes made 

(CEC) Calculation error corrected – the subject corrects the calculation error 

(ISCS) Incorrect solution to correct solution – the subject changes his/ her incorrect solution for the expression to a correct one  

(IACA) Incorrect alternative to correct alternative – the subject changes his/ her incorrect answer for alternative solution to a correct an-
swer 

(CSIS) Correct solution to incorrect solution – the subject changes his/ her correct solution for the expression to an incorrect one  

(CAIA) Correct alternative to incorrect alternative – the subject changes his/ her correct answer for alternative solution to an incorrect an-
swer 

 (CAIACA) Correct alternative to incorrect alternative to correct alternative – the subject changes his/ her correct answer for the alternative 
solution to an incorrect answer to back again to a correct answer 
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Most students (except those mentioned in the above two paragraphs who were not 

able to resolve the issue) in the interview supported their solution or their judg-

ment on the alternative solution by stating the correct rules for bracket opening 

and pointing out the equivalence of the two ways of evaluating an expression with 

bracket. The transcripts below show the range of understanding that the students 

had at the end of the second and the third trial with respect to evaluating expres-

sions with bracket. The following transcript gives an indication of the extent of 

over generalization of rules which was seen among two students after MST-II. 

However, these students did not display this misconception after MST-III. The 

student BP (MST-II) quickly agrees to the alternative solutions and agrees that her 

solution is wrong but decides the correctness of the last solution by appealing 

again to the unique value property.  

RJ: Now this question. 6×(3+2). You first did 6×3 and then you did –2 from +2, 
and then +18-2. Where did you get –2 over here? 

BP: Opened brackets na.  

RJ: You opened the bracket. So you got –2. +18 and –2. But one boy, he did it 
like this. 6×(3+2). He did it like this 6×3+6×2= 18+12=30. Is this correct? 

BP: This is correct. 

… 

RJ: Why? 

BP: Because, 6 is product term, 6 ‘into’, it is common. 

RJ: 6 is common, and this is a product term. …But one boy did it like this 6×5 
=30. Is this correct? 

BP: Yes, these two answers are same. And he has added 3 and 2 and did 6×5. 

RJ:  Can we add like this? 

BP: Yes.  

The following excerpt also shows the confusion students had with the meaning 

and use of bracket. The student AY (MST-II) changed his answer and explanation 

many times but obviously without much knowledge of his own acts. He solved 
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the expression 25-(10+5) initially as 25-10+5=25+5=-30 and when pushed further 

tried to solve it as +25+10+5=15+5=+20 during the interview, failing once again. 

RB: Ok, if someone does this like this 25-(10+5)=25-15=10. Is this correct?  

AY: Yes teacher. 

RB: This is correct? Sure correct?  

AY: Yes. 

RB: Can this question have two different answers? 

AY: Teacher no.  

RB: Then what should be done? Are both of these correct or one of them is cor-
rect?  

AY: This is correct [points to 25-15]. 

RB: This is correct. Why? 

AY: Because they are in one bracket and we can add them. And we can do 25-15. 

RB: So we could have as well removed the bracket and done. But then why is 
this [+25+10+5=15+5=+20] not correct?  

AY: Teacher, because here I have added [10+5], here it should have been sub-
tracted.  

RB: Where should it be subtracted? 

AY: 15+5, I should subtract it and write 10.  

RB: But is 15+5 10? If you add 15 and 5 would you get 10? 

AY: Subtract here [-5 instead of +5]. 

RB: Here it should be -5. But where will -5 come from?  

AY: The sign inside bracket will change, so it will be -5.  

RB: This will be -5 and here it will be +10.  

AY: Teacher, yes.  

His poor knowledge of integer operations interferes with his other learning and 

this issue was troubling throughout the whole interview. He was not aware of the 

different answers he arrived at after each of his attempts to solve the expressions 

25-(10+5). He could not also use the bracket opening rule correctly. He agreed 

completely with the alternative correct solution, explained it satisfactorily and 
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started to correct his own steps. He tried to fix the problem in an ad-hoc manner 

in bits and pieces without ever gaining full control of the situation and taking 

stock of the necessary rules to be followed. However, in MST-III, he had no trou-

ble in solving a similar expression and explaining the alternative solution display-

ing his understanding of the equality of the two ways of evaluation. 

Even after MST-III, some students faced difficulties in responding to expressions 

with brackets. The overall situation was better than after MST-II, with the expres-

sion 22-(7+9) being an exception evoking all kinds of responses. One student JS 

explains her solution for 22-(7+9) and her confusion with regard to the use of 

brackets is evident. She solved it as 22+7-9=22-3=19. She was one of the few 

students who did not think the solution 22-16=6 was a correct solution because 

‘there is a minus sign outside the bracket, so the sign inside would change’. 

RB: Acha. There was another student who did it as 22-7-9= 22-7 is 15-9=6. Is 
this student correct? This student also said that there is a minus sign outside the 
bracket and the signs change.  

JS: May be it is correct. 

RB: It could be correct? Why can it be correct? 

JS: Because he has also written minus sign, -7-9, later he has solved this.  

RB: What is the difference between this solution [22-7-9=15-9] and the one you 
have solved [22+7-9]?  

JS: I have first solved the bracket and then the part outside bracket, and he has 
solved first the part outside the bracket and then inside the bracket.  

RB: What do you think, can this [22+7-9] and this [22-7-9] both be correct? 
What is your answer, +19 and what is the answer of this student, +6. Can both 
the answers be correct? One of the two has to be correct. Which of these is cor-
rect?  

JS: This one [22+7-9]. 

JS insisted that the solution 22-7-9=15-9=6 was not correct as ‘… you have to first 

solve inside the bracket and then outside. But he has first solved outside’. Al-

though she agreed that different ways of solving the expression should lead to the 
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same answer, she could not find the error in her solution and checked all other 

solutions with respect to her solution. She too, like AY in the previous transcript, 

did not have adequate knowledge of integer operations and probably did not see 

the difference between 7-9 and 9-7. Her understanding of the meaning of bracket 

was confounded with bracket opening rules she had learnt, making it difficult for 

her to attend to the important aspects of the solution process. It was only by the 

end of the interview, through heavy prompting that she could understand her mis-

take. She is not very articulate in her explanation but one can understand what she 

means to say in the context. For both these students (AY and JS), integer opera-

tions together with shaky understanding of brackets led to the confusion. 

Another student SG (MST-III) understood the meaning of brackets as precedence 

operation and was also aware of the bracket opening rule.  

RB: Is there any other way of solving it?  

SG: Teacher, I do not know.  

RB: Now what have you have done is 7+9=16. There was a student who did it 
like this. You have to tell me whether he did it correct or wrong. 22-7-9=15-9=6. 
Is this correct?  

SG: Teacher, this is in the bracket, so this has to be done first. We can do it this 
way also. But it is in the bracket so we should do it first.  

He clearly understood the difference in the procedures of evaluating an expression 

with and without brackets. But he was not comfortable in using the bracket open-

ing rules to evaluate the expression, though he reluctantly agreed to such a proce-

dure. He appreciated the various ways of evaluating expressions when the expres-

sion did not contain bracket. He clearly maintained this difference between solv-

ing expressions involving brackets and without any brackets in other instances 

also during the interview (‘If there is bracket we must do the bracket and if there 

is no bracket then there is a different way of doing it.’).  
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More students made errors in evaluating expressions with a negative bracketed 

term compared to a product term with brackets. All students could correctly ex-

plain the mechanism of the distributive property (without explicitly stating it) and 

the precedence of the brackets but this understanding was very procedural and no 

effort was made to explore students’ understanding about the truth of the rule. 

Neither did any student try to explain it. Below is the conversation with a student 

RG (MST-III) during the interview about evaluating 5×(3+8).  

SN: Explain the solution to this.  

RG: Here 5×(3+8) is one term. And here I have made them two different 
terms +5×3 and +5×8 and then 5 3za 15 and 5 8 za 40 and then added 
them.  

SN: And what have you done here [pointing to his other solution 
5×11=55]? 

RG: Here I added inside the bracket and solved. 

RG was aware of both ways of evaluating the expression and was convinced that 

the two ways of evaluation are equivalent and would lead to the same answer. 

These discussions during the interview also indicated their better grasp of the dis-

tributive property than using the idea of inverse for a negative bracketed term.  

The analysis of strategies used for solving the expressions with bracket and the 

nature of errors in the post test shows a trend of moving from giving precedence 

to the brackets to opening the bracket. Although over the trials more number of 

students used bracket opening as the strategy for solving such expressions, less of 

them made errors in applying the correct rules. Also, students were not using a 

single strategy across the expressions. The structural errors resurfaced as the stu-

dents failed to attend to the structure of the expression and the sub-expression. 

Some of them probably failed to grasp the equality of the expressions while re-

moving the bracket, the rules mechanically applied, and this seems to be the cause 

of confusion for a few of the students (as seen in the interview and probably true 
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of some others who were not interviewed). Whether they solved inside the bracket 

first or opened the bracket apparently displaying the dynamic ‘structural’ use of 

brackets, in both cases, it seems to have remained at the level of procedures, 

without appreciating the duality – the process and the product – that is, under-

standing that the bracketed (sub-)expression can be replaced by a number or an 

equal expression, which is a demonstration of ‘proceptual’ thinking (Sfard, 1991; 

Gray and Tall, 1994) inherent in the use of the bracket. The bracketed expression 

till the end did not become a ‘process’ (as in APOS) in the minds of the students 

which they could run through mentally without actually carrying it out (Dubinsky 

and MacDonald, 2001). This flexible understanding of brackets is crucial not only 

for evaluating the expressions as above but also in generating representations.  

6.1.4 Easy ways of evaluating arithmetic expressions 

In order to focus the attention of students on the structure of expressions and to 

de-emphasize precedence rules, even though these formed the basis of evaluation 

of arithmetic expressions during MST-I, students were encouraged to look at the 

relationships between terms of the expression and find easy ways of computing 

them (e.g. 29-7+11+7 or 14×3+10×8+14×7). Two main objectives of this task 

were to complement procedures with structure sense and to introduce non-

sequential computation in arithmetic itself rather than postpone it to algebra. Ta-

ble 6.10 shows the performance of the students in successfully evaluating com-

plex arithmetic expressions in the three trials of the main study (e.g. see Q.30 in 

Appendix IIB, Q.19 in Appendix IIIB, Q.12 in Appendix IVA, Q.19 in IVB). In 

all the trials, the performance of the Marathi group is better than the English 

group, in both cases of expressions with only simple terms and only product 

terms. Whereas in MST-I, the errors were due to the difficult calculations they 

carried out by adhering to the precedence rules including two cases of ‘LR’ error; 

in MST-II, most students identified terms which could be combined to make 
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computation easy but they made numerous errors in integer operations, leading to 

low performance. One of the items in the MST-II post test was 12×9+16×5-17×9, 

where many students made a mistake in writing the result of the sub-expression 

12-17  obtained after extracting the common factor 9 (most wrote 5 instead of -5). 

Even those who wrote the correct answer for this sub-expression, attached the 

wrong sign to the factor (wrote 5×(16+9) instead of 5×(16-9)) while extracting the 

common factor in the next step of evaluation. In the second item, which had a 

common factor among all the terms, most of the errors were found to be non-

systematic like changing the sign of a term or calculation errors. Similarly, in 

MST-III, most of the errors were due to calculation mistakes, errors in sign, 

changing the sign of the term or the term itself. There were seven instances of ‘de-

tachment’ and three of ‘LR’ in the pre test and three instances of ‘detachment’ in 

the post test of MST-III.  

Sample item MST-I MST-II MST-III 

 English Marathi English Marathi English Marathi 

 Post Post Post Post Pre Post Pre Post 

-28+49+8+20-49 53 62 67 100 40 73 69 81 

48-56+17+9 33 44 - - 40 87 44 94 

3×16+16×12-16×7 - - 47 81 27 73 62 87 

7×18-6×11+4×18 27 56 0 25 47 33 69 94 

Table 6.10: Performance (in percentage) of students correctly evaluating complex 
expressions across the trials (nenglish=15, nmarathi=16) 

Note. There was only one item of each type. Blank entries against items not posed 
in the tests. 

Analysis of the strategies used to simplify these expressions would reveal the ex-

tent to which students actually identified and found easy ways of evaluation. The 

expectation was that the improved performance in such tasks would also be re-

flected in the strategies chosen. Table 6.11 and 6.12 below shows the number of 
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students in each category of strategy chosen by them, relational (RN), precedence 

rules (PR), unknown strategy (US) or not attempted (NA), not necessarily leading 

to correct solutions in the end. A strategy was coded ‘relational’ when the stu-

dents noticed relationships in the terms and combined them flexibly, using proper-

ties of numbers and operations to make the computation task simpler. Further, a 

strategy was coded ‘precedence rule’ when the student used precedence rules to 

simplify the expression, not noticing any relationship between the terms. Some of 

the students did not show any working for their responses, and therefore such re-

sponses are classified under unknown strategy. The tables show the change in 

strategies of the students. There is a large difference in the way the students ap-

proached the problem between MST-I and II and some minor difference between 

MST-II and III. Surprisingly, many students could use relational strategies for 

evaluating such expressions in the pre test of MST-III, which was conducted after 

many months of MST-II.  

Sample item  MST-I (Post-test) MST-II(Post-test) 

 RN PR US NA RN PR US NA 

29-7+11+7 13(*4) 11(*4) 3(*1) 4 30(*4) 1(*1) 0 0 

11×4+9×11-7×11 - - - - 21(*7) 8(*3) 0 1 

14×3+10×8+14×7 6(*1) 15(*8) 2(*1) 8 18(*17) 9(*5) 0 5 

Table 6.11: Number of student responses by type of strategy in solving expres-
sions using easy ways in the first two trials (N=31, *the number in the bracket 

denotes number of incorrect responses) 

Note. RN =  Relational strategy, PR =  Precedence rules, US = Unknown strategy, 
NA = Not attempted the item. Entries for items not posed in trials in blank. 

During the first trial of the main study, students found it difficult to reconcile the 

two different instructions for evaluating expressions: one, to apply precedence 

rules to evaluate expressions and the other, to explore relationships between terms 

to make computation easy. This was reflected in the performance of the students 
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in the post test as well where students could not find useful relations to make cal-

culations easy. Instead, they computed the expressions using precedence rules, 

and in the process committed calculation mistakes due to tedious long calcula-

tions. 

Sample item Pre test Post test 

 RN PR US NA RN PR US NA 

48-56+17+9 24(*5) 3(*3) 2(*2) 2 19(*3) 11(*3) 1(*1) 0 

69-26-11+26-8 18(*7) 9(*7) 1(*1) 3 28(*3) 3(*0) 0 0 

3×16+16×12-16×7 14(*7) 14(*7) 1(*1) 2 21(*3) 10(*3) 0 0 

7×18-6×11+4×18 19(*5) 6(*2) 1(*1) 5 22(*7) 9(*4) 0 0 

Table 6.12: Number of student responses by strategy in solving expressions using 
easy ways in MST-III (N=31, *the number in the bracket denotes number of in-

correct responses) 

Note. RN =  Relational strategy, PR =  Precedence rules, US = Unknown strategy, 
NA = Not attempted the item. Entries for items not posed in tests is blank. 

The items in MST-II and MST-III were more complex, but more number of stu-

dents chose relational strategies than precedence. They looked for terms which 

when combined could lead to easy computation of the expression. The ‘terms ap-

proach’ helped students to identify relationships between terms and combine them 

flexibly. Also, these solution procedures, at least in the case of simple terms, were 

spontaneously generated by the students during classroom discussions. The num-

ber of students efficiently using the strategy of combining terms is much higher in 

expressions with simple terms (where some terms cancelled each other or com-

bined to form multiples of 10) than in the case of expressions with product terms, 

where distributive property could be used once or twice. The knowledge of dis-

tributive property is necessary but not sufficient for using such strategies while 

evaluating expressions. Students (except two instances in three trials) who used 

the distributive property in this task also could write the equal expression for 
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3×(4+5)=__ (another task in all the tests) after removing brackets but not vice-

versa. Those who could not do so, preferred to convert each product term into 

simple term.  

The above tables indicate students’ increasing ability to perceive structure of ex-

pressions and use it in carrying out tasks like the one being discussed here. This is 

not to say that they always found the most efficient way of computing the answer, 

especially in the case of expressions with simple terms where there were multiple 

ways possible. But the non-sequential computing of expressions requires an 

awareness of the fact that combining terms in any order does not change the value 

of the expression. Such understanding and using this to one’s advantage is the 

first step towards developing a stable structure sense and would be helpful in rea-

soning about expressions. This would also connect with the simplification proce-

dures in algebra which essentially require the flexibility as the sequential left to 

right computation is no longer possible.  

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.7: Sample of students’ evaluation of expressions containing only simple 
terms using easy ways in the post test of the three trials 

Figures 6.7 and 6.8 show students’ solutions to some expressions using easy 

ways. As has been pointed out earlier, the solutions to expressions, both with sim-
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ple and product terms, during MST-I were not as flexible as they were in MST-II 

and III. Although students tried to see the relationships between terms and use 

them in their computations, they failed in their attempts (Figure 6.7(b), 6.8(b)). 

The reasons for this have been discussed above. Further, the nature of the expres-

sions used in MST-II and III allowed more ways of manipulating them. Some ex-

amples of such solution in the case of expressions with only simple terms are seen 

in Figure 6.7(c, e, f).  

 

 

 

 

 

 

 

 

 

Figure 6.8: Sample of students’ evaluation of expressions containing product 
terms using easy ways in the post test of the three trials 

In expressions with product terms the students extracted the common factor using 

the distributive property. Some students applied this procedure twice, simplifying 

the computation even further (Figure 6.8(g), MST-III). Also, the solutions to ex-

pressions with product terms in MST-II indicate the type of the errors which were 

responsible for the low overall performance in the task (see Figure 6.8(e)). To 
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avoid mistakes, some students carefully chose not to use distributive property the 

second time when one of the factors had a negative sign, and instead solved the 

product terms. Occasionally responses of the kind shown in Figure 6.8(f) were 

seen when a few students used the property to extract the common factor and not 

knowing what to do further, opened it again to evaluate the expression.  

In a slight variation of the above item, students were asked to show 47-6-52+29-

24+9 = 3 in the post test of MST-II. 40% of the English medium students and 

56% of the Marathi medium students were successful in completing the task. 

Most of the students who succeeded in the task found efficient ways of combining 

terms, reducing the chances of errors. One such solution can be seen in Figure 

6.7(d). The unsuccessful students made non-systematic errors, like changing the 

sign of the terms or a term itself midway through the solution process and a few 

systematic errors like incorrect sign after integer operations and ‘detachment’ er-

ror were also seen. The rationale behind the use of such tasks was to guide stu-

dents to manipulate expressions with respect to a goal which is a very useful skill 

in algebra problem solving (Mason et al., 1985; Arcavi, 1994; Boero et al., 2001, 

discussed in Chapter 2, section 2.7.3). A similar task was also used in the context 

of algebra.  

The discussion on evaluating expressions in the previous sections reveal that the 

concept of terms was being used by the students in all computation tasks and was 

no longer restricted to the context of comparing expressions and judging equality 

of expressions. Students improved their performance in evaluating expressions 

using flexible means in MST-II and III over MST-I. It is important to understand 

that correct identification of terms is an essential pre requisite for evaluating ex-

pressions flexibly but is not sufficient. Although most students could identify 

terms correctly in MST-II and III, not all could successfully complete the tasks 

(evaluation of simple and complex expressions), many errors being in integer op-
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erations as well as non-systematic errors. Many of these students also made errors 

while solving simple two termed expressions (e.g. -5+8=?), designed to check 

their skills in integer operations. Their performance with respect to bracketed ex-

pressions was not satisfactory and the interview transcripts show non-clarity re-

garding the meaning and purpose of brackets. The competing demands made by 

these expressions requiring the students to analyze the terms in the expressions as 

well as apply rules on them, were too much for them to handle. It needs a certain 

degree of automaticity with the parsing of expressions to be able to move ahead. 

For a few students, identifying terms remained at a mechanical level; they were 

unable to understand the purpose of parsing and could not benefit from the ap-

proach. Many others gradually moved from the sequential left to right processes 

to focusing on relations among terms. This was governed by an implicit under-

standing that terms of an expression could be combined in any order without 

changing its value, which students had learnt while identifying and generating 

equal expressions tasks and will be discussed in the next chapter.  

6.2 Understanding of simplification of algebraic expres-
sions 

Students’ understanding of evaluating arithmetic expressions – simple as well as 

the more complex expressions has already been discussed. The simplification of 

algebraic expressions follows the same rules as of transforming arithmetic expres-

sions (that a product term needs to be simplified to a simple term to combine with 

another simple term or else two product terms can be combined if they have a 

common factor), even though there are subtle differences in the evaluation proce-

dure and notations and conventions as discussed in Chapter 2. One can be suc-

cessful in evaluating arithmetic expressions using procedural precedence rules as 

well but such an understanding is often not helpful in simplification of algebraic 

expressions where the knowledge of structure of expressions plays an important 
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role in appreciating the rules for manipulating algebraic expressions. It requires 

knowledge of rules and properties of operations, that is, some knowledge of both 

systemic structure and surface structure but the goal is to apply this knowledge to 

arrive at a compact expression in its simplest form. Simplification of algebraic 

expressions was a problematic area for quite some time; students finding it diffi-

cult to understand the rules of simplification. The teaching approach and the con-

tinuous effort to modify to make this accessible to students have been discussed in 

Chapter 5.  

Across the trials, students performed these tasks with various degrees of success. 

The performance of the students in the simplification task will be discussed in this 

section along with the relation of the knowledge of the rules and procedures for 

transforming arithmetic expressions to their understanding of the procedure of 

simplifying algebraic expressions.  

6.2.1 Simplification of algebraic expressions 

Sample item MST-I MST-II MST-III 

 English Marathi English Marathi English Marathi 

 Post Post Post Post Pre Post Pre Post 

5×x+16+7×x–11 26 31 - - 37 87 44 78 

x+15–13×x–9 - - 0 25 - 80 - 90 

Table 6.13: Students’ performance (in percentage) in the simplification task of 
algebraic expression (nenglish=15, nmarathi=16) 

Note. 5×x+16+7×x–11: 2 items each in post-test of MST-I, pre-test of MST-III 
and post-test of MST-III; x+15–13×x–9: 1 item in post-test of MST-IIand 2 items 
in post-test of MST-III.  

Students’ performance in simplifying algebraic expressions in the post test in the 

first two trials was much below their performance in any of the tasks of manipu-

lating arithmetic expressions. There were two such items in the post test of MST-
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I, one in MST-II and four in MST-III (see Q. 21 in Appendix IIB, Q.19(C and D) 

in Appendix IIIB, Q.18 in Appendices IVA and IVB). Average performance has 

been taken in cases of multiple items with similar structure (post test of MST-III). 

Table 6.13 shows the performance of the students in the task over the three trials.  

The analysis of the responses to the simplification task reveal qualitative shift in 

their understanding. Table 6.14 shows the frequency of different errors in the 

three trials made by the students. A large chunk of the errors is caused due to 

‘conjoining’ error (e.g. 3+4×y=7×y) in both MST-I and II, which is made not just 

in the penultimate step but also along the simplification process, and due to non-

systematic errors (NSE, e.g. change of sign, change of term, arbitrary solution 

process). In MST-II, the performance of the students in the algebraic simplifica-

tion task was equally poor, the error rate being even higher. The item was slightly 

more complex than the last trial (x+15-13×x-9), including a ‘singleton’ and a 

negative answer for a part of the manipulation (x-13×x= -12×x). Some of these 

students (16%) identified x+15 to be a single term and changed it to x×15, a form 

which they were familiar with (considered NSE while coding). The reason could 

be deeper than just carelessly perceiving a structure which is more familiar. Using 

the approach which was used in this study to build an understanding of algebraic 

expressions and transformations on them, it is much easier to understand the 

meaning of 3×y than of ‘y’; the former can be understood as ‘three times any 

number’ but the latter is harder; operating on or with it subsequently also becomes 

harder. In MST-III, the students were largely able to simplify algebraic expres-

sions. In this trial, all students, except one, used the idea of extracting the com-

mon factor to simplify such expressions. 
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Types of  error MST-I 

(2 items)

MST-II 

(1 item) 

MST-III 

(4 items)

Conjoining 31 26 0 

NSE 18 45 10 

Integer operations 3 3 5 

Calculation error 3 0 1 

Not done 16 6 0 

Table 6.14: Percentage of incorrect responses by type of error in simplifying al-
gebraic expression in the post test of the three trials (N=31) 

Note. NSE =  Non-systematic errors, Not done =  not attempted the item/ question 

The classroom discussions during MST-I showed that students faced difficulties 

in understanding the notational, structural and procedural similarities and differ-

ences between manipulating arithmetic and algebraic expressions (see Chapter 5 

for detailed discussion). Even if some students learnt to do it during the trials, 

they could not perform successfully in the test at the end of the trial. The class-

room performance of the students in MST-II indicated that they had understood 

the similarity between the procedures in the two kinds of expressions, arithmetic 

and algebraic, well. The students were able to simplify algebraic expressions and 

the low performance in the post test could be attributed to the ‘tricky’ expression 

involving a singleton.  

Figure 6.9 gives a glimpse of how students simplified algebraic expressions in the 

post tests of the three trials. In MST-I students rewrote the algebraic expression 

arranging the like terms together (Figure 6.9(a)) or explicitly identified the like 

terms (Figure 6.9(c)) and simplified by extracting the common factor. Failing to 

appreciate the need for separating the like terms or distinguishing the terms, many 

students were seen to simplify the expression as shown in Figure 6.9(b) (conjoin-

ing error). In MST-II, together with conjoining errors, students committed errors 
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in integer operations as well (Figure 6.9(d)), and other errors of changing the 

terms (e.g. considering x+15 as x×15, Figure 6.9(f)). Figure 6.9(e) is a correct so-

lution and this was rare in MST-II.  

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 

Figure 6.9: Example of students’ work on simplification of algebraic expressions 
in the post test of the three trials 

In a slight variation of the simplification task and similar to the task in arithmetic, 

the students were asked to show that the expression 19×n-8-5×n+1 is equal to the 

expression 7×(2×n-1) in MST-II. The performance of the students was very poor 

in this task as well with only 33% of the English medium and 6% of the Marathi 

medium students being able to successfully complete the task. Many of the stu-

MST-I 

MST-II 

MST-III 

a c

e d f

g h

i j

k 

b 



 232 

dents did not attempt the task and very few were successful. Figures 6.9(g) and 

(h) show two solutions by students in this task in the post test. The solution in 

6.9(g) indicates that the student could simplify the expression but could not see 

the desired goal in it and instead ended up conjoining. The other solution (Figure 

6.9(h)) is complete and the student meticulously derived the expression from the 

given one. The classroom discussions indicate that although the students could 

begin well and get the simplified expression but manipulating it further to reach 

the desired outcome was difficult for them. The final expression was mostly ar-

rived by intervention from the teachers and it is hard to say whether students ap-

preciated that the final expression, which had very different surface structure, was 

equivalent to the original expression. The purpose behind the use of such tasks 

was not successfully met with as the students, devoid of any context, did not see 

the need for it. This was more successful in the arithmetic context. These aspects 

were not dealt with in detail at this time. Their understanding of simplification 

process of algebraic expressions at the end of MST-III is discussed later in this 

section. 

In contrast to the students’ responses during MST-I and MST-II discussed thus 

far, many of the solutions in MST-III were correct and Figure 6.9(i, j, k) shows 

some of the solutions in this trial. One of the students used a basic principle of 

decomposing the product term into ‘singletons’ and seeing the effect of adding 

some or taking away some ‘singletons’ from the existing ones (Figure 6.9(k)). 

Some others followed the more formal way of using the distributive property ar-

riving at the simplified expression (Figure 6.9(i, j)). Almost all the students could 

also think of ‘n’ as a product term 1×n and apply the distributive property to such 

cases. This strategy of converting the simple variable term into a product term had 

its limitation. The students failed to arrive at the result of n+8×n orally without 

recourse to such a long process. This formal strategy was long and cumbersome to 
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handle when the algebraic expression was embedded in a context and quicker way 

of seeing the result was required.  

There were some other indications that students were making a connection be-

tween the procedures in arithmetic and algebra. For example, 18 out of the 25 stu-

dents in MST-I, who could not find easy ways of evaluating arithmetic expres-

sions with product terms requiring the use of distributive property also failed to 

simplify algebraic expressions or made errors. The other seven simplified cor-

rectly, two of them making calculation errors. Further, 5 out of 19 instances in 

MST-I and all in MST-II who made the ‘conjoining’ error while simplifying alge-

braic expressions, also made the ‘LR’ error. An example of this pattern is, solving 

the expression 8+2×7 as 10×7=70 and simplifying the algebraic expression 

5x+6+7x-11=7x, computing sequentially from left to right. There seems to be a 

transfer of misunderstandings and misperceptions of structure of expressions be-

tween the two domains, leading to similar procedural errors in both domains. 

Only by the end of MST-III, students could work on the algebraic expressions 

comfortably, treating the smaller units (terms) as entities (not requiring computa-

tions), which could be combined using the properties of operations (thus making 

the shift from ‘interiorization’ phase to the ‘condensation’ phase).  

6.2.2 Evaluation of algebraic expressions  

Even though students by the end of MST-III learnt to simplify algebraic expres-

sions, the performance in evaluating an algebraic expression given the value of 

the letter (e.g. 5+3×x, x=2) was not very good for the English medium students all 

through the trials (see for example, Q.18 in IIA, Q.17 in Appendix IIB). Results 

of the students’ performance in this task in the various trials are given in Table 

6.15.  
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 MST-I MST-II MST-III 

 English Marathi English Marathi English Marathi 

 Pre Post Pre Post Pre Post Pre Post Pre Post Pre Post

n-14, n=7 - - - - - 40 - 81 53 47 69 75 

5+8×n, n=7 0 33 12 75 40 53 87 94 40 47 75 81 

Table 6.15: Performance (in percentage) of students in evaluating algebraic ex-
pression (nenglish=15, nmarathi=16) 

Note. There was one item of each type in the pre and the post-tests of MST-I, II 
and III. Entries blank against items not posed. 

In the post test of MST-II, three such items were included compared to one item 

in the previous trial. In the third item -7+2×k+12 for k=6, students’ performance 

dropped to 33% (English) and 75% (Marathi), due to errors in integer operations 

that needed to be carried out. A list of the nature of errors made by the students in 

this task together with their frequency in the three trials is given below (Table 

6.16). Few instances of the structural error ‘LR’ (e.g. 7+3×x = 10×x = 20 for x=2) 

continued to recur but reduced considerably by MST-III. Some of the ‘LR’ errors 

were however accompanied by no substitution of the letter by the number 

(‘LR+No substitution’, 9+5×k=14×k). In one instance, a student completely ig-

nored the letter and evaluated the expression as if it was an arithmetic expression. 

Errors due to integer operations (‘sign errors’) were also a major contributor to 

the low performance. The category of errors called ‘others’ consisted of errors 

which are non-systematic and random or incomplete, (e.g. k-12 for k=6, 

k+6+6=k×(6+6) or -7+2×k+12=5+2×k=10×k). Some students did not attempt one 

or more items (‘not attempted’). Over the three trials, there is not much improve-

ment in the students’ performance except for a slight reduction in the number of 

errors per item (from 14/ item in MST-I to 11.3/ item in MST-II, Table 6.16) and 

lesser number of structural errors. The performance is a bit surprising as students 

performed fairly well in the simplification of algebraic expressions task in the 



 235 

post test of MST-III and also as will be seen later, explained quite clearly the 

process of simplification in the interview after MST-III. This task was not dis-

cussed much in the classroom after MST-I; thus their unfamiliarity with the task 

could have led them to not attempt it. Some did not understand the requirement of 

the task and led to the strange solutions (esp. seen in the ‘others’ category). 

 MST-I    
(1 item) 

MST-II  
(3 items) 

MST-III 
(2 items) 

Correct 17 (55%) 59 (63%) 39 (63%) 

LR 5 6 2 

Detachment 0 3 0 

LR+Detachment 0 1 0 

LR+No substitution 3 3 2 

Sign errors 0 9 6 

Letter ignored 0 1 0 

Calculation error 0 1 1 

Others  2 7 4 

Not attempted 4 3 8 

Average error 14/ item 11.3/ item 11.5/ item 

Table 6.16: Number of student responses by type of error in post-test in evaluat-
ing algebraic expressions (N=31) 

Note. LR =  Left to right, LR+Detachment =  left to right together with detach-
ment error, LR+No substitution = left to right, without substituting the value of 
the letter. 

Students who made the ‘LR’ error (and its other variants) in this task also failed to 

simplify algebraic expressions, either conjoining terms or making non-systematic 

errors (random transformation) in the process in MST-I and II. However, in MST-

III the above error did not affect their performance in the simplification of alge-

braic expression task, barring sign errors and change of terms while simplifica-

tion. Few of them made the ‘LR’ error while evaluating a similar arithmetic ex-
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pression as well (e.g. 3+4×7=7×7=49; 3/8 in MST-I and 2/10 in MST-II, 1/4 in 

MST-III). However, in MST-II and III, these students did not make a similar error 

while evaluating arithmetic expressions using easy ways. The Marathi medium 

students seem to be more consistent than the English medium students in their 

appreciation of the structure of expressions in the various tasks and understanding 

of the similarity in the rules of transformation in arithmetic and the algebraic ex-

pressions.  

In another task in the post test of all the trials, students were required to find the 

value of an algebraic expression given the value of a related expression (e.g. 

y+35=72, y+34=?) (see Q.14 in Appendix IIA, Q.13 in Appendix IIB, Q.10 in 

Appendix IIIA etc.). This task has a slightly better performance than the evalua-

tion of the algebraic expression task but it did not necessarily require them to un-

derstand the letter as a number. The answer could be found by looking at the pat-

tern in the expressions. Students’ performance in this task is given in Table 6.17. 

 MST-I MST-II MST-III 

 English Marathi English Marathi English Marathi 

 Pre Post Pre Post Pre Post Pre Post Pre Post Pre Post 

y+35=72, 
y+34=? 7 33 62 69 47 60 81 87 47 33 50 62 

Table 6.17: Performance of students (in percentage) in deriving the value of an 
algebraic expression from a related expression (nenglish=15, nmarathi=16) 

Note. There was only one item of this type in all the tests. 

The students who were successful found the answer by looking at the change in 

the expression, rather than finding the value of the letter and substituting it in the 

later expression, except for two students in MST-I and three in MST-III. Increas-

ing number of students learnt to see the relationship between the expressions in 

the later main study trials (17 in MST-I, 23 in MST-II and MST-III). The per-
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formance of the students in both the groups dropped in MST-III as the expres-

sions involved a minus sign (u-53=26, u-54=?), the students making the error by 

simply comparing the numbers without considering the operation sign (10 stu-

dents). Few students from the English medium group in each of the trials were 

seen to add all or some of the numbers to arrive at the answer, although it de-

creased over the trials (6 in MST-I, 1 in MST-II, 2 in MST-III), again showing a 

misunderstanding about the ‘=’ sign. Some did not attempt the question in each of 

the trials (6 each in MST-I and II, 3 in MST-III). The responses of a couple of 

students in these two tasks across the trials indicate a shaky understanding of ‘=’ 

sign and the letter. 

Students’ understanding of simplification of algebraic expression 
and the letter revealed through the interviews  

The responses of students on the evaluating algebraic expression task, that is, 

knowledge of substitution procedure, were reasons enough to question their un-

derstanding of the meaning of the letter and the procedure of evaluation. Some 

questions were included in the interview after MST-III to be used as a probe for 

furthering the understanding of students’ knowledge of simplifying algebraic ex-

pressions and the meaning of the letter (see Algebra test Q.1 and Interveiw sched-

ule: algebra (tasks 1 and 2) in Appendix VB). In the interview, the students were 

asked to first explain their solution to the simplification of algebraic expression. 

Next they were required to predict the value of the original expression for a value 

of the letter, when the value of the simplified expression for the same value of the 

letter was given. Table 6.18 summarizes students’ responses to the task of simpli-

fying two algebraic expressions. The table shows their initial written solutions to 

the simplification task before the interview began (‘Solution’), followed by their 

explanation for equality in value of the original and the simplified expression 
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(‘Probe’) and finally the changes they made while answering the questions 

(‘Changes’). 

In the interview, all the students successfully justified the procedure of simplifica-

tion of algebraic expressions by drawing on their knowledge of evaluating arith-

metic expressions. One student in fact made the conjoining error while simplify-

ing the expression but while explaining she corrected it. Students predominantly 

explained the simplification process by repeating the procedure they carried out, 

accompanied by statements like only product terms can be combined in the pres-

ence of a common factor and a simple and a product term cannot be combined. As 

an explanation to the second part of the task about equivalence of the expressions 

in the simplification process, many of the students indicated the similarity in pro-

cedures of computing an arithmetic expression and an algebraic expression, hint-

ing at the structural similarity between the two expressions and thus procedural 

similarity. Eleven out of the seventeen students interviewed, knew without resort-

ing to calculation that the given expression and the final simplified expression are 

equal (see Table 6.18, Probe column). They affirmed that each step in the simpli-

fication procedure yields equal expressions and hence their values would be the 

same for any value of the letter. They drew on their knowledge of simplifying 

similar arithmetic expression to arrive at this generalized understanding that valid 

transformations keep the expressions equivalent. This is a very important idea for 

algebra. Six students were not so confident and actually calculated the values of 

the original and the simplified expressions for a given value of the letter reaching 

the same conclusion as above. However, one student among these could not get a 

feel for the generality of the result, even after computation. She was working on a 

case by case manner and, most likely would have again computed if she was 

faced with another task of the same kind. Interview transcripts of students marked 

with an asterisk in Table 6.18 will be discussed below as earlier.  
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 Item1: 5×a+6-2×a+9 Item 2: b+9+6×b-5 

Name Solution Probe Changes Solution Probe Changes 

BP I SE ISCS I SE ISCS 

PD C SE NC C SE NC 

BK* C SE NC C SE NC 

AY C SEC+Cn IACA CE SE CEC 

NN C SEC IACA C SE NC 

SG C SE NC C SE NC 

PG C SECn NC C SECn NC 

JS C UECn NC C UECn IACA 

NW* C SE NC C SE NC 

RG C SE NC C SE NC 

AS C SE NC C SE NC 

AN C SE NC C SEC+Cn IACA 

SV* C SE NC C SE NC 

MC C SE NC C SE NC 

AB* C SECn NC C SE NC 

BM C SECn NC C SECn NC 

TJ C SEC+Cn CAIACA C SE NC 

Table 6.18: Responses of the students interviewed after MST-III in simplifying 
algebraic expression (* indicates students whose interviews are discussed in the 

text) 
Written solution to the simplification task (Solution): 

(C) Correct – the solution given for the expression is correct 

(I) Incorrect- the solution given for the expression is incorrect 

(CE) Calculation error – solution procedure is correct but contains calculation error 

Explanation for equality in value of the original and the simplified expression (Probe):  
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(SE) Satisfactory explanation – able to explain correctly own solution as well as the alterna-
tive solution and displays the knowledge of rules and concepts (based on terms and 
combination of terms)  

(SEC) Satisfactory explanation with changes – able to explain correctly own solution as well 
as the alternative solution but involves a change in the answer during discussion 

(SECn) Satisfactory explanation based on calculation – the subject explains the solution satis-
factorily but takes help of calculations 

(SEC+Cn) Satisfactory explanation with changes and based on calculation – able to explain 
correctly own solution as well as the alternative solution but involves a change in the answer 
during discussion and uses calculation in the explanation 

 (UE) Unsatisfactory explanation – creates an ad-hoc explanation suitable for the specific 
situation at hand and may involve frequent change of answers from one to another,  

 (UECn) Unsatisfactory explanation based on calculation – the subject explains the solution 
unsatisfactorily taking help of calculations 

Changes made by the student during the interview (Changes): 

(NC) No changes made 

(CEC) Calculation error corrected – the subject corrects the calculation error 

(ISCS) Incorrect solution to correct solution – the subject changes his/ her incorrect solution 
for the expression to a correct one  

(IACA) Incorrect alternative to correct alternative – the subject changes his/ her incorrect an-
swer for the probe to a correct answer 

(CAIACA) Correct alternative to incorrect alternative – the subject changes his/ her correct 
answer for the probe to an incorrect answer to back again to a correct answer 
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Below are two transcripts to illustrate the ways in which students justified them-

selves. SV is a student who understood algebraic expressions and their manipula-

tion process. He had simplified the expressions using the distributive property. In 

the following interview the expression 5×a+6-2×a+9 is being discussed with the 

interviewer SN. 

SN: Okay. Now suppose I put a=4, then what is the value of a×3+15, 27. Then 
what is the value of this [5×a+6-2×a+9]?  

SV: If the value of this [a×3+15] is 27, then the value of this [5×a+6-2×a+9] 
also will be 27. 

SN: Why? 

SV: Because it is an equal expression. 

SN: Which expressions are equal? 

SV: This expression [5×a+6-2×a+9] and this expression [a×3+15] are equal.  

… 

SN: Okay, now if I decide to simplify further, then can I write 18×a as the an-
swer? 

SV: No. 

SN: Why? 

SV: Because a×3 is the product, you should not do 15+3 and write. The product 
term is to be done first.  

He was very clear that the simplified and the original expression are equivalent 

for all values of the letter. Not only that, he also thought that all the steps in the 

simplification process yield equal expressions and therefore their values would be 

the same for a given value of the letter. He was aware of the constraints on trans-

formations, thus accepting the non-closure of algebraic expressions.  

Another student NW’s interview transcript on this task is given below. She sim-

plified the two expressions correctly and gave satisfactory explanation. The same 

expression 5×a+6-2×a+9 as above is being discussed here.  
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SN: Now suppose that the value of ‘a’ is 4, then what will be the value (a×3+15) 
of this expression? 4 three za 12 and 15, 27. Then what will be the value of this 
expression [5×a+6-2×a+9]? If a=4, then original expression? 

NW: 27. 

SN: How did you find it? 

NW: 5×4. 

SN: Means you substituted the value? 

NW: Yes. 

SN: What is the value of this [a×3+15]? 

NW: 27 

SN: What is the value of that [5×a+6-2×a+9]? 

NW: 27 

SN: Why? 

NW: This expression [5×a+6-2×a+9] has been written in a simpler form. 

SN: Then is this expression [a×3+15] the same as this expression [5×a+6-
2×a+9]? 

NW: Same. 

She too was sure that the given original expression and the simplified expression 

are equal and that each step in the process yields a simplified equivalent version 

of the original expression. But while predicting the value of the original expres-

sion as well as the intermediate expressions for the given value of ‘a’, she substi-

tuted the value of ‘a’ in them to be sure of her conclusion. She supplemented her 

understanding of the equivalence of the expressions by calculations only to con-

firm her judgment, which was a quick mental process than detailed step-by-step 

process. In some other cases, students were found to be calculating because they 

had probably never thought about the relationship of the steps in the simplifica-

tion process and did not know that every expression was equivalent to every other 

expression. The interview situation appeared to be the first occasion when they 

tried to think about the issue. 
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The student AB also simplified the expression correctly, but the conversation with 

him shows that he was not confident of what he did. The interview tried to ex-

plore what he understood of the procedure.  

SN: How did you do in the first question [5×a+6-2×a+9]? 

AB: First I wrote the terms. 

SN: What after that? 

AB: Then I first combined the easy forms simple terms, product term then I took 
simple term, no I did not take simple terms, first equal … 

SN: What is this (5-2)×a? 

AB: Look here madam, 5×a and -2×a is there, so I did (5-2)×a. 

SN: How come? 

AB: This is same, therefore 5-a. 

… 

SN: If I say a=4 then? Then what will be the value of this expression [3×a+15]? 
3×4, 4 three’s 12, 12 and 15, 27 is the value of this expression. 

AB: 27. 

SN: What will be the value of this expression [5×a+6-2×a+9], if a=4? 

AB: This [5×a+6-2×a+9]? 

SN: The original expression? 

AB: … 27. 

SN: How is it that the value of this [3×a+15] is 27 and this also is 27 [5×a+6-
2×a+9]? 

AB: Madam, 5×4=20+6, 26-2×4 means -8, - 26+9, that is why 26-8, means 18, 
subtract +9, 18 and 9 is 27. 

He could not clearly explain his simplification process but he was aware of the 

process and also knew that the simplified expression can be unclosed stating 

properties of operation. The interviewer constantly intervened and guided his re-

sponses. Many of his sentences were broken and he rapidly changed his sen-

tences, at times referring to the wrong term or the sign. Even though he predicted 

the correct value of the original expression, he did not explain why the answers 
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should be same, other than calculate the value of the expression given the value of 

‘a’. He continued to calculate while explaining a similar case with another ex-

pression but seemed to know by then that the values would be the same and the 

calculation was only for confirmation. He did not invoke the idea of equivalence 

of expressions as a reason for the same answer. 

A couple of more cases like the above were seen. One of the students JS could not 

get the general idea, after the complete discussion in two expressions, that the 

value of the original and the simplified expression will always be equal for a 

given value of the letter. She repeatedly calculated, not necessarily correctly, and 

got confused. In fact, at times she manipulated the expressions in a way which led 

her to accept the wrong answer the interviewer had used as a probe. For example, 

when the interviewer asked her if for a=4, 5×a+6-2×a+9 can be equal to 33, she 

manipulated it as follows: ‘5×a/ 4×5… 20/ a×2… -2/ 20-2… 18/ 6+9 is 15, 

15+18 is 33’. She missed out on the term -2×a and included only part of it (-2) in 

her calculation. 

In another case, the student BK was very clear that the result of the original and 

the simplified expression will be the same, the reason derived from the similarity 

in the computation process, in contrast to the earlier justifications which were 

based on the idea of equal expressions. She showed this spontaneous understand-

ing in both the items that were posed to her. 

RB: What have you done in the first one [5×a+6-2×a+9]? 

BK: It is +5×a+6-2×a+9. These two [5×a-2×a] are same therefore +a×(5-2).  

RB: What is ‘a’ here? 

BK: It is same in both.  

RB: Ok. If I put a=4, then it is 12+15 here [a×3+15], means the answer is 27. Ok. 
What would be the answer of this expression 5×a+6-2×a+9? 

BK: It will be this only. 
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RB: It will be this. Why? 

BK: Because this is a product term and we do not know what the number ‘a’ is. 
So we have to do it like this only.  

In the last sentence BK points out the inability to convert the product term into 

simple term which is one way in which the term can be combined with other sim-

ple terms and thus simplify the expression, and therefore the need to extract the 

common factor for purposes of simplification. Not all students could spontane-

ously give such answers as described above. As mentioned earlier six students 

appeared to have not thought about the relation between the given expression and 

the simplified expression. They discovered it while answering the questions dur-

ing the interview. They relied on calculation and having found the answer some 

tried to search for a reason for the equality of the answers of the original and the 

simplified expression. A quick review of the simplification process in the case of 

arithmetic expressions with product terms and common factors led them to gener-

alize the process to algebra. Thus, it led to the conclusion that all the steps in the 

simplification process are equivalent to each other and hence the answers will be 

equal for all values of the letter. Two of these students to be doubly sure of their 

conclusion, checked by computing both the expressions they were posed, trying 

best not to over generalize the statement. One of them further pointed out that just 

as the original expression could be simplified, similarly the simplified expression 

could be again converted into the original expression. Although, he took some 

time to articulate what he understood in general of the simplification process from 

the concrete cases in front of him, he was able to articulate the reversible process 

of stripping down the original expression to the simplified expression and build-

ing it up again to the original expression.  

This understanding is important for recognizing the non-arbitrariness of the rules 

of simplification. Many other students who understood the equivalence of the ex-
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pressions in the simplification process did not articulate it but worked in this re-

versible manner to answer the probe. Students who made these responses appear 

to have connected the procedures for manipulating arithmetic expressions and al-

gebraic expressions and the perception of structure of the expressions was an im-

portant tool in the process. Also, these students had no difficulty in substituting a 

value for the letter and mentally computing the result. This is another place where 

one can see the complementary nature of procedure and structure sense, although 

it began with the procedural goal of arriving at a simplified expression. The task 

on generating equal expressions which occupied an important place in the teach-

ing approach was created to enhance this complementarity and will be discussed 

in the next chapter. Further, the responses of the students to some other questions 

in the interview, like whether a+b=b+a or a+b-b=a, clearly indicated their under-

standing of the letter as a number and the generality of the above statements.  

6.3 Students’ overall understanding of procedures 

Comparing the results from the three trials of the main study, overall improve-

ments in their performance, especially between the first and the last trial, is seen. 

Moreover, there are some subtle shifts in students’ abilities in understanding and 

performance on tasks requiring knowledge of rules and procedures of manipulat-

ing arithmetic and algebraic expressions. In all the trials, students improved sig-

nificantly in the post test over their pre test scores in the items that have been dis-

cussed in the sections above at .01 level (based on t-test). Table 6.19 shows the 

average score of the students in the post test of the three trials (all questions on 

procedures and rules included), and then a comparison between the pre test aver-

age and the post test average on the same items. The students not only improved 

over the pre tests in the post tests, they also gained over the trials in tasks requir-

ing procedural skills and knowledge of rules.  
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 MST-I MST-II MST-III 

Post test Average             
(all items) 

 53.5%          
(10.7 out of 20)  

       66.7%     
(16 out of 24)  

 79.6%       
(22.3 out of 28) 

Pre test Average – items 
common to pre and post test 

20%             
(1.2 out of 6)  

 62.8%         
(8.8 out of 14)  

   65.6%     
(16.4 out of 25) 

Post test Average − items  
common to pre and post test 

56.7%           
(3.4 out of 6)  

 79.3%       
(11.1 out of 14) 

 80.8%       
(20.2 out of 25) 

Std. dev. Pre test 1.2 2.7 5.4 

Std. dev. Post test 1.8 3.2 4.2 

df 30 30 30 

Difference between means 2.2* 2.3* 3.8* 

t-value (paired-samples) 8.523 4.356 6.347 

Table 6.19: Comparison of students’ performance in the three trials in procedural 
questions and knowledge of bracket opening rules 

* p < .01 

The changes in their ability from MST-I to MST-II and then to MST-III and limi-

tations of their abilities in terms of consistency in manipulating arithmetic and 

algebraic expressions and within each of these domains have been already dis-

cussed. The interview responses also indicate the extent to which students could 

use the structure of the expressions to anticipate the correctness of a solution and 

the result of evaluating/ simplifying the expressions. The analysis of the qualita-

tive responses indicates a gradual progress, with a big quantitative and qualitative 

shift from MST-I to MST-II and some subtle and deeper shifts made between 

MST-II and MST-III.  

The analysis presented in this chapter shows that the performance of the students 

in the evaluation/ simplification tasks improved consistently over the three trials 

together with a major shift in strategies for working on them from the first to the 

second trial. Students became gradually proficient in evaluating simple expres-
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sions flexibly with a reduction in structural errors. Structural errors re-emerged in 

the more complex situations. They could also evaluate the more complex expres-

sions finding easy ways of solution through a careful analysis of the expression 

and finding the relation between the terms. Students used the same techniques as 

of evaluating arithmetic expressions while simplifying algebraic expressions. 

They displayed a robust understanding of the rules and procedures of combining 

terms, both in the case of arithmetic and algebraic expressions, in the process of 

justifying their own solutions and while accepting or rejecting an alternative solu-

tion during the interviews, at the end of MST-III.  However, throughout the vari-

ous tasks in the trials, the presence of brackets and integer operations seemed to 

cause problems for the students. The importance of both these concepts for alge-

bra has already been noted. 

The purpose of defining a set of concepts (terms and equality), naming the terms 

in certain ways (simple and product term, bracket term, variable term etc.) and 

making the concept of terms visually salient was to capitalize on students’ prior 

knowledge and build on it to develop an extended set of meanings and uses for 

the same symbols that they were familiar with. In the procedure tasks, students’ 

initial understanding of operations on expressions as being sequential or based on 

precedence rules was gradually converted into structure oriented understanding 

based on the properties of operations and conventions. It took the students some 

time to learn to use this system and till then they continued to work in their old 

world. Once this was accepted, students moved to another stage where it was pos-

sible for them to see the relationships between arithmetic and algebra and work 

with the expressions in both the domains similarly. The shift from the ‘inventive-

semiotic stage’ to a period of ‘structural development’ (Goldin and Kaput, 1996) 

was a slow process for most of the students and only by the end of the three trials, 

students were comfortable with the concepts and the ideas and were able to apply 
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them in various situations. But this does not mean that there were no errors later, 

some errors due to mis-perception of structure of expressions resurfaced in the 

more complex situations, suggesting the vulnerability of the students to slip to an 

older and more automatic solution process, not necessarily leading to a correct 

answer. In the next chapter, students’ understanding in tasks which predominantly 

exploit the structure of expressions will be discussed, with a focus on the use of 

the same concepts and ideas in contexts of judging equality.  
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Chapter 7: Analysis II: Understanding of structure 
of expressions and equality 

7.0 A brief overview of the chapter 

The previous chapter described students’ understanding of procedures and rules 

concerning arithmetic and algebraic expressions, their understanding of similarity 

and differences in the transformational rules in the two domains and the ways the 

students used these concepts and rules to evaluate/ simplify expressions. The goal 

of the tasks discussed was to arrive at a numerical answer or more compact ex-

pression. Although a sense of the structure of expressions played an important 

facilitating role in completing some of the tasks successfully and efficiently, the 

students largely implemented rules and procedures that they were exposed to.  

In contrast, the tasks to be discussed in this chapter predominantly use a sense of 

the structure of the expressions rather than computation or implementation of a 

procedure, to make a response. They are more open-ended, potentially have mul-

tiple solutions and may need the use of the procedures and rules discussed in the 

previous chapter in a flexible manner. Initially, in some of the tasks the students 

could use calculations to find the answer, but a majority of the tasks discussed in 

this section had to be completed without computation. There were four kinds of 

such tasks, all focusing on the equality relation: (i) comparing two expressions 

using the signs <, =, > with and without computation, (ii) filling in the blank with 

a number or a term so that the expressions on both sides of the ‘=’ are equal, (iii) 

judging which expressions from a list are equal to a given expression, and (iv) 

generating expressions equal to a given expression. Data from the pre and the post 

tests together with interview transcripts, classroom discussions and daily practice 
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sheets across the trials will be used to explicate students’ understanding of equal-

ity.  

In the process, the chapter will explore students’ understanding of the structure of 

expressions, not just ‘surface structure’ but also ‘systemic structure’, which al-

lows one to understand the relation between the terms and the whole expression 

and between two expressions, centered around the idea of ‘equality’. It is this ma-

ture sense of structure which enables students to understand the possibilities and 

constraints on transformations on expressions; structure sense and procedures 

thereby become complementary in nature, rather than remaining two separate 

skills. A glimpse of this has already been seen in the previous chapter in the dis-

cussion of students’ flexible ways of evaluating expressions and in some of the 

interview responses. Attending to the structure of expressions is one way to tie 

students’ expectations of the result of operating on numbers to formal arithmetic 

and algebra. Further, the chapter will explore students’ understanding of the 

equality relationship which is the crux of formal algebraic manipulation and it 

was one of the goals of the teaching approach to enhance their understanding of 

equality and the related ‘=’ sign, from the narrow meaning of a sign separating the 

question from the answer to a symbol of equality. 

7.1 Understanding of equality with computation 

7.1.1 Comparing two expressions 

Comparing a pair of expressions with calculations was the easiest task for the stu-

dents which almost all the students were able to answer correctly (Q.6 in Appen-

dices IIA and IIB). The performance of the Marathi medium students was almost 

perfect (87% to 100%) and the English medium students (67% to 93%) also per-

formed reasonably well in MST-I. Pairs of expressions, where one expression 

contained a division operation (24÷4 and 6+2) were the ones with the least per-



 253 

formance. Students’ responses in this task showed only two instances of system-

atic error, the students interpreting the first term on the R.H.S. to be the value of 

the expression in the L.H.S. These items, containing a single binary operation 

were subsequently dropped from the tests. 

7.1.2 Filling the blank 

The situation was, however, not the same while filling in the blank with a number 

so that the expressions on both sides of the ‘=’ became equal (e.g. 21+8=__-1) 

(see for example, Q.5 in Appendices IIA, IIB, Q4 in Appendices IIIA, IIIB). The 

earlier task is simpler in the sense that it requires one to fill in the box with one of 

the signs <, =, > after comparing the expressions, whereas this task tempts one to 

make the error by putting the answer in the blank space after the ‘=’ sign. Instead 

of the automatic response, one needs to consciously pay attention to the expres-

sions on both sides of the ‘=’ sign and make them equal, choosing the appropriate 

number in the blank. In the pre and post tests conducted after each of the three 

trials, the question consisted of four items, with the blank in varying positions. In 

the pre test in MST-I, the English medium students had very limited understand-

ing of the ‘=’ symbol and the Marathi students were better than these students as 

seen from their responses to such items (see Figure 7.1). Students’ responses re-

vealed their misconceptions about the sign. The performance of the students in the 

English group was quite poor in the post test as well, even though they had, in the 

overall, improved significantly over the pre test (at .01 level, t-test). However, the 

performance of the English group, in the more tempting positions of the blank, 

like a blank at the first position after the ‘=’ sign did not improve. On the other 

hand, the Marathi group improved its performance (at .05 level) in the overall and 

performed reasonably well in the task irrespective of the position of the blank. 

Figure 7.1 shows the performance of the students in various items of the task. 

Students from both the groups performed better in the pre-test of MST-II than 
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during the post-test of MST-I, in spite of the fact that there was a long gap be-

tween the two trials. The Marathi medium students maintained their high per-

formance to a large extent after the pre test of MST-II but the English group was 

inconsistent and never reached the level of the other group. The reason is hard to 

speculate but the emphasis on non-computational tasks exploiting structure sense 

of expressions could be one reason why they performed inconsistently on such 

tasks, which are more computational. The inconsistency even in the later stages is 

surprising, since they were capable of much more sophisticated reasoning with 

respect to equality as evidenced in other tasks like identifying and generating 

equal expressions. These tasks will be discussed shortly.   

 

 

 

 

 

 

 

 

Figure 7.1: English and Marathi medium students’ performance in making two 
expressions equal by filling in the blank in the three trials (nenglish=15, nmarathi=16) 

Note. There was one item of each kind in each of the tests. Pre I = Pre-test (MST-
I), Post I = Post-test (MST-I), Pre II = Pre-test (MST-II), Post II = Post-test 
(MST-II), Pre III = Pre-test (MST-III), Post III = Post-test (MST-III). 
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Analysis of the nature of the responses in these tasks indicates the reasons for the 

difference in the performances and especially the deterioration in the perform-

ance. Many students wrote the answer/ value of the expression in the blank. For 

example, 27 – 3 = 24 + 10. In other positions of the blank also, some of the stu-

dents showed a similar tendency, for example, 16 + 5 = 25 – 21 or 20, the blank 

being filled by evaluating the left hand side (21) or computation of the RHS lead-

ing to 5 (25-20) on the LHS. All these kinds of responses can be considered as 

indicative of an ‘answer’ conception of ‘=’. These students do not see the equiva-

lence between two expressions but only look at parts of the expression. Most of 

the students who have not been able to fill the blank correctly, display such a con-

ception of ‘=’ barring a few students who made calculation errors or any other 

error, like writing the sum of all the numbers in the blank. Although students im-

proved their understanding of ‘=’ by MST-II and this was visible through their 

participation in the numerous other tasks requiring the use of ‘=’ sign and idea of 

equality, it is not very clear why some students persistently committed the same 

mistakes. Table 7.1 gives the number of cases of ‘answer’ conception in the three 

trials. All other errors are due to calculation mistakes or random numbers (for 

which it is difficult to find any reason) and some items were not attempted. This 

issue was not sufficiently probed in the trials due to the emphasis which was 

placed on non-computational tasks which involved ‘relational/ structural think-

ing’. 

 MST-I MST-II MST-III 

Pre test 54 7 19 

Post test 31 14 5 

Table 7.1: Number of students’ responses displaying ‘answer’ conception of the 
‘=’ sign in the three trials (N=31) 

Note. The analysis is done over four items. 
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In the classroom, except on the very first encounter with such tasks, students un-

derstood the meaning of the ‘=’ sign as indicating the equality relation. However, 

another misconception was found even among those who took the ‘=’ sign to in-

dicate equality in the context of non-computational tasks: understanding ‘=’ as a 

sign of association (also reported in Herscovics, 1989). An example of such a task 

during MST-III and the subsequent discussion that takes place highlights how 

students who have a proper understanding of the ‘=’ symbol struggle with this 

misconception. The students were working on the task 45+29 = 47+28__ where 

the blank had to be filled without computation. The many responses for the blank 

were +1, -1, +2, -3. Having found the change in the terms on the RHS with re-

spect to LHS to be +2-1=+1, one student explained that putting +1 in the blank on 

the right hand side, which is already one more than left hand side, would make it 

even bigger, so the blank should be filled by -1. Solutions like +1 shows an ‘asso-

ciation’ conception of ‘=’, which means that 47+28 is one more than 45+29. The 

term filled in the blank by the students often stated the magnitude of the differ-

ence, rather than compensating the expression to bring about equality. Students in 

these circumstances correctly found the amount by which one of the expressions 

was greater/ smaller than the other and could also verbalize this relationship but 

had difficulty symbolizing correctly.  

Some other tasks like comparing two termed simple expressions (e.g. 234+487 

and 235+486), filling the blank without computation so that two expressions are 

equal (e.g. 35 + 26 __= 35+ 25) or finding the value of an expression given the 

value of a related expression (given 234+487=721, find 235+488) revealed stu-

dents’ understanding of the meaning of the ‘=’ sign and were part of the post tests 

in MST-I and II. The students’ performance on these tasks is discussed in Naik, 

Banerjee and Subramaniam (2005). The purpose of these tasks was to direct stu-

dents’ attention to relationships between numbers and operations, and develop a 
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sense of expectation for results without recourse to computation, that is, to build 

structure sense. The above article reported students’ strategies and ability to 

communicate the reasons for their answers verbally as well as symbolically (with 

little help from the teacher) to tasks of the above kind and the move towards sym-

bolic justifications with increasing complexity of the items. Students were more 

successful in items consisting of only positive terms than items which involved a 

negative term (e.g. 85 – 38 and 86 – 39). The article also pointed out the errors in 

students’ understanding of ‘=’ sign as has been described in this section.  

In yet another conversation during MST-III centered on eliciting students’ under-

standing of the ‘=’ symbol, students provided two answers for the blank in 

347+285=349+__: 283 and 287. Following is the excerpt from the classroom dis-

cussion for the above example. 

Teacher: How did you get 287, Atul? 

Atul: You have to add 2, no no, it should be 283. There [RHS] is 2 more, 
so reduce 2. 

Teacher: Why should doing -2 make the expressions equal? 

Reema: 349 is 2 more, so you have to less 2 from 285. 

Teacher: If I do -3, then? 

Prathamesh: RHS will become 1 less. 

This example is a simpler one as the sign involved in the expression is a ‘+’ sign, 

the students had more trouble when ‘–’ sign was involved in the expressions. 

These results together with the performance on some more tasks to be discussed 

later suggest that, although the students understood the meaning of ‘=’ sign as can 

be seen from their verbal explanations, their written work does show errors in 

choosing the signs and filling the blank with the correct number or term, that is, in 

symbolization.  
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7.2 Students’ judgment about equality without computation 

Two of the tasks (comparing expressions and filling in the blank with a number to 

make expressions equal) which were discussed in the previous section required 

calculations and checked for students’ understanding of ‘=’ sign directly. Some 

other tasks based on the notion of equality were also created to enhance structural 

thinking among students by encouraging students to link procedures of evaluat-

ing/ simplifying expressions to the structure of expressions. It was important to 

examine to what extent the students could use the concept of terms to compare 

expressions, having already seen its use in the procedural tasks as discussed in 

Chapter 6. These tasks are different from the routine tasks students usually work 

on and do not require calculations but anticipations and expectations of results 

and reflection on their actions. They form an important part of reasoning about 

expressions where students essentially justified their responses based on rules and 

properties of syntactic transformations. 

Students worked on two kinds of tasks without computation: (a) identifying ex-

pressions equal to a given expression from a list (usually containing four options, 

with more than one equal), (b) generating equal expressions for a given expres-

sion. The purpose of these tasks was to enable the students to explore transforma-

tions and to learn to anticipate how they change the value of an expression or 

keep it invariant. Although, during MST-I transformations were restricted to rear-

ranging terms, later this task required the students to be aware of the rules of 

evaluating expressions and of handling brackets.  

The tasks were gradually increased in complexity with the growing experience of 

the students. Table 7.2 shows examples of the kind of items that were chosen for 

the task of identifying equal expressions from a list. Three kinds of expressions 

were used: (1) arithmetic expression with only simple terms, (2) with simple and 
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product term and (3) algebraic expressions. Type (a) items in each of the three 

categories only consist of rearranging terms/ numbers and Type (b) items consist 

of other transformations, like increasing and decreasing terms by same or slightly 

different amounts, rewriting a term as sum, difference, product, using brackets, 

adding and subtracting the same number. Question items containing Type (b) op-

tions occasionally included one option with only rearrangement of terms or num-

bers. Usually, large numbers were used to form the expression to discourage stu-

dents from calculating.  

Type (a) Only rearrangement 
of terms  

(b) Other transformations 

Type 1 – Simple 
terms 

127+284-195 

(1) 127+195-284  

(2) 284+127-195 

(3) 195+284-127 

(4) 127-195+284 

87-38+26 

(1) 87-(38+26) 

(2) 26+87-38 

(3) 87-30-8+26  

(4) 87+13-38+26-13 

Type 2 – Product 
terms 

27+17×32+14 

(1) 27+14+17×32 

(2) 27+17×14+32 

(3)17+27×32+14  

(4) 17×32+27+14 

18-27+4×6-15 

(1)18-(27+4×6-15)  

(2) 19-15-28+4×(2+4) 

(3) 6×(3+4)-27-15  

(4) 18-20+7+4×6-10+5 etc. 

Type 3 – Algebraic 
expression 

9×x+12-6×x-17  

(1) 17+9×x+12-6×x  

(2) 21×x-6×x-17  

(3)  x×9-6×x+12-17  

(4) 9×12+x-6×x-17 

7×w-19-11×w+21 

(1) 7×w-(19+11×w)+21  

(2) w×(7+11)-19+21  

(3) 7×w-19-9×w-2×w+21  

(4) -19-11×w+7×(w+3) etc. 

Table 7.2: Type of items used in the task of identifying equal expressions 
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7.2.1 Students’ performance in identifying equal arithmetic ex-
pressions  

Type MST-I MST-II MST-III 

 English Marathi English Marathi English Marathi 
 Pre Post Pre Post Pre Post Pre Post Pre Post Pre Post 

1(a) 0 53 25 69 73 - 87 - - - - - 

2(a) 13 40 25 69 47 - 62 - 60 60 87 94 

Table 7.3: Percentage of students correctly identifying equal expressions with 
terms rearranged in the three trials (nenglish=15, nmarathi=16) 

Note. 1(a) = Expressions with only simple terms and transformation restricted to 
rearranging terms, 2(a) = Expressions with product terms and transformation re-
stricted to rearranging terms. The task consisted of one expression followed by 
four options in all the tests where it was posed. A response was considered correct 
when all the four options were correctly judged. 

In the pre-test of MST-I, tasks of only types 1(a) and 2(a), that is, equal arithmetic 

expression with only rearrangement of terms, were used (see Q.7 and Q.8 in Ap-

pendices IIA and IIB). A score of ‘1’ was given if a student got all the four op-

tions correct, else it was marked ‘0’. As Table 7.3 shows, the students signifi-

cantly improved (at .01 level in t-test: paired sample, df =30) their performance in 

the post test with respect to their pre test in MST-I. Items of this type were not 

used in the post test of MST-II (where more complex items were used as dis-

cussed below) but in the pre test of the same trial they performed better than the 

earlier (Q.6 and Q.7 in Appendix IIIA). No doubt, the students had increased fa-

miliarity with task. While the Marathi medium students improved to reach a high 

level of performance, the English medium students made steady progress. Stu-

dents used the concept of terms quite readily in these tasks. Even though the per-

formance of the students was not very high in judging equality of all the items 

taken together as seen in Table 7.3, the performance of the students in judging the 

equality of individual expressions in a list was reasonably good for both the types 
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of expressions (Types 1 and 2) across the trials. More than 70% of the students 

were successful in each of the options except for one option (the pair 

34+21×19+28 and 21+34×19+28) where some students (6-8) repeatedly split the 

product term by commuting 34 and 21 or 19 and 28.  

Based on classroom observations where students worked quite comfortably on 

items of the above kind, the task was made difficult by changing the nature of 

transformations applied to the expressions to keep the value invariant. This was 

made possible due to the flexibility incorporated in the ‘terms approach’ in MST-

II compared to the rigidity in the rules in MST-I (discussed in Chapter 5, section 

5.2.2). It allowed the use of procedures and structure together to judge equality of 

expressions. Students required to know that only changed parts of the expressions 

need to be compared with corresponding parts of the given expression. To be 

equal, the computation of sub-expressions must lead to a term in the given expres-

sion. In a later section this issue will be revisited when discussion will be under-

taken on students’ ability to generate equal expressions for a given expression.  

 Given expression:       
18-27+4×6-15  

  

  English 
(Post) 

Marathi 
(Post) 

1 18-(27+4×6)-15 60 75 

2 4×6-(27+15)+18 80 75 

3 19-15-28+4×(2+4) 47 37 

4 6×(3+4)-27-15 40 50 

5 18-20+7+4×6-10+5 53 62 

6 8×4-15+18-2×4-27 13 37 

Table 7.4: Percentage of correct responses in the post test of MST-II in identify-
ing expressions equal to a given expression with transformations other than rear-

ranging terms (Type 2(b)) (nenglish=15, nmarathi=16) 
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In the post test of MST-II and in MST-III, students were required to identify equal 

expressions where more complicated transformations were applied, that is, trans-

formations of the type (b) as shown in Table 7.2 (see Q.6 in Appendix IIIB, Q.9 

and Q.10 in Appendix IVA, Q.11 and Q.12 in Appendix IVB). In contrast to the 

task of type (a), in this case, each option was marked ‘0’ or ‘1’ depending on 

whether it was wrongly or correctly judged. Students’ performance varied with 

the expression which was being compared and they (especially English medium) 

were found to be inconsistent in their judgments. The tables below (Table 7.4 and 

7.5) show the performance of students in such items in MST-II and III. Students 

were able to work on these complicated tasks with a reasonable degree of success, 

which could be considered to be an indication of progress made by them com-

pared to the first trial. In the expressions containing bracket with a negative sign 

outside, the performance of students is better when the given option is equal to the 

expression than when it is not in MST-II (Table 7.4). The performance is lower 

for the third, fourth and the last item. The third item involved multiple transfor-

mations: equal compensation and splitting a factor of the product term, the fourth 

one required extracting a common factor between a simple and product term and 

the last item involved decomposing the product term into difference of two prod-

uct terms and these were extremely difficult for the students to perceive.  

The options were made simpler in the MST-III post test based on the feedback 

from MST-II. The performance of the students was very high in judging pairs of 

the type 87-38+26 and 87-(38+26) (in the case of both simple and product term). 

Most of the students (73% of English and 100% of Marathi students) avoided the 

detachment error in the pair 87-38+26 and 87-30-8+26 but many fell into the trap 

in the pair 23-4×6-9 and 23-4×6-8+1. The number combination used in the option 

might have been too tempting for the students (see Linchevski and Livneh, 1999, 

2002, discussed in Chapter 2, section 2.3.4). The options marked 4 for both ex-
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pressions 1 and 2 in Table 7.5 have the same underlying principle: equal compen-

sation among two terms by increasing one and decreasing the other (Expression 1) 

and adding and subtracting the same number (Expression 2). The first one was 

found to be quite difficult by the students and the second one also was not satis-

factorily attempted. Students had successfully used this form of expression and 

cancelled the equal and opposite terms while evaluating expressions using easy 

ways. Also, as will be seen in the discussion of the interview results, students 

quite comfortably judged equality/ inequality of the expressions like item 4 in Ex-

pression 2.  

 Expression 1: 
23-4×6-9 

  Expression 2: 
87-38+26 

  

  English Marathi  English Marathi 

  Pre Post Pre Post  Pre Post Pre Post 

1 23-(4×6+9) 53 87 56 100 87-(38+26) 80 87 81 100 
 

2 23-4×6-8+1 47 27 31 75 87-30-8+26  93 73 100 100 

3 23-(7-3)×6-9 60 60 31 56 26+87-38 67 93 75 100 

4 22-4×6-8 40 33 37 50 87+13-
38+26-13 

60 60 50 75 

Table 7.5: Percentage of correct responses in identifying expressions equal to a 
given expression in the post test of MST-III with transformations other than rear-

ranging terms (Type 1(b), 2(b)) (nenglish=15, nmarathi=16) 

In the tasks which explored students’ understanding of equality, their responses 

across the trials and across various types - computational and non-computational, 

are not consistent. In the tasks that required computation, students did well in 

comparing simple expressions with one binary operation using the signs <, =, >, 

but made errors in filling the blanks to make two expressions equal. However, 

they seemed to possess an adequate understanding of ‘=’ sign as revealed from 
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similar tasks which did not require computation (section 7.1.2). Of course, they 

had trouble in symbolizing their understanding. Similarly, in the task of identify-

ing equal expressions from a list where only terms or numbers were rearranged 

(Types 1(a) and 2(a) in table 7.2), students’ performance was better for expres-

sions involving only simple terms (Type 1(a)) compared to those involving a 

product term (Type 2(a)). This could be attributed to the difficulty in internalizing 

the ‘product term’ as a unit in contrast to a ‘simple term’ as a unit and the subse-

quent implications for transformations. Further, students’ ability to work on these 

non-computational tasks of identifying equal expressions from a list did not en-

sure their success in the tasks based on computation, especially filling the blank to 

make two expressions equal. This is a bit surprising as success in a complicated 

task like identifying equality of expressions from a list definitely implies a sound 

understanding of equality and ‘=’ sign. Two explanations may be proposed. The 

first is that the students were using the concept of terms while identifying equal 

expressions as a short-cut to find the answer, rather than having a deeper under-

standing of equality of expressions as having equal value. Alternatively, it may be 

the case that the two tasks place slightly different demands on students. The ‘fill 

in the blank’ task tempts students to use a more automatic response to the ‘=’ sign 

leading to errors; the ‘identifying equal expressions’ task is challenging, requiring 

careful attention to structural features of the expression and the transformations 

used thus capturing their understanding of equality better. The classroom discus-

sions indicated that the students were not using the idea of terms mechanically 

while identifying equal expressions or generating equal expressions, but the writ-

ten test responses do not clarify this issue. The students calculated the value of the 

expression to confirm their judgment whenever in doubt about the equality of two 

expressions in the classroom. This issue will be further explored through the in-

terviews, especially after MST-III. 



 265 

7.2.2 Exploring students’ understanding of equality of arithme-
tic expressions through interviews 

As has been discussed earlier, the purpose of the interviews taken two months af-

ter the end of the second trial (MST-II) and four months after the end of third trial 

(MST-III) of the main study was to explore students’ understanding of procedures 

and equality and their use of the concepts and ideas taught as part of the study. In 

this section, students’ responses in the interview to the tasks of identifying arith-

metic expressions equal to a given expression will be discussed. The students 

were given an expression followed by three to four expressions which had to be 

judged equal/ non-equal to the given one (see Q. B, Q.D, and Interview schedule 

(Tasks 2 and 7) in Appendix VA, Arithmetic test Q.2, Q.3 and Interview sched-

ule: arithmetic (Tasks 5 and 6) in Appendix VB) . The expressions chosen can be 

classified into: (a) expressions with only simple terms and (b) expressions with a 

product term. The transformations used to change the form of the expressions 

were rearranging terms, using brackets and adding and subtracting the same num-

ber. Some of the expressions in the list were equal and some were unequal.  

Expressions with simple terms only 

Tables 7.6 and 7.7 summarize the responses of the students in the interviews after 

MST-II and MST-III in the case of expressions with only simple terms. The col-

umns in the Table 7.6 (MST-II) indicate their written judgment on the equality or 

inequality of the listed options with respect to the given expression (‘Judgment’) 

prior to the interview, the nature of explanation the students gave to support their 

judgment (‘Explanation’) and the changes that were made in their response during 

the interview (‘Changes’). After MST-III, they were further asked to state 

whether the expression in the list would be bigger or smaller with respect to the 

given one if it was not equal (‘Explanation/ Comparison’). When the expressions 

were equal, students were to state whether their values will be the same. This 
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probe was added to see whether the students were mechanically checking terms, 

or whether they could anticipate how the value of the expression changed as it 

was transformed, which was a new task for students. These explanations were 

coded as satisfactory, unsatisfactory, incorrect judgment, whether based on calcu-

lation etc. and will be illustrated below with the excerpts from the interview. In-

terview excerpts of students marked with an asterisk in the two tables (7.6 and 

7.7) will be discussed. 

In the case of expressions with only simple terms, five instances of error in judg-

ing the equality of the listed expressions with 49-37+23 were seen after MST-II 

compared to none in MST-III (see Tables 7.6 and 7.7). Four of these errors were 

with respect to expressions with extra terms (compare 49-37+23 with 49-5-

37+5+23 or 49-5-37-5+23). All students, except one, changed and corrected their 

judgment during the interview. This one student tried to compute the expression 

orally and matched it with the given expression, the terms being different, the ex-

pression was judged to be not equal. On a couple of more occasions in the next 

expression (37-49+23), students complemented their explanation with calculation, 

to be doubly sure. The last option was straightforward and no errors or changes in 

responses were seen. Students’ performance was better in this question after 

MST-III than in the earlier interview. The incorrect judgments in MST-III were 

largely seen in the context of comparing the two expressions for more/ less.  
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Name Option 1: 49-5-37+5+23 (#) OR    
49-5-37-5+23 

Option 2: 37-49+23 Option 3: 23+49-37 (#) 

 Judgment Explanation Changes Judgment Explanation  Changes Judgment Explanation Changes
BP C SE NC C SE NC C SE NC 
PD C SE NC I SECn ISCS C SE NS 
BK C SE NC C SE NC C SE NC 
AY* C SEC CSISCS C SE NC C SE NC 
NN C SE NC C SE NC C SE NC 
SG C SE NC C SE NC C SE NC 
NW* I ECn NC C SE NC C SE NC 
RG C SE NC C SE NC C SE NC 
AS I SEC ISCS C SE NC C SE NC 
AN C SE NC C SE NC C SE NC 
SV C SE NC C SECn NC C SE NC 
MC C SE NC C SE NC C SE NC 
AB I SEC ISCS C SE NC C SE NC 
BM* I SEC ISCS C SE NC C SE NC 

Table 7.6: Responses of the students interviewed after MST-II in identifying equal expressions for the expression 49-
37+23 (# indicates equal expression to the given one, * indicates students whose interviews are discussed in the text)
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Name Option 1: 48-23-2+59+2 (#) Option 2: 48-59+23 Option 3: 48-(23+59) 

 Judgment Explanation/  
Comparison 

Changes Judgment Explanation/  
Comparison 

Changes Judgment Explanation/  
Comparison 

Changes

BP C  - NC C  IJ NC C  SE NC 
PD* C  SE NC C  SE NC C IJ NC 
BK C - NC C SE NC C SE NC 
AY C SE NC C SE NC C UE CSIS 
NN C - NC C SE NC C SE NC 
SG C - NC C SE NC C SE NC 
PG C - NC C SE NC C SE NC 
JS C SE NC C SE NC C SE NC 
NW C SE NC C - NC C SE NC 
RG C SE NC C SEC CSIS, 

CAIACA 
C SE NC 

AS C SE NC C - NC C - NC 
AN C SE NC C SE NC C SE NC 
SV C SE NC C SE NC C SE NC 
MC C SE NC C SE NC C SE NC 
AB C - NC C SEC IACA C - NC 
BM* C SE NC C SE NC C SE NC 
TJ C SECn NC C UECn IACA C - NC 

Table 7.7: Responses of the students interviewed after MST-III in identifying equal expressions for the expression    
48-23+59 (# indicates equal expression to the given one, * indicates students whose interviews are discussed in the 

text) 
Judgment on equality/ inequality of expressions (Judgment): 

(C) Correct – the solution given for the expression is correct 
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(I) Incorrect- the solution given for the expression is incorrect 

Explanation for the judgment or comparing two expressions (Explanation/ Comparison):  

(SE) Satisfactory explanation – able to explain satisfactorily own judgment as well as the probe and displays the knowledge of rules and 
concepts  

(SEC) Satisfactory explanation with changes - able to explain satisfactorily own solution as well as the probe but involves a change in the 
answer during discussion 

(SECn) Satisfactory explanation together with calculation – the subject gives a satisfactory explanation to judgment and the probe but uses 
calculation 

(ECn) Explanation based on calculation – the subject gives an explanation based on calculation only 

(UE) Unsatisfactory explanation – creates an ad-hoc explanation suitable for the specific situation at hand and may involve frequent 
change in answers from one to another 

(UECn) Unsatisfactory explanation based on calculation – the subject gives an unsatisfactory explanation based on calculation 

(IJ) Incorrect judgment – subject making an incorrect judgment with respect to the probe 

(NE) No explanation – cannot give any explanation for the probe and only knows own solution  

Changes made during the interview (Changes): 

(IACA) Incorrect additional probe to correct additional probe – the subject changes his/ her incorrect answer for probe to a correct answer 

(ISCS) Incorrect solution to correct solution – the subject changes his/ her initial incorrect judgment about equality/ inequality for the ex-
pression to a correct one  

(CAIA) Correct additional probe to incorrect additional probe – the subject changes his/ her correct answer for probe to an incorrect one 

(CSIS) Correct solution to incorrect solution – the subject changes his/ her initial correct judgment for the expression to an incorrect one  

(CAIACA) Correct additional probe to incorrect to correct additional probe – the subject changes his/ her correct answer for the probe to 
an incorrect answer to back again to a correct answer 

(CSISCS) Correct solution to incorrect solution to correct solution – the subject changes his/ her initial correct judgment for the expression 
to an incorrect and back to correct judgment 

 (NC) No changes made 
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An interview with the student NW (MST-II) is given below. While comparing the 

expressions 49-37+23 and 49-5-37+5+23 she did not see the complete expression 

but looked at parts of it. In the process, she lost track of the relationships between 

the parts and ended up making a wrong judgment by relying on her oral calcula-

tions and surface structure of the expressions. 

PB: You had to identify the expression equal to 49-37+23. You said the first ex-
pression [49-5-37+5+23] is not equal to it. Why?  

NW: No. 

PB: Why? 

NW: Here +49 is correct and here +, -5 and -37 is there. Therefore these two 
will get added and the sum is +42 and the sum of these two [+5+23] is +28 and 
the answer of this, and this [49-37+23] expression is a little smaller. 

PB: Means, did you calculate and see? 

NW: No, but 49-42+28 would be like this, therefore this expression [49-37+23] 
is not equal to this expression [49-42+28]. 

Another student BM (MST-II) was unsure about the equality of the expressions 

49-37+23 and 49-5-37+5+23.  

SN: Ok, tell me why this [49-5-37+5+23] is not equal? 

BM: Teacher, here 49-5 and minus 37, teacher here 5 is more, teacher here [49-
37+23] -5 and +5 were not there. 

SN: These were not there. 

BM: Yes. 

SN: Then is this expression [49-5-37+5+23] equal or not equal? 

BM: They are equal but here I … 

SN: Is the expression equal? 

BM: If we cut +5 and -5 then the answer comes the same. 

SN: And if we keep +5, -5 there, then what is the answer? 

BM: [long pause] 

SN: If both of them [-5 and +5] are taken off then you say that they are equal. 

BM: Yes. 
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SN: But both of them are left there, then? 

BM: Teacher, these [the two expressions being compared] will not be equal. 

Her initial conclusion was drawn by looking at the surface structure of the expres-

sions where the two expressions differed in length. With the interviewer’s help 

she finally managed to focus her attention on relationships between the terms and 

arrive at the correct conclusion, that the expressions are equal. In the case of the 

student BM, the interviewer SN had to invest a lot of effort to make her notice the 

relationships between the terms. It was not a normal practice in the interviews to 

guide students towards the correct answer but was done in this particular case. 

Her inability to anticipate the effect of adding +5 and -5 to the expression is visi-

ble. She was not able to combine the terms flexibly, regardless of order. However, 

in interviews after MST-III she could confidently explain this item. All the other 

students, besides these two, figured out quite easily that -5+5=0 and hence would 

not make any difference to the value of the expression.  

For the pair of expressions 49-37+23 and 49-5-35-5+23, student AY (MST-II) 

began hesitantly. The excerpt is given below.   

RB: Now let’s go to the last question 49-37+23. You said this [49-5-35-5+23] is 
not correct. Why? 

AY: Teacher, because in this, this is correct. 

RB: Why correct? 

AY: Because, not correct. 

RB: Not correct. Means what you have done is correct.  

AY: Yes teacher. 

RB: Why? 

AY: Because here -5-5 is extra. Had it been -5+5 then subtracting would have 
given us 0 but here it is both -5.  

A few of the students fumbled in the beginning while expressing the reasons for 

their choices but most of them ended with a satisfactory explanation. Two stu-



 272 

dents calculated and checked the inequality of 49-37+23 and 37-49+23 before 

concluding that they are unequal as the terms are different in the two expressions. 

It is also clear from their responses that most of them understand that two expres-

sions are equal primarily because their values are same (barring a few like BM). 

The value of two expressions can remain same due to certain transformation: re-

ordering terms, putting brackets, adding and subtracting the same number. The 

interview at this time probed a few transformations and it is not possible to com-

ment on their understanding of general rules of transformations. But it is unlikely 

that they used the concept of terms in these situations mechanically or meaning-

lessly, an issue that was more explicitly probed after MST-III. Some of them were 

struggling with the idea and did not achieve the expertise and stability as some 

others. They were also inconsistent in their judgment in that they did not doubt 

their judgment in one situation but wanted to clarify for themselves by computa-

tion in another situation where the same property or rule was being applied.  

In a similar task of comparing expressions with simple terms after MST-III, PD 

was one student who confidently answered the first two parts of the question and 

successfully identified the smaller/ bigger of the two expressions. She used terms 

to judge the equality/ inequality of expressions as well to compare them. For ex-

ample, while comparing the expressions 48-59+23 and 48-23+59 she said that 48-

23+59 is more because ‘when you plus 48 and plus 59 you will get answer and -

23 you will get [in 48-23+59], but when you plus 48 plus 23 you will get another 

answer and minus 59 here [in 48-59+23] will give smaller answer’. However, 

she was not so clear about the last option 48-(23+59).    

RB: Ok. What about this one 48-(23+59)? You said this is not equal. Why?  

PD: Because when you open the bracket you will get minus sign. 

RB: Ok. Which one is more out of these two? 

PD: This [48-(23+59)]. 
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RB: This one is more. Why? 

PD: Because there is 48 negative, you add 23, and add 59, minus. 

RB: Han, ok. 

PD: You will get the answer here [48-(23+59)] more.  

RB: You will get answer more. Because 23 and 59 are to be added.  

PD: 48 negative cutz [subtract] hai, if 23 negative more is cutz [subtracted] and 
59 negative is cutz [subtracted], then answer will be more.  

She was sure that equal expressions have equal value. She was also articulate in 

her reasoning about when the expressions are equal and why one of the expres-

sions should be bigger or smaller than the other. Even in the last part of the ques-

tion she correctly judged the expressions (48-23+59 and 48-(23+59)) to be not 

equal but made an error while identifying the bigger of the two expressions. In the 

first two parts, she had correctly attached the signs with the numbers and antici-

pated the result of rearranging the numbers only. But in the last part she did not 

use the idea of terms and in fact read it sequentially from left to right, in the proc-

ess making an error.  

Some others correctly concluded that since both the numbers 23 and 59 are being 

subtracted from 48, therefore it is less than the original expression 48-23+59. In 

response to the last part of the question, this was another line of reasoning which 

allowed students to correctly identify the bigger expression as exemplified by the 

excerpt below by student BM (MST-III).  

SN: This is more or less [48-(23+59)]? Compared to this original expression [48-
23+59]? 

BM: It is smaller. 

SN: This also is less? 

BM: Because, the negative signs are next to each other, their sum would be 
more. And here it is positive [+48] and here it is negative [-(23+59)], so sub-
traction will be carried out on these, and the answer will be less. 
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She said that the expression 48-(23+59) would be less than 48-23+59 because the 

value of the former would be less than the latter. She used both the structure of 

the expression as well as procedures to consolidate her answer. In the group of 

students interviewed, some of the students used such rules as ‘sign would be of 

the bigger number’ (probably learnt at school) while working out the procedures 

and some others used a qualitative sense of operations to justify their answer. For 

example, one of the students commented that the original expression is bigger 

than 48-(23+59) because ‘here everything is minus’, in essence comparing the ef-

fect of each of the terms. This was being facilitated by students’ strong sense of 

structure of expressions. All students could give reasons for their judgment about 

equality/ inequality but made occasional mistakes in comparing them for more/ 

less, though they had the strategies in place to approach the task.  

Expressions with a product term 

Tables 7.8 and 7.9 summarize students’ performance in the two trials in the inter-

view task requiring them to identify equal expressions from a list consisting of 

three to four options in the case of expressions with a product term. The columns 

in the Table 7.8 (MST-II) are similar to the ones in table 7.6 and indicate their 

written judgment on the equality or inequality of the listed options with respect to 

the given expression (‘Judgment’) prior to the interview, the nature of explanation 

the students gave to support their judgment (‘Explanation’) and the changes that 

were made during the interview (‘Changes’). In MST-III (Table 7.9), students’ 

responses were coded for Judgment and Changes together with their explanation 

on the ‘comparison task’ (‘Explanation/ Comparison’) similar to Table 7.7. The 

coding of the responses will once again be clarified through interview excerpts. 

In the interviews, although most students used the concept of terms appropriately, 

there were a few students who used it differently and often incorrectly while iden-
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tifying equal expressions, especially after MST-II. Most of the students after 

MST-III could satisfactorily explain their responses to the questions and the probe 

(that is, compare the given expression with the ones in the list for which is 

greater) and showed a deeper level of understanding than using a mere shortcut 

procedure. They used the concept of terms not only to check for equality of ex-

pressions (arithmetic or algebraic) but also to judge which expression is greater/ 

lesser of two unequal expressions. In both the interviews after MST-II and MST-

III, incorrect responses were found. A majority of these errors had to do with 

brackets (4 errors in MST-II and 2 in MST-III respectively, option 3 in Table 7.8 

and Option 4 in Table 7.9). Although all students (MST-II) had correctly judged 

the inequality of the expression 18-15+13×4 with the given expression 18-

13+15×4, few students (5) were found to split the product term while explaining 

the reason for the inequality. All students, except one, corrected this pattern of 

reasoning by refocusing their attention on terms when posed with another option 

18+15-13×4. Even in MST-III, two students were found to incorrectly judge the 

equality of a pair of expressions similar to the above. In both the trials, all others, 

except student SG, corrected their responses when given the opportunity to do so. 

Two of these students depended on calculation to be sure of their answers.  

In MST-III, the additional probe consisted of judging whether the expression was 

greater/ lesser if the expressions were unequal. In this regard, nine instances of 

incorrect judgment were seen, five of which were easily corrected during the in-

terview. As has been seen in many other items with brackets, here also students 

changed their answers more when the expression contained a bracket indicating 

their discomfort with brackets and lack of confidence in interpreting the negative 

sign before the bracket. Excerpts from students’ interviews (marked with an aster-

isk in the tables below) will be discussed to elucidate the nature of their reasoning 

after the two trials MST-II and MST-III. 
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 Option 1: 18-15+13×4 Option 2: 4×15+18-13 (#) Option 3: 18-(13-15×4) (#) 

 Judgment Explanation Changes Judgment Explanation Changes Judgment Explanation Changes
BP* C UE NC C SE NC C SE NC 
PD C UE NC C SE NC C SE NC 
BK C SE NC C SE NC C SE NC 
AY C SE NC C SE NC I SEC ISCS 
NN C SE NC C SE NC I SEC ISCS 
SG C UE NC I UE NC C SE NC 
NW C SE NC C SE NC C SE NC 
RG C SE NC C SE NC I SEC ISCS 
AS C SE NC C SE NC C SE NC 
AN C UE NC C SE NC C SE NS 
SV C SE NC C SE NC C SE NC 
MC* C SE NC C SE NC C SE NC 
AB C UE NC C SE NC I SEC ISCS 
BM C SE NC C SE NC C SE NC 

Table 7.8: Responses of the students interviewed after MST-II in identifying equal expressions for the expression      
18-13+15×4 (# indicates equal expression to the given one, * indicates students whose interviews are discussed in the 

text) 
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Name Option 1: 24-18+13×6 Option 2: 24+18-13×6 Option 3: 6×18-13+24 (#) Option 4: 24-(13-18×6) (#) 

 Judgment Explanation/ 
Comparison 

Changes Judgment Explanation/ 
Comparison 

Changes Judgment Explanation/ 
Comparison 

Changes Judgment Explanation/ 
Comparison 

Changes 

BP C  SE NC I  IJ ISCS C  SE NC I  IJ ISCS 
PD C  SE NC C  IJ NC C UE NC C SE NC 
BK C SE NC C SE NC C SE NC C SE NC 
AY* C SE NC C SE NC C SE NC C UE CSISCS 
NN C SE NC C SE NC C SE NC I SE ISCS 
SG C SE NC I - NC I IJ NC C UE CSISCS 
PG C SEC IACA C SEC IACA C SE NC C - NC 
JS* C SE NC C SE NC C SE NC C SE NC 
NW C SE NC C SE NC C - NC C - NC 
RG C SE NC C SE NC C - NC C - NC 
AS C SEC IACA C SE NC C - NC C SE NC 
AN C SE NC C SE NC C SE NC C SE NC 
SV C SE NC C SE NC C - NC C SE NC 
MC C SEC IACA C SE NC C - NC C SE NC 
AB C SE NC C UECn IACA C - NC C SE NC 
BM C SE NC C SE NC C - NC C SE NC 
TJ* C SECn NC C UECn NC C SE NC C SE NC 

Table 7.9: Responses of the students interviewed after MST-III in identifying equal expressions for the expression    
24-13+18×6 (# indicates equal expression to the given one, * indicates students whose interviews are discussed in the 

text) 
Judgment on equality/ inequality of expressions (Judgment): 

(C) Correct – the solution given for the expression is correct 
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(I) Incorrect- the solution given for the expression is incorrect 

Explanation for the judgment or comparing two expressions (Explanation/ Comparison):  

(SE) Satisfactory explanation – able to explain satisfactorily own judgment as well as the probe and displays the knowledge of rules and 
concepts  

(SEC) Satisfactory explanation with changes - able to explain satisfactorily own solution as well as the probe but involves a change in the 
answer during discussion 

(SECn) Satisfactory explanation together with calculation – the subject gives a satisfactory explanation to judgment and the probe but uses 
calculation 

(ECn) Explanation based on calculation – the subject gives an explanation based on calculation only 

(UE) Unsatisfactory explanation – creates an ad-hoc explanation suitable for the specific situation at hand and may involve frequent 
change in answers from one to another 

(UECn) Unsatisfactory explanation based on calculation – the subject gives an unsatisfactory explanation based on calculation 

(IJ) Incorrect judgment – subject making an incorrect judgment with respect to the probe 

(NE) No explanation – cannot give any explanation for the probe and only knows own solution  

Changes made during the interview (Changes): 

(IACA) Incorrect additional probe to correct additional probe – the subject changes his/ her incorrect answer for probe to a correct answer 

(ISCS) Incorrect solution to correct solution – the subject changes his/ her initial incorrect judgment about equality/ inequality for the ex-
pression to a correct one  

(CAIA) Correct additional probe to incorrect additional probe – the subject changes his/ her correct answer for probe to an incorrect one 

(CSIS) Correct solution to incorrect solution – the subject changes his/ her initial correct judgment for the expression to an incorrect one  

(CAIACA) Correct additional probe to incorrect to correct additional probe – the subject changes his/ her correct answer for the probe to 
an incorrect answer to back again to a correct answer 

(CSISCS) Correct solution to incorrect solution to correct solution – the subject changes his/ her initial correct judgment for the expression 
to an incorrect and back to correct judgment 

 (NC) No changes made 
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The student MC (MST-II) gave short and well articulated responses to explain his 

judgment. This way of reasoning was typical of those who succeeded in the task.  

SN: Ok, so you say that this [18-13+15×4] and this expression [18-15+13×4] are 
not equal, the first one, why aren’t they equal? 

MC: Here it is given +15×4 and here +13×5 is given, the terms are wrong. 

… 

SN: Ok, what do you say about the second expression [4×15+18-13]? 

MC: It is correct. 

SN: Why? 

MC: [Inaudible] 

SN: Have you calculated the answer of anything? 

MC: No, its terms are same. 

SN: And the third [18-(13-15×4)]? 

MC: It is equal. 

SN: Why? 

MC: There is a minus sign before the bracket, here [18-(13-15×4)] it was 13, 
here it was +13, here it will become -13 and 15, it was -15×4 there [18-(13-
15×4)], it will become +15×4. Therefore the expressions are equal. 

This student consistently used the concept of terms for identifying whether a 

given expression is equal or not. Further, he used the bracket opening rule cor-

rectly to anticipate the result of the expression after it is removed and again 

matched the terms to decide about its equality. In the following interview excerpt, 

student BP (MST-II) is judging whether the two expressions 18-15+13×4 and 

4×15+18-13 are equal to 18-13+15×4. She had given the correct written judgment 

for this pair but her reasoning is interesting and was marked ‘unsatisfactory (UE)’ 

for the first option but ‘satisfactory (SE)’ for the second option.  

RJ: Which of the following expressions is equal? Ok, you have written first [18-
15+13×4] is wrong and 2nd [4×15+18-13] and 3rd [18-(13-15×4)] is right, ok. So, 
how you got this, that these two are correct [2nd, 3rd] and this is wrong [1st]?  
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BP: Teacher because, here [1st] +18 and here [original expression] also +18, 
here [1st] –15 and here +15 [original expression]. 

RJ: Ok, so that is wrong. So why second one is correct? 

BP: Because +4×15 and here is +15×4, +18 and +18 and –13 [comparing the 
two expressions]. 

Her response to the first expression suggests that she was not looking at terms but 

she managed to give the correct answer. In response to the next expression, she 

changed the reasoning style and pointed out the correct terms, thereby displaying 

correct conceptions about transformations which keep the value of an expression 

same. In all, five students made such alterations while answering, of which only 

one student (SG) failed to get a crucial item (4×15+18-13) and one more option 

made for him (18+15-13×5) correct, indicating his use of terms was not stable and 

indeed was splitting the product term. He also could not correct his response in 

the interview after MST-III.  

The interviews conducted after MST-III were longer and included the additional 

probe to see if the students could apply the idea of terms to compare the expres-

sions when they were unequal. The student JS showed quite clearly her ability to 

use the concept of terms to not only judge whether two expressions are equal or 

not but also used it quite confidently to judge which among them is greater. Many 

students displayed such a robust understanding of terms and expressions. 

RB: … What do you think, which of these is bigger [24-13+18×6 and 24-
18+13×6]?  

JS: this [24-13+18×6] 

RB: This is bigger. Why? 

JS: Because here it is +18×6 and here +13×6. Here it is 24-18 and here 24-13.  

…  

RB: … Now which is bigger among these two [24-13+18×6 and 24+18-13×6]?  

JS: (pause) This [24-13+18×6]. 

RB: This is bigger. Why is this bigger? 
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JS: Here +18×6 is there which would give more answer, and here if we do -
13×6 it will give less answer.  

RB: You will get less answer. Now what about this third one 6×18-13+24? You 
said that this is equal. Why is it equal? 

JS: +6×18 is a product term, -13 and here also -13, here +24 and here also +24.  

RB: If you are saying that both of these are equal, would their answers be same?  

JS: Yes.  

RB: Han, pucca? If its answer is 115, then how much will be the answer of this?  

JS: 115 

She combined the operation sense (her language displays a sense of procedures) 

with structure sense (indicated by the way she used the concept of terms) to cor-

rectly identify which among the two expressions was bigger/ smaller. At one 

point initially, she split the product term but corrected it the moment she realized 

that the product term would make a difference to the value of the expression and 

that matching the operation signs attached with the numbers is not a sufficient cri-

terion for expressions to be equal. Also, she did not have any difficulty in this task 

to compare the two expressions where one of them had a bracket, in contrast to 

the situation where she had to evaluate an expression with a bracket (see section 

6.1.3, p. 217). She was able to use terms to understand the effect of each of the 

parts/ units to the whole expression and how changing one component changes 

the value of the expression.  

The student TJ also judged the equality/ inequality of two expressions confidently 

and knew the conditions when two expressions are equal as well as the meaning 

of equal expressions. But he was not so confident while comparing the two ex-

pressions 24-18+13×6 and 24-13+18×6. An excerpt from the interview is given 

below.  

SN: Now you tell me whether the value of this expression [24-13+18×6] is more 
or less than this expression, 24-18+13×6?  

TJ: [pause] 
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SN: Is it more or less than the original expression [24-13+18×6]? 

TJ: It is less. 

SN: Why is it less? 

TJ: Here the sign has also changed. Here it is +18×6. And there it is -18+13×6, 
78. 

SN: Yes. 

TJ:  And the difference of these is 6. 

SN: Yes. 

TJ: And if you add the two you get 84. 

SN: Did you calculate and check? 

TJ: Yes. 

… 

SN: Can you tell me without calculations? That the answer of this would be 
greater?  

TJ: [Pause] Yes. 

SN: How? 

TJ: Here it is 18×6, and there 13×6. It has become less and here [24-13+18×6] 
also -13 is there, and -18 is here [24-18+13×6]. Only here subtraction, the 
product is more, therefore.  

He used the concept of terms to identify the equality/ inequality of the expression 

and he used it thereafter as well for comparing the expressions. He was aware of 

the fact that these two expressions cannot have equal value as they are unequal 

which is evident from his statement ‘If they were equal, then only their value 

would have been equal. And these expressions are different, the terms have been 

changed, therefore the answers will also be different’.  He often took recourse to 

calculations for comparing the expressions, although when pressed hard he could 

give reasons about the expressions without calculations.  

In the above instances students could arrive at the correct conclusions. But a few 

students were not so successful. One such example is the following from the in-
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terview with the student AY who is comparing the expression 24-13+18×6 with 

the expression 24-(13-18×6).  

RB: Let us see the next 24-(13-18×6). You said this is equal. Why is it equal? 

AY: Not equal 

RB: Not equal. Why? 

AY: Because three numbers are in the bracket, so the answer for these two [13-
18×6] have to be found inside the bracket and whatever answer comes that has 
to be kept inside bracket and then do it with this [24] then you would get it not 
equal.  

RB: You would get not equal.  

AY: Yes. 

RB: Why did you write equal? What did you think? This [24-13+18×6] is an ex-
pression and this [24-(13-18×6)] is another expression. You are comparing these 
expressions.  

AY: I thought that if we open the bracket first then we get +18×6. 

RB: Ok. You think that if we open the bracket then we get equal and if we do not 
open the bracket and solve inside it then it is not equal. Are you thinking this? 

AY: Yes.  

RB: Is this possible?  

AY: I do not know.  

He could correctly evaluate expressions with brackets and showed various ways 

of evaluating expressions leading to the same value. He had definitely improved 

his understanding with regard to evaluation of bracketed expressions compared to 

his performance in the earlier interview after MST-II. But while comparing ex-

pressions, brackets continued to be a problem for him as the excerpt shows. This 

confusion persisted in all the tasks involving brackets (even when the expression 

in brackets had only simple terms) which required a ‘proceptual’ understanding 

rather than a simple understanding of rules of opening bracket. From very little 

knowledge of brackets after MST-II, he had moved to a ‘participatory’ phase 

where he could carry out the complete operation himself but could not ‘anticipate’ 

the results in the two situations – solving the sub-expression inside the bracket 
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and removing the bracket – mentally without physically carrying it out (Tzur and 

Simon, 2004, discussed in Chapter 2, section 2.4), and was hence not confident of 

the equality of the two expressions.  

The excerpts above show the successes and failures of the students in answering 

questions based on structure of expressions. The students were sufficiently ori-

ented by the end of MST-III to use the structure of expressions and terms to com-

plete the tasks of judging equality of expressions and comparing them if unequal 

and understood how each term contributed to the value of the expression. Some of 

them still made errors in the case of expressions with a negative bracketed term. 

In comparison to MST-II, they were more stable and consistent at this time in the 

use of concepts and rules. Comparing expressions of the kind that are discussed 

above is a more demanding task than judging equality of expressions where one 

can use the concept of terms as a short-cut procedure without really developing a 

sense of structure. The confidence of students in their sense of operation and 

structure as well as lack of confidence in computing large numbers for some, dis-

suaded them from calculating values of the expressions except for a couple of 

them who invariably took support from their skills of computation.  

7.2.3 Equivalence of algebraic expressions 

Having discussed students’ understanding of equality of arithmetic expressions in 

various cases as well as from various data sources (written test and interviews), let 

us now turn our attention to algebraic expressions and explore the impact of the 

earlier understanding in the context of algebra. In the post test of the first trial 

(MST-I), students were asked to identify algebraic expressions from a list which 

were equivalent to the given expression. The only transformation used to generate 

the options for the task at this time was of rearranging terms (e.g. identify if 

9×x+12-6×x-17 is equivalent to 17+9×x+12-6×x), that is, of Type 3(a) (see table 
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7.2). Tasks of type 3(a) was also used in the pre test of MST-II and in the pre and 

the post tests of MST-III, but not in the post test of MST-II (where other types  

such as Type (b) shown in Table 7.2 were used) (see Q.22 in Appendix IIB, Q.13 

in Appendix IIIA, Q.8 in Appendix IVA, Q.10 in Appendix IVB).  

Type MST-I MST-II MST-III 

 English Marathi English Marathi English Marathi 

 Pre Post Pre Post Pre Post Pre Post Pre Post Pre Post 

3(a) - 53 - 69 53 - 75 - 47 73 81 100 

Table 7.10: Percentage of students correctly identifying equivalence of expres-
sions of Type 3(a) in the three trials (nenglish=15, nmarathi=16) 

Note. 3(a) =  Algebraic expression with transformations restricted to rearranging 
terms. One item of this type was posed in the tests which consisted of an algebraic 
expression followed by four options. Each question consisted of an expression 
followed by four options. Answer considered correct only when all four options 
judged correctly. Entries blank against tests where item not posed.  

As in the case of arithmetic expressions, in the case of algebraic expressions as 

well students appropriately used the concept of terms to judge equivalence of two 

expressions. Students’ performance in identifying equivalent algebraic expres-

sions of Type 3(a) in the three trials is given in Table 7.10. Similar to the case of 

arithmetic expressions, there is an improvement in their performance through the 

three trials. In fact, students’ performance in identifying equivalent algebraic ex-

pressions is slightly better than in similar arithmetic expressions (compare tables 

7.3 and 7.10). Again, like in the case of arithmetic expressions, their performance 

in identifying equivalence of individual options with the given expression is better 

than in the overall. More than 80% of the students could avoid the conjoining er-

ror while judging the equivalence across the trials. But some students’ decision, 

especially in the first two trials, for considering an algebraic expression to be 

equivalent to another seems to be influenced by their understanding of procedure 

of simplifying algebraic expressions, like first collecting the like terms together, 
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not considering 9×x to be same as x×9. For example, some students did not con-

sider the given expression 13×x–9–3×x+15 to be equivalent to 15–9–3×x+13×x 

and some considered 13×x+3×x–9+15 to be equivalent to the given expression 

even though the signs of the terms have been changed.  In MST-III, two students 

were also seen to split the product term when they judged 9×12+x-6×x-17 to be 

equivalent to 9×x+12-6×x-17. 

In the post test of MST-II, Type (b) tasks of the identifying equal expression for 

algebraic expression were posed, which included transformations such as adding 

brackets, splitting a term, extracting a common factor, etc (see Q.7 in Appendix 

IIIB). The options for the algebraic expressions were slightly simpler than the 

arithmetic expressions, (which at times involved more than one transformation in 

an option), a reason for the better performance in the case of algebra (compare 

tables 7.4 and 7.11). Just about half the students could identify an expression 

which was transformed by extracting a common factor (Table 7.11, items 2 and 

4). Their performance in a few items like 1, 3, 5 is very good which dealt respec-

tively with brackets, equal compensation and decomposing a product term into 

two product terms.  

S.No Expression:          
7×w-19-11×w+21 

English Marathi 

1 7×w-(19+11×w)+21 93 81 

2 w×(7+11)-19+21 47 44 

3 20-20+7×w-11×w 87 87 

4 -19-11×w+7×(w+3) 40 44 

5 7×w-19-9×w-2×w+21 80 81 

6 2×(-2×w+1) 40 19 

Table 7.11: Percentage of students correctly identifying equivalent algebraic ex-
pressions of Type 3(b) in the post test of MST-II (nenglish=15, nmarathi=16) 

Note. 3(b) = Transformations other than rearranging terms. 
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The post test of MST-III contained items only of type 3(a), that is, rearranging of 

terms, and the issue of students’ understanding of more complex transformations 

of algebraic expressions was dealt in the interviews. Their understanding about 

equivalence of algebraic expressions has already been discussed in the earlier 

chapter in the context of simplifying algebraic expressions. Students could com-

pare algebraic expressions with terms rearranged for equivalence with ease at the 

end of MST-III, although a few of them were at times tempted to split the product 

term. Judging the equivalence of algebraic expressions with only terms rearranged 

was not a point of difficulty for them since the beginning as could be seen from 

their performance in this task in the earlier trials. Identifying and matching the 

terms in the two expressions is all that is required while comparing the expres-

sions.  

In the interview after MST-III, students were asked to first judge the equivalence 

of the expressions listed with the given expression (See Algebra test Q.2 and In-

terview schedule: algebra (Task 3) in Appendix VB). Further they were asked if 

the values of two such algebraic expressions will be equal for a given value of the 

letter, for example if 13×m-7-8×m+4 will be equal to -7+4+13×m-m×8 for m=2. 

A summary of the performance of the students is shown in Table 7.12. The table 

shows students’ responses to judging equivalence of the listed options to the given 

expression (‘Judgment’), their explanations for whether the value of two algebraic 

expressions will have the same or different when the letter is substituted by a 

number (‘Comparison on substitution’) and changes made during the interview 

(‘Changes’). 

The students judged the equivalence of the algebraic expressions by comparing 

terms. Four instances of errors in judging equivalence of algebraic expressions 

were found. Three of these were easily corrected but one could not be corrected. 

With respect to the second part of the question, ten students were clear that if two 
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algebraic expressions are equal, then they are equal for all possible values of the 

letter. Four others substituted the value of the letter (SEval) in each of the expres-

sions just to confirm if they were equal arithmetic expressions and thereby con-

cluded the values of the two algebraic expressions being compared to be the same. 

One of them could not draw the correct conclusion about the equality/ inequality 

of values of the two algebraic expressions in some cases. The student SG contin-

ued to focus on numbers and operations separately (not terms) while reasoning 

about these algebraic expressions (like 13×m-7-8×m+4 is not equal to -

7+4+13×m-m×8 for m=2 as -8×2 and -2×8 are not same). Three more calculated 

(SECn) parts of the algebraic expressions after substituting the value of the letter 

to see if the pairs of expression were equal or unequal. These categories of coding 

will be elaborated using the excerpts from the interview of students marked with 

an asterisk in Table 7.12.  
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Name Option 1: 13×m-7-8×4+m  Option 2: -7+4+13×m-m×8 (#) Option 3: m×(13-8)-7+4 (#) Option 4: 13×m-(7-8×m)+4  

 Judgment Comparison 
on substitu-
tion 

Changes Judgment Comparison 
on substitu-
tion 

Changes Judgment Comparison 
on substitu-
tion 

Changes Judgment Comparison 
on substitu-
tion 

Changes 

BP C  SEC IACA C  SE NC I  - NC I  SEC ISCS, 
IACA 

PD C  SE NC I SE ISCS C SE NC C SE NC 
BK C SE NC C SE NC C SE NC C SE NC 
AY C SEval NC C SEval NC C SEval NC C SEval NC 
NN C SE NC C SE NC C SE NC C SE NC 
SG C SEval NC C UE CAIA I UE ISCS C SE NC 
PG C SEval NC C SEval NC C SEval NC C SE NC 
JS C SEval NC C SEval NC C SEval NC C SE NC 
NW C - NC C SE NC C SE NC C - NC 
RG C - NC C SE NC C SE NC C - NC 
AS C SE NC C SE NC C SE NC C SE NC 
AN C SE NC C SE NC C SE NC C SE NC 
SV C SE NC C SE NC C SE NC C SE NC 
MC C SE NC C SE NC C SE NC C SE NC 
AB C SECn NC C SECn NC C - NC C SECn NC 
BM C - NC C SECn NC C SECn NC C - NC 
TJ C SECn NC C SECn NC C SECn NC C SECn NC 

Table 7.12: Responses of the students interviewed after MSC-III in identifying equivalent expressions for the expres-
sion 13×m-7-8×m+4 (# indicates equivalent expressions, * indicates students whose interviews are discussed in the 

text) 
Judgment on equality/ inequality of expressions (Judgment): 
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(C) Correct – the solution given for the expression is correct 

(I) Incorrect- the solution given for the expression is incorrect 

Explanation for the judgment or comparing two expressions (Explanation/ Comparison):  

(SE) Satisfactory explanation – able to explain satisfactorily own judgment as well as the probe and displays the knowledge of rules and 
concepts  

(SEC) Satisfactory explanation with changes – able to explain satisfactorily own solution as well as the probe but involves a change in the 
answer during discussion 

(SECn) Satisfactory explanation together with calculation – the subject gives a satisfactory explanation to judgment and the probe but uses 
calculation 

(SEval) Satisfactory explanation based on substituting the value of the letter – The subject substitutes the value of the letter in the given 
pair of expressions and decides if they are equal arithmetic expressions 

(ECn) Explanation based on calculation – the subject gives an explanation based on calculation only 

(UE) Unsatisfactory explanation – creates an ad-hoc explanation suitable for the specific situation at hand and may involve frequent 
change in answers from one to another 

(IJ) Incorrect judgment – subject making an incorrect judgment with respect to the probe 

(NE) No explanation – cannot give any explanation for the probe and only knows own solution  

Changes made during the interview (Changes): 

(IACA) Incorrect additional probe to correct additional probe – the subject changes his/ her incorrect answer for probe to a correct answer 

(ISCS) Incorrect solution to correct solution – the subject changes his/ her initial incorrect judgment about equality/ inequality for the ex-
pression to a correct one  

(CAIA) Correct additional probe to incorrect additional probe – the subject changes his/ her correct answer for probe to an incorrect one 

(CSIS) Correct solution to incorrect solution – the subject changes his/ her initial correct judgment for the expression to an incorrect one  

(NC) No changes made 
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Below are two examples from students’ interviews describing their understanding 

about the equivalence of algebraic expressions. The student BK was very clear 

about the conditions for equivalence of expressions which she explained by com-

paring the terms of the expressions and using the rules of bracket opening. She 

also displayed a well developed understanding that equivalent algebraic expres-

sions are equal for all values of the letter. 

RB: Ok. If I put m=2 in this first expression [13×m-7-8×4+m] and I put m=2 in 
the original expression [13×m-7-8×m+4], would I get the same value? 

BK: No. 

RB: It will not be. Why? 

BK: Because it is 8×4 [13×m-7-8×4+m], if it is 4 [that is, the value of m] here 
then it would be the same value for both.  

RB: Acha. Ok. If I put m=2 in the second expression [-7+4+13×m-m×8] and m=2 
in the original expression [13×m-7-8×m+4] then would they be the same? 

BK: Yes. 

RB: Why? 

BK: Because, m is any number, if we put any number for that then they would be 
the same. 

She very clearly knew that two equivalent algebraic expressions would always be 

equal for any value of the letter and could see the equality in forms of the alge-

braic and the arithmetic expressions without explicitly carrying out the verifica-

tion process. This same confidence and clarity in understanding about the letter as 

well as about the expression was also seen in her responses to the simplification 

of algebraic expressions task. She was one of the two students who could articu-

late the possibility of the expressions 13×m-7-8×m+4 and 13×m-7-8×4+m to be 

equal for m=4. All others pointed out their inequality as -8×2 (-16) is more than -

8×4 (-32). A few students, during their conversation, even went on to argue that 

two non-equivalent (which cannot be transformed into each other) algebraic ex-

pressions can never be equal, missing the point that solving an equation is to find 



 292 

the values of the variable for which two expressions are equal. Since this topic 

was not dealt with in the study, this point was not pursued further during the in-

terviews. However, in the last expression in the list with brackets preceded by a 

negative sign, she incorrectly predicted the value of the expression to be same 

with the opposite sign (‘The sum will be same but the sign will be wrong’), not 

noticing that the full expression is not the inverse of the given expression. 

The student AB was also able to judge the equivalence of the given expression 

with each option using the concept of terms but he was not so sure about the 

equality of values for equivalent algebraic expressions where he resorted to calcu-

lations of some parts of the expression. He was first asked to find the value of the 

original expression 13×m-7-8×m+4 for m=2 which he found to be 7. He was then 

asked which of the expressions in the list would have the same value as the origi-

nal expression. 

SN: Then out of the expressions 1, 2, 3, 4, which of them would have the value 
7? 

AB: This 2nd [-7+4+13×m-m×8] and 3rd [m×(13-8)-7+4]. 

SN: Why? 

AB: Because here also 13×m=26 and here -16 and here all the other signs are 
the same. Then here the number is the same. That is why the answer will be 
same.  

SN: The first one cannot have the answer 7? 

AB: No. because here [13×m-7-8×m+4] 2 is there and here [13×m-7-8×4+m] 
4. Then here if we had done 2, then the product would have been more than this, 
means 8 4’s is 32. And here 16 is there. Then it would have been double and here 
is m=2.  

He understood the contribution of each term to the value of the whole expression 

but was not very confident. He did not have a clear generalized idea that equiva-

lent algebraic expressions would have the same value for any value of the letter. 

A similar point was noticed in his interview for the task of simplification of alge-
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braic expressions. It may be noted that the students interviewed after MST-III on 

their understanding of simplification process or equivalence of algebraic expres-

sions did not show any trouble in substituting the letter by a number, which was 

seen among a few students in the written test. 

These instances indicate students’ understanding of algebraic expressions as well 

as the meaning of the letter. It is quite evident from the responses such as those 

made by the student BK that many of them have a robust understanding of ex-

pressions - arithmetic and algebraic. They appreciated the structural similarity of 

the two kinds of expressions and they were aware of the common rules of trans-

formation that are applicable in both places. An additional question posed after 

the ‘judging equivalence’ task required the students to tell whether two occur-

rences of ‘m’ in the expression 13×m-7-8×m+4 could take two different values. 

Ten students straightaway denied the above possibility citing ‘m’ to be the com-

mon factor between the two terms, and its use in the simplification process, to be 

an important reason. Some of them mentioned that for different numbers, one has 

to use different letters. Four agreed to the possibility and suggested appropriate 

changes in the solution procedure where it will not be possible to extract the 

common factor. The other three were unsure as they regarded the question as an 

extension of ‘equal value’ task and thought of the possibility of changing the m’s 

similarly in all the other listed expressions, thereby maintaining their equivalence/ 

inequality to the given expression as well as adjust the solution procedure. The 

students indeed saw the expressions as solvable entities and related them to arith-

metic expressions.  

Some of these students can be thought to have moved to the phase of structural 

development governed largely by the structural features of the arithmetic system 

(Goldin and Kaput, 1996). Some others still needed to go back to the numerical 

referent and establish the results. They continued to work at the inventive-
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semiotic stage (ibid); for them the letter simply replaced the numbers. The fact 

that the students engaged in such acts meaningfully is an indication of the unity in 

the two worlds: arithmetic and algebra, in contrast to the apprehension researchers 

had expressed with regard to the generalized arithmetic approach to algebra (cf. 

Lee and Wheeler, 1989; Linchevski and Livneh, 1999; Cerulli and Mariotti, 

2001). The ready use of the numerical reference for the letter gives hope that their 

understanding is less likely to be ‘pseudo-structural’. 

Further, this connection allowed most students to see the letter as a placeholder 

for a number and some students to see it as a ‘general number’. These can be in-

terpreted from their justification for the simplification process of algebraic ex-

pressions and their understanding of the equivalence of algebraic expressions. In 

both cases the students appealed to the structural similarity between arithmetic 

and algebraic expressions and their understanding of arithmetic expressions. 

However, the vocabulary used by students often describes the letter as ‘a number 

in the mind’ or ‘an unknown number’. The first of these ascriptions comes from 

another context, the ‘Think-of-a-number’ game where the letter stood for a num-

ber in someone else’s mind. The second of the ascriptions does not come from the 

usual source of solving equations as that was not part of the study. Instead it 

comes from the various situations the students were exposed to while introducing 

algebra where the letter could take one or more values like guess-the-number 

game, open sentences (x+y=18) and letter-number line. This instructional program 

was instrumental, to some extent, in giving a sense of the letter as generalized 

number, instead of an object or specific number, without taking recourse to mod-

eling situations algebraically.  In the next chapter, an effort would be made to elu-

cidate the contexts in which the letter was used and the nature of students’ under-

standing with regard to usage of letters and algebraic expressions in those con-

texts.  
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7.3 Generating equal expressions 

Although the post test responses of the students to the structural tasks were not 

clearly indicative of the capacity and the understanding the students had devel-

oped with respect to arithmetic and algebraic expressions, the interview data did 

show the extent of their understanding. Another task which revealed their under-

standing of equality/ equivalence of expressions and ability to use both structural 

and procedural aspects of expressions was generating equal expressions to a given 

expression. This was an interesting activity for the students as it gave them the 

autonomy to generate expressions rather than respond to given expressions. The 

expression needed to obey a constraint - that the value of the expression remains 

unchanged. It enabled them to work according to their own level and gave them 

the opportunity to use the concepts, rules and procedures in conjunction, learnt 

during the trials by making connections between them. 

In MST-I, the students only made expressions where the terms were rearranged. 

The fact that rearranging terms of an expression does not change the value of the 

expression was quickly found by them by checking the values of the expressions 

with only numbers reordered and terms reordered. This helped them firstly in 

identifying equal expressions and then in generating such expressions themselves. 

Subsequently, students identified the terms and then changed the position of the 

terms by carefully moving the boxes containing the terms to generate equal ex-

pressions. Students rarely made errors while doing this. In MST-II, they were 

again asked to generate expressions equal to the given one, not only by rearrang-

ing terms but also by using other transformations which when applied would 

leave the value of the expression same. Both the groups responded very enthusias-

tically to this challenge. All the students did not work at an equal level in the 

classroom, some tried harder transformations and some restricted themselves to 

rearranging terms. Students’ lack of confidence in the more difficult transforma-
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Item 
Strategy 

tions as well as lack of anticipatory skills with respect to operations and rules, 

rather than lack of knowledge of rules of transformation could have been one rea-

son for some of the students to make simpler equal expressions by rearranging 

terms. Students took time to understand the requirement of the task: the expres-

sion needed to be transformed in ways so that the value remained same, but they 

were not allowed to completely change the expression.  

 30-14+16    
(154 responses)

11×4-21+7×4 
(141 responses) 

12×x+5-6×x+8 
(144 responses) 

Splitting a term 56 (*8) 31 (*6) 35 (*3) 

Simplifying/ com-
bining terms 

0 41 (*0) 12 (*2) 

Rearranging terms 26 (*3) 20 (*0) 30 (*1) 

Using bracket 4 (*2) 8 (*1) 23 (*2) 

Others  14 (*3) 0 0 

Table 7.13: Proportion (in percentage) of strategies used for generating equal ex-
pressions in the classroom in MST-II (*numbers in the bracket indicates percent 

of incorrect expressions) 

Note. All percentage calculated on total number of responses given in the top row. 

Analysis of the students’ written expressions for three kinds of expressions in the 

classroom during MST-II: expression with simple terms (e.g. 30-14+16), expres-

sion with two product terms and a simple term (e.g. 11×4-21+7×4) and an alge-

braic expression (e.g. 12×x+5-6×x+8), revealed the predominant strategies used 

by the students. The strategies used for generating equal expressions and the per-

centage of expressions in each category, for one item of each kind as mentioned 

above, are given in Table 7.13. Of course not all these expressions were correct 

and the incorrect expressions gave rise to fruitful discussions in the classroom 

with regard to integer operations, use of brackets and bracket opening rules and 

other syntactic transformations which keep the value of the expression invariant.  
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The category splitting a term involves rewriting the term as sum, difference, 

product or quotient (e.g. rewriting 30-14+16 as 20+10-14+10+6). In the case of 

expressions with product terms or algebraic expression it includes splitting the 

simple term in the expression or splitting the numerical factor or converting the 

product term into a simple term and subsequently rewriting it as sum, difference, 

product and quotient (e.g. rewriting 11×4-21+7×4 as 40+4-20+1+28 or 12×x+8-

6×x+5 as (6+6)×x+5-3-3×x+8, both of which are incorrect). The second strategy 

of simplifying/ combining terms was seen in the case of expressions with product 

terms or algebraic expression. It involves simplifying the product term into simple 

term with or without rearranging them (e.g. 44-21+28 as an expression equal to 

11×4-21+7×4) or combining the simple or the variable terms, also rearranging the 

terms in the process (e.g. 6×x+8+5 as being equivalent to 12×x+8-6×x+5). Rear-

ranging terms was a strategy which was used in all the three kinds of expressions 

(e.g. rearranging 30-14+16 as16+30-14). Brackets too were used to make an ex-

pression equal to a given one, sometimes in the obvious places and some other 

times very innovatively (e.g. expressions equal to 30-14+16 are 30-(14-16) and 

2×(15-7)+16; an expression equal to 11×4-21+7×4 is (11+7)×4-21; an expression 

equivalent to 12×x+5-6×x+8 is 5-(-8+6x-12x)). Some other strategies were used 

in the case of expressions with simple terms only and consisted of using a combi-

nation of rules (e.g. -2×7+2×8+6×5) such as rearranging the terms as well as split-

ting the terms as products, making an altogether new expression with the same 

value (e.g. 28+4) and equal compensation between terms (e.g. 31-14+17, an in-

correct expression). Students made errors while splitting a negative term indicat-

ing the detachment error (e.g. -39=-30+9) and in using the bracket with a negative 

or a multiplication sign, the English medium students making more errors than the 

Marathi medium students. Also, slightly more complex expressions were seen in 

the Marathi group. Figure 7.2 gives some examples of the expressions generated 

by the students during this trial. It must be noted that the complex looking expres-
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sions were not the result of incremental changes to the original expression. 

Rather, the students rewrote each term or parts of the expressions using brackets 

and other transformations, and then checked if it would lead to the terms of the 

original expression.  

 

 

 

 

Figure 7.2: Examples of equal expressions generated by students during class-
room discussion in MST-II (expressions marked with an asterisk are not equal to 

the given expression) 

Even in MST-III, some students used only simpler transformations like rearrang-

ing terms or rewriting a positive term as sum, difference and product. The empha-

sis in this trial was not so much on recording of the various strategies which stu-

dents use to generate the equal expressions but to see if they understood whether 

the transformations could be applied on any expression. Students gave indications 

of their capability to reverse the processes of combining/ splitting (which were 

used to generate the equal expressions), putting and removing brackets, anticipat-

ing the results of the transformations and check for their equality. Figure 7.3 

shows some typical examples of equal expressions that students generated for a 

given expression in the classroom during MST-III.  

The complexity of the expressions generated by the students was no doubt greater 

than the previous efforts by them in MST-II. More occurrences were seen of op-

erating on the signed number like -16 = -10-6 instead of –(10+6) or complex split-

ting of simple term like +17 as 2×8+1 (e.g. 5th and 7th expressions in Figure 

25-18+9 
1) 25-(18-9) 
2) -18+9+25 
3) 25-(18-3×3) 
4) 26-19+3×3 
5) 26-17+3×3* 
6) 5×5-3×6+3×3 
7) 25-3×(6+3)* 

11×4-21+7×4 
1) 44-21+28 
2) 40+4-21+20+8 
3) 4×(7+11)-21 
4) 25+3+40+4-25-4*
5) 26+46-21 
6) 30-2+50-6-20+1* 

8×x+12+6×x 
1) 12+6×x+8×x 
2) 4+4×x+6×x+12* 
3) (4+4)×x+(3+3)×x+12 
4) (8+6)×x+4×3 
5) (4+4)×x+6+6+(4×3)×x* 
6) (10-2)×x+12+(7-1)×x 
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7.3(a), 7th in Figure 7.3(b) and 1st in Figure 7.3(c)). Detachment errors could still 

be seen (e.g. 6th expression in Figure 7.3(c)). The Marathi group of students were 

more innovative due to their greater comfort with integer operations and brackets 

and flexible and simultaneous use of different rules of transformation (e.g. an ex-

pression equal to 48-11×6+17 is -2×(-24+33)+17). But the more algebraic ap-

proach of rewriting the product term as sum or difference of product terms was 

not still seen (e.g. 12×7 as 4×7+8×7). The English group also continued to make 

efforts in making the task interesting and led to many fruitful discussions in the 

classroom whenever the individual effort had errors and the group suggested cor-

rections. Algebraic expressions were not discussed at this time and were left to be 

explored through the interview, which has already been discussed in the earlier 

section.  

 

 

 

 

 
 
 
 
 

 

 

 

Figure 7.3: A sample of students’ responses from the classroom in MST-III: writ-
ing equal expressions for a given expression (expressions marked with an asterisk 

are not equal to the given expression) 

49-58+67 
1) 49-(58-67) 
2) 49-2×29-67* 
3) 49-(50-8)+67* 
4) 67+49-58 
5) -19×3-1+24×2+1+67 
6) -2×25-8+7×7+67 
7) 2×24+1-3×39-11×6+1* 

72-12×7+19 
1)  72-(12×7-19) 
2) 17+2-(72+12×7)* 
3) 12×(6+7)+19* 
4) 8×9-80-4+19 
5) 2×(36-42)+19 
6) 2×(36-42+8)+3 
7) 8×9-84+9×2+1 

38-16+29/ 32-16+29 
1) -4×4+4×8+14×2+1 
2) 4×(4-8)+29* 
3) 29-2×(8-16) 
4) 64÷2-32÷2+29 
5) 31-15+29 
6) 28+10-6+10+19+10* 
7) 3×10+8-2×5-6+2×10+3×3
8) +29-(8×2-19×2) 

48-11×6+17 
1) 3×(16-22)+17 
2) -2×(-24+33)+17 
3) 24×2-15×4-6+8×2+1 
4) 50-66+15 
5) 7×(7+2)-1-22×3+3 
6) -66+(4×10+8)+(16+1) 
7) 6×(8-11)+2×(8+1)* 
8) 40+8-(3+3)×(10+1)+17 

a b 

c d 
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Through the discussions, students learnt to generate expressions by compensating 

terms equally (e.g. finding which of the expressions 36-44+13 or 36-46+13 or 32-

46+9 is equal to 35-45+13). Similar discussions were seen in the case of use of 

brackets for generating equal expressions. Poor knowledge of integer operations 

and the confusion between bracket opening rules and the need for brackets was 

evident in their efforts, for example, whether -25-4 is -21 or not and how it can be 

corrected. Discussions with respect to the use of brackets was a common feature 

in the classroom where a student tried to defend his or her solution and others 

tried to convince him or her of the error. These situations were a good occasion to 

discuss the various rules and procedures for evaluating expressions, opening 

brackets and the need for brackets. One such discussion is given below. 

Students generating equal expressions for the expression 49-58+67 (episode lasts 

for a little over 2 minutes during MST-III). 

Savitri: +49-(50-8)+67 

Tr: Is this correct? 

Prathamesh and some others: Teacher, no. 

Tr: Right, Jayashree? 

Jayashree and Navya: Teacher, yes. Before bracket minus sign is there, so it is 
plus inside the bracket and it is 50+8 is equal to 58. [Many other students voice 
their agreement to this argument] 

Prathamesh: Teacher, but -8 is +8, how can it be 58? 

Saurabh: Teacher, teacher first we have to do that, bracket first we have to solve. 
That is why the answer will be 42.  

Tr: What Saurabh is saying is that we have to first solve the bracket, means we 
will get 42. 

Saurabh: -42. 

Tr: We get -42. But what is the term we want? 

Prathamesh: We want -58. 

Saurabh and few others: If you put plus sign inside the bracket then you would 
get the correct answer.  
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Tr: What Saurabh is saying is that if there were a plus sign inside the bracket then 
we would get the right answer. 

Prathamesh: Yes. 

Tr: What do you say, Bhagyashree? Which is correct? Is this correct [+49-(50-
8)+67] or should we put plus sign inside? 

Bhagyashree: Plus sign inside is correct.  

Navya: This is correct [+49-(50-8)+67] 

Tr: Is this correct? 

Saurabh: No, teacher. 

Joel: Teacher, how can it be correct?  

Navya: Before the bracket, minus sign is there, so inside the bracket minus sign 
is there. 

Tr: Let us see this. Before the bracket minus sign is there. Let us remove the 
bracket. What will we get? 

Navya and others: Teacher, it will be 49-50+8. 

Tr: +67 

Prathamesh: So it is -50+8 

Tr: What will be -50+8? 

Saurabh, Joel and many others: -42. [Some continue to say -58] 

Joel: Answer will be [inaudible] 

Prathamesh: There are more negative cards. 
(The class further discussed the solution for -50+8 using positive and negative 
cards.) 

The above discussion and the whole task of generating expressions itself was 

made possible by the fact that students had some degree of confidence in parsing 

expressions together with flexible knowledge of combining terms, that is, rules of 

transforming expressions. This activity depended on students’ understanding of 

equality and operations on numbers and further helped in deepening that under-

standing by using them in situations which were challenging enough but which 

made sense to them. The aim of the task was to help build structural understand-

ing by coordinating knowledge of procedures and anticipation of the result of the 
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procedure. It is evident from the discussion in the preceding paragraphs that their 

performance is not error free, even after enough experience in the tasks and the 

requisite skills; but they had strategies in place to deal with conflicting situations. 

In the above episode the students implicitly knew that a term can be split and re-

written as a sum or difference or using brackets which would require some sur-

face changes in the expression but leave the value invariant. They were also aware 

that only the changed components need to be compared to judge the equality of 

the two expressions as the presence of the same terms ensures equal expressions. 

A necessity to work mentally without necessarily computing sequentially was im-

posed in the process. Also this activity was instrumental in situating the rules and 

procedures together with students’ implicit knowledge and expectations within a 

mathematical context of equality/ equivalence which was meaningful for students. 

Participating in the activity gave a chance to make the implicit understanding of 

operations explicit, turning the properties of operations and constraints on them 

into rules of transformation (see Cerulli and Mariotti, 2001, section 2.3.5). It en-

couraged students to create and transform expressions, compose and decompose 

expressions, which according to Mason et al. (1985) is an important activity to 

understand symbolic algebra and one of the routes to learn formal algebra.  

Another point to be noticed is that even though many of these students did not 

perform well in the direct task of ‘=’ symbol which required them to fill in the 

blank to make two expressions equal, they could do tasks which were more open 

like identifying and generating equal expressions. The written responses together 

with interview data and classroom discussions indicate sound understanding in the 

case of many of the students of the concept of equality. However, as has been dis-

cussed earlier, a few of the students were found to have difficulty using the brack-

ets and the procedural rules for computing the sub-expression and failed to antici-

pate the result of carrying out such an operation. They thought that the solutions 
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of the expressions in two different ways: using brackets as a precedence rule and 

using the bracket opening rules, could lead to different values (see discussions in 

sections 6.1.3, especially pp. 215-216 and 7.2.2, p. 281). They had misinterpreted 

the rule and were using it with a superficial understanding of brackets and sign 

changing, without really grasping the equality of the expressions.  

7.4 Overall performance of students in structure tasks 

This chapter was devoted to discussion of students’ understanding of the structure 

of expressions and of equality together with the ‘=’ sign, in the context of tasks 

requiring computation and in purely structural tasks. The data in the table below 

(Table 7.14) substantiates the earlier discussion in the sections above restating the 

fact that students came to the study with very little understanding of ‘=’ sign or 

equality (Pre test average, MST-I) and made considerable progress in the three 

trials, even when the tasks became gradually more complex. In the predominantly 

structure oriented task of judging equality of expressions, items were most com-

plex in the post test of MST-II and the least in the post test of MST-I, the trans-

formations being restricted in the case of the latter to only ‘rearranging terms’ 

(Type (a)). When only the task of judging equality of expressions are compared, 

the students gained in performance between the post test of MST-I and the pre test 

of MST-II (from 60% to 66.6%) but slipped to 57.5% in the post test of MST-II 

when the transformations were more complex of Type (b). Overall, taking all the 

structure tasks together, the students performed slightly better in the post test of 

MST-II than in MST-I (as seen from Table 7.14). The larger difference between 

the post tests of MST-II and MST-III could be due to the reduction in complexity 

in the nature of transformations used, although they were still of Type (b).  
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 MST-I MST-II MST-III 

Post test Average      60%      
(4.2 out of 7) 

 63.75%    
(10.2 out of 16)

77.8%        
(10.9 out of 14)  

Pre test Average – items 
common to pre and post test 

      30%    
(1.8 out of 6) 

 82.5%         
(3.3 out of 4) 

64.3%         
(9.0 out of 14)  

Post test Average – items 
common to pre and post test 

60%          
(3.6 out of 6) 

 63.75%       
(3.3 out of 4) 

 77.8%        
(10.9 out of 14)  

Std. dev. Pre test 1.7 1.2 2.6 

Std. dev. Post test 2.2 1.3 2.9 

df 30 30 30 

Difference between means 1.8* 0 1.9* 

t-value (paired-samples) 4.831 - 4.983 

Table 7.14: Comparison of average scores across the trials on structure based 
tasks (N=31) 

* p < .01 

7.4.1 The procedure-structure relationship 

Students’ improvement in performance in the procedural tasks over the three trials 

was discussed in Chapter 6. Since one of the main concerns of the study was to 

develop a strong sense of both procedures and structure among students and also 

to understand their interrelationship, it is important to analyze the performance in 

the two kinds of tasks together. Table 7.15 below shows the average scores in the 

post test of the three trials for the procedural and the structural tasks. 

The average of the students in the procedural and structural tasks together has 

gradually improved over the trials. The items in both kinds of tasks (procedural 

and structural) became increasingly complex with the trials but the students’ 

overall performance did not deteriorate. By MST-III, students became more con-

sistent in their reasoning styles both in the context of procedures and structure 

sense, which is reflected in the improved performance of the students. The written 
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responses of the students in the post test, especially in the tasks of evaluating ex-

pressions using easy ways and simplification of algebraic expressions together 

with the interviews demonstrated their ability to use both procedure and structure 

sense of expressions to deal with evaluation tasks as well as the identifying equal 

expressions task. The differences in students’ capabilities in working with the 

symbols, manipulating them and reasoning about them over the trials have been 

discussed in these two chapters (Chapters 6 and 7). The discussions brought forth 

the nature of the tasks, the scope of the interplay between procedure and structure 

and the subtleties involved in carrying them out. There is not much difference be-

tween the students’ average scores in procedure and structure tasks across the tri-

als with a slightly better average score in the procedure tasks than in the structure 

tasks. This suggests that the two skills progress simultaneously and are comple-

mentary in nature.  

 MST-I MST-II MST-III 

Average – procedural and 
structural tasks 

61.8%        
(16.7 out of 27) 

 65.25%     
(26.1 out of 40) 

 79%             
(33.2 out of 42)  

Average procedure tasks  62.5           
(12.5 out of 20) 

       66.7%     
(16 out of 24)  

 79.6%            
(22.3 out of 28)  

Average structure tasks 60%            
(4.2 out of 7)  

63.75%      
(10.2 out of 16) 

 77.8%            
(10.9 out of  14)  

Correlation – structure 
and procedure 

0.8* 0.6* 0.8* 

df 29 29 29 

Table 7.15: Comparison of average scores in the post test of the three trials on 
Procedural and Structural tasks (N=31) 

Note. r = .456 is significant at .01 level for df = 29. 

* p < .01.  

Further, a high correlation between the performance of students in the procedural 

and structural tasks can be seen. This is maintained when the two groups (English 
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and Marathi) are treated separately (r = 0.6 to 0.8). The graphs in Figure 7.4 show 

the high correlation trend together with the nature of the change in the three trials. 

The number of students moving to the upper right corner of the graph increases 

with the trials. Many students in MST-I could not successfully attempt the struc-

ture tasks. Students with very high scores in procedure were the ones who got 

many of the structure questions also correct. The situation improved in the next 

two trials, with many more students moving up on both the axes in the graph, dis-

playing some evenness in their performance in both kinds of tasks. The students 

had become more consistent and also flexible in using the different concepts and 

ideas to work on the tasks in the later trials. The absence of students in the upper 

left corner of the graphs indicate the need for some familiarity with procedural 

knowledge before being able to perceive and use structure of expressions in tasks. 

But after that, these competencies may complement each other – a rise in proce-

dural understanding leads to an appreciation for structure of expressions and vice 

versa.  

 

 

 

 

 

 

 

Figure 7.4: Distribution of students’ performance in the procedural vs structural 
tasks in the three trials 
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Note. MST-I: Structure tasks:7, Procedure tasks: 20; MST-II: Structure tasks: 16, 
Procedure tasks: 24; MST-III: Structure tasks: 14, Procedure tasks: 28. 

 

 

 

 

 

Figure 7.5: Number of students improving in the post-test over the pre-test across 
the trials in the procedure and the structure tasks (N=31) 

The graphs in Figure 7.5 show the number of students who improved their per-

formance in the post test in procedure and the structure tasks over the pre test in 

comparable items across the three trials. The number of students who improved 

over their pre test in the post test is always slightly more in the procedure tasks 

than the structure tasks. This lag in performance in the structure tasks too is in-

dicative of the interaction between the procedure and the structure tasks and the 

necessity to have some procedural understanding before being able to abstract the 

structure of expressions. With each of the trials more number of students im-

proved in both procedures and structure tasks, except in MST-II. This could be a 

manifestation of the nature of items in the post test of MST-II which did not suffi-

ciently test students’ understanding, being too complex for them to handle. 

7.4.2 The arithmetic-algebra relationship 

It is important to examine the relationship between students’ responses to the 

arithmetic and the algebra tasks, the transition from arithmetic to algebra being 

the purpose of the study. The various tasks for the arithmetic part (evaluation of 

expressions, ‘=’ sign and equality, rules for bracket opening) were so designed, 

that they allowed for transfer of these capabilities to the context of algebra, 
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through an internalization and abstraction of properties of operations and under-

standing the possibilities and constraints on transformations.  

 MST-I MST-II MST-III 

Average – Arithmetic 
(Procedure+Structure) 

64.1%         
(14.1 out of 22) 

 71.1%           
(19.2 out of 27)  

75.9%             
(25.8 out of 34)  

Average – Algebra  
(Procedure+Structure) 

52%            
(2.6 out of 5)  

 57.5%           
(6.9 out of 12)  

81.25%            
(6.5 out of 8)  

Correlation – Arithmetic 
and Algebra 

0.8* 0.6* 0.8* 

Average – Arithmetic 
(Procedure tasks only) 

 61.1%         
(5.5 out of 9)  

68.2%           
(7.5 out of 11)  

76.7%             
(11.5 out of 15)  

Average – Algebra  
(Procedure tasks only)  

50%            
(2.0 out of 4)  

 53.3%           
(3.2 out of 6)  

80%              
(5.6 out of 7)  

Correlation – Arithmetic 
and Algebra             
(Procedure tasks) 

0.6* 0.6* 0.6* 

df 29 29 29 

Table 7.16: Comparison of average scores in Arithmetic and Algebra in the post 
tests of the three trials (N=31) 

Note. r = .456 is significant at .01 level for df = 29. 

* p < .01.  

Table 7.16 shows the average scores of the students in the various tasks in the 

post tests in the domain of arithmetic and algebra. The algebra tasks were fewer in 

number than the arithmetic tasks but combined many of the skills developed in 

the context of arithmetic. The first set of averages includes both procedural and 

structural tasks in each of the two domains. There is an incremental difference 

between the performances of the students in the three trials, the items also getting 

more complex in each trial. As per the expectation, students’ scores on arithmetic 

and algebra are highly correlated in the trials but the correlation is slightly lower 

in MST-II than in MST-I and III due to the difference in the nature of the items 
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and their complexity. Also, the English and Marathi groups separately show a 

high correlation between the scores in arithmetic and the algebraic tasks (r = 0.6 

to 0.8). Thus students’ developing understanding of arithmetic seems to influence 

their understanding of algebra. The graphs below further illustrate these state-

ments (Figure 7.6). A trend similar to the procedure-structure tasks (Figure 7.4) is 

seen here, with students performing well in the algebra tasks only when they had 

acquired some understanding of various aspects of arithmetic. Even in the first 

trial (MST-I), the students who scored sufficiently high in arithmetic, scored well 

in algebra. This becomes prominent in the second trial (MST-II) when many more 

students do better in arithmetic enabling them to also perform better in algebra. In 

the third trial (MST-III), most students managed a reasonable degree of success in 

both the domains.  

 

 

 

 

 

 

 

Figure 7.6: Distribution of students’ performance in Arithmetic vs Algebra tasks 
in the three trials 

Note. MST-I: Arithmetic tasks: 22, Algebra tasks: 5; MST-II: Arithmetic tasks: 
27, Algebra tasks: 12; MST-III: Arithmetic: 34, Algebra tasks: 8. 

The average score in algebra is below the average score in arithmetic except for 

MST-III where the students performed slightly better in algebra, largely due to 
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their better performance in the procedural tasks in algebra. The low success in al-

gebra in the earlier trials has been evident through the discussion with regard to 

their errors in manipulating algebraic expressions and the possible reasons for 

these. However, the scores in the two domains with respect to procedural under-

standing are also correlated. The scores in the structure tasks in arithmetic and 

algebra are not amenable to such an analysis due to very few items (usually only 

one item) in algebra which checked for structure sense. Interview responses of the 

students and classroom discussion in the structure tasks showed their grasp of the 

structural similarity between the two domains and also their consistency in using 

the rules across the tasks/ items. In both the contexts of interview and classroom, 

students were seen to be able to argue about their judgments and correct them 

whenever given the opportunity to do so. At times the judgments were corrected 

spontaneously and other times they engaged in long discussions in order to do so. 

The written responses had indicated some inconsistency with respect to the struc-

ture tasks where they correctly responded to one task and not the other, and they 

performed slightly better in algebra than in arithmetic. However, there are many 

evidences from interview and classroom discussion which indicate that most stu-

dents developed strong understanding of the concept of equality, even though in-

dividual performance was not error free.  

The discussion in this chapter revealed students’ understanding of structure of ex-

pressions and their ideas of equality, together with the use of the concept of terms, 

through written responses, detailed interviews and classroom discussions. Al-

though most students learnt to use the concept of terms meaningfully to check for 

equality and comparing two expressions by the end of the three trials, some 

showed inconsistencies and misinterpretation of structure leading to incorrect re-

sponses. The tasks helped them to consolidate their understanding of both proce-

dures and structure and use them in a complementary manner, pushing them to the 
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‘structural phase’ (Goldin and Kaput, 1996) where they could appreciate the simi-

larity between arithmetic and algebraic expressions and facilitate the transition. 

The symbols had to be necessarily seen as ‘processes’ and ‘objects’ or flexible 

‘procepts’. They learnt the strategies of keeping the value of an expression invari-

ant by using various transformations, leading to the understanding that the change 

in surface structure still keeps the value same. The quantitative analysis of the 

data also indicates the growing understanding of the students through the trials, 

the performance in structure tasks lagging slightly behind procedures and algebra 

lagging behind arithmetic in all trials except MST-III. The increasing comfort 

with arithmetic and algebra as well as structure and procedure sense for expres-

sions could be a result of more coherence in the teaching approach itself and stu-

dents’ ability to use the linkages appropriately. The results support the sugges-

tions made by Lichevski and Livneh (1999, 2000), Malara and Iaderosa (1999) 

and Liebenberg et al. (1999b) about the fruitfulness of focusing away from com-

putational tasks and engaging in a reflective discussion about the computational 

procedures and rules, which is required for a consistent performance in arithmetic 

as well as in algebra.  
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Chapter 8: Analysis III: Understanding of use of    
algebra in contexts 

8.0 A brief overview of the chapter 

A large part of the teaching program was devoted to developing meaning for the 

syntax of algebraic symbols by generalizing from similar contexts in arithmetic. 

The results of this part of the programme which involved reasoning about expres-

sions have been discussed in the previous two chapters (Chapters 6 and 7). En-

gagement of the students in these tasks allowed them to move from the ‘inven-

tive-semiotic stage’ to the phase of ‘structural-development’. The movement to 

the next level of ‘autonomous’ stage was made possible by initiating the students 

to a culture of using algebra in rich situations (discussed in Chapter 3,  sections 

3.2.1 and 3.4) where the symbols could represent entities in the problem world. 

This requires careful building up of basic understanding of the contexts where al-

gebra can be used: problem solving, generalizing, verifying, justifying and prov-

ing (see section 3.4). Various contexts and tasks, namely the letter-number-line, 

representing common situations like the relationship between heights, lengths, 

objects or dimensions of rectangle, think-of-a-number game and pattern generali-

zation, were created in the study which required students to represent, generalize, 

justify and prove (that is, reason with expressions). These tasks were also sup-

posed to bridge arithmetic and algebra, by making it possible to use the knowl-

edge developed about syntactic transformations in the context of reasoning about 

expressions in situations, where algebra is used as a tool. This was to lead to a 

change in the style of reasoning: from arithmetic reasoning focusing on specific 

situations to general reasoning about a range of situations. Whereas ‘reasoning 

about expressions’ dealt with making generalized rules of procedures, exploring 

properties and transformations of expressions with a focus on the vital relation-
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ship of equality, ‘reasoning with expressions’ deals with using the symbolic ex-

pressions as a tool in situations of generalization, proving and justifying.  

The tasks which required students to reason with expressions were part of each 

trial and they were changed or modified as and when needed. By the end of the 

study, many students had demonstrated a robust understanding of knowledge of 

procedures and rules of transforming expressions as well as equality of expres-

sions as has been discussed in the preceding chapters. In this chapter, students’ 

understanding of algebra in contexts as reflected in their post tests of the main 

study trials and in the interviews at the end of MST-III will be discussed. These 

will also be supported and elaborated, whenever appropriate, by using instances 

from the classroom discussions in the three trials. Students worked on various 

tasks: (i) simple situations of representation using the letter, (ii) letter-number 

line, (iii) exploring patterns in the calendar and explaining them, (iv) think-of-a-

number game and (v) pattern generalization from growing shapes. The analysis of 

the students’ performance in these five contexts will focus on their understanding 

of the notion of letter, representation using letters of relations between quantities, 

sequences of operations and of generalized rules for patterns, appreciating the 

need for simplification of expressions, drawing valid conclusions and the idea of 

substitution. In the process, the efficacy of the tasks in nurturing algebraic think-

ing and bridging arithmetic and algebra will also be discussed. 

8.1 Understanding of representing simple situations 

Representing situations using the letter is a major leap forward in the realm of al-

gebra, a step that is not encountered in the context of arithmetic. In the tasks given 

to the students, they were required to represent using algebraic expressions simple 

situations, which were either depicted diagrammatically or verbally. Some of 

these items were similar to the CSMS test items and some were modified versions 
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of them. The items can be found in the pre and the post tests in each of the trials 

(see Q.12, Q.13, Q.16 in Appendix IIA, Q.11, Q.12, Q.15, Q.24 in Appendix IIB, 

Q.21, Q.22, Q.23, Q.24, Q.25 in Appendix IIIB, Q.17 in Appendix IVA and Q.16, 

Q.17 in Appendix IVB). All the trials had a few items of this kind. The purpose of 

using these tasks was to engage students in simple symbolic representations 

which could reveal their understanding of the letter, notations and conventions in 

algebra, a concern shared  by both CSMS (Kuchemann, 1981) and SESM (Booth, 

1984) studies. A few examples of the task are: finding the combined length of a 

rod which is made by joining a rod of length t cm and another of 3 cm; finding the 

area of a rectangle with a part of or one of its dimensions given by a letter.  

The average performance of the students (Table 8.1) in these tasks was not very 

good till the end of the study, with a somewhat better performance by the Marathi 

medium students than the English medium students. Some of the Marathi medium 

students were already aware of representation of simple situations with a letter as 

seen from their pre-test performance in MST-I.  The number of items ranged from 

one to seven in each of the tests. The performance of both the groups dropped in 

the post test of MST-III compared to the pre test of MST-III, which is a surprising 

result.  

MST-I MST-II MST-III 

English Marathi English Marathi English Marathi 

Pre Post Pre Post Post Post Pre Post Pre Post 

0 22 29 40 30 65 27 3 75 56 

Table 8.1: Average performance (in percentage) of students in the tasks requiring 
representation of situations (nenglish=15, nmarathi=16) 

Note. Pre-test MST-I had 3 items, Post-test MST-I had 6 items, Post-test MST-II 
had 7 items, 1 item in Pre-test of MST-III and 2 items in the Post-test of MST-III. 
No such items were posed in the pre-test of MST-II. 
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Students continued to make notational and conventional errors in all the trials, 

especially the English group. Although students were not seen to use the letter as 

a ‘label/ object’, some ignored the letter or assumed a specific value for the letter. 

Further, students’ inappropriate knowledge of measures of length (multiplicative 

relations, 3×y×5 as the total distance traversed) and area (combination of additive 

and multiplicative relations, x×5+4 as the area of a rectangle with dimensions x+5 

units and 4 units) made it difficult for them to complete these tasks. Such situa-

tions were discussed to a limited extent only in the first two trials (MST-I and II) 

in the classroom. The responses of the students in the classroom and the tests re-

vealed that they failed to make sense of the task and the need to use the letter in 

such contrived situations. Thus, these were gradually replaced by tasks where the 

use of the letter was more natural and had a purpose in being able to draw an in-

ference about the situation. 

8.2 The letter-number line 

The letter-number line (Carraher et al., 2001) is a generalized representation of 

the number line. It involves representations using simple algebraic expressions 

like x+1, x+2, x-1, x-2 (Figure 8.1), denoting both the relationship between suc-

cessive numbers and their distance from x (discussed in Chapter 5, sections 5.1.2 

and 5.2.1). This was a simple context in which students could accept the non-

closure of algebraic expressions and which also gave the students the understand-

ing that the letter stands for a number (detailed discussion in Chapter 2, section 

2.2). It allowed students to interpret expressions both as a process and as the result 

of the process (see discussion in section 5.1.2). For example, x+2 is ‘the number 

which is two more than x’ and is the process of ‘adding two to any number or 

moving two steps to the right of x’. Three tasks were posed in the context of the 

letter-number-line: (a) constructing the letter-number-line, (b) letter-number-line 

journeys and (c) finding the distance between two points on the letter-number-
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line. The performance of the students in the tests on reproducing the letter-number 

line and marking a few points on it was almost perfect (94%) in all the trials (see 

Q.28 in Appendix IIB, Q.15 in Appendix IIIA, Q.12 in Appendix IIIB, Q.13 in 

Appendix IVA).  

They could also complete what was called a ‘portion of the number-line’ (a ques-

tion posed in MST-II, Figure 8.2) in which students had to write three numbers to 

the left and right of any given positive or negative number with 90% success. This 

task was found to be an interesting one for the classroom as it unearthed many 

misconceptions which students held about the number line, like numbers to the 

left of any number are negative and to the right are positive and confusion about 

the order relations among integers. Students did not exhibit the same misconcep-

tion in the post test as were observed in the classroom.  

 

Figure 8.1: The letter number line 

  

Figure 8.2: Portion of a number line (MST-II) 

In another activity on the letter-number-line during MST-I, students learnt to see 

relationships between the expressions on the number line, like x-3+5 = x+2. 

Whereas the English medium students restricted to counting the number of jumps 

from x-3 to x+2 and occasionally reading it as ‘x+2 is five more than x-3’, the 

Marathi students went much ahead to understand and verbalize all the comple-

mentary relationships that could be deduced from this mathematical sentence. 

Students pointed out all the three relationships: ‘x+2 is five more than x-3’, ‘x-3 is 

five less than x+2’ and ‘the difference between x-3 and x+2 is five’. They could 

express the meaning of expressions like m+2-5 as ‘five less than m+2’ or ‘five 

y y+1 y+2 y+3 y-1y-2 y-3 
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less than two more than m’. These students gave indications of treating the ex-

pressions x-1, x+2 etc. as objects which represented a number and could be com-

pared with other such numbers, rather than mere operations on the number line. 

Both the groups had exposure to similar tasks in the case of the ordinary number 

line.  

  

Figure 8.3: Number line journey 

 

 

 

 

 

Figure 8.4: Sample of a students’ solution to the journey on the number line task 
in the post test of MST-II 

This activity was further extended to ‘number-line-journeys’ (Figure 8.3) in MST-

II which was enjoyed by the students due to its simplicity and the sequential na-

ture of representation (See Q.18 in Appendix IIIB, Q.14 in Appendix IVA). The 

students had to create a representation of the journey shown in the figure and then 

by manipulating it show that the end point is the same as shown in the figure. For 

example, in Figure 8.3, students would have to show the expression y-2+4-3 is 

equal to y-1 which is the end point of the journey on the letter-number line. Ini-

tially, students found representing and following the conventions in even the sim-

ple one step number line journeys (similar to fill in the blanks as above) to be dif-

ficult, but soon they were comfortable with the task in multi-step journeys as well. 

They represented a journey by an algebraic expression and then by computation 

verified that it would really lead to the end point shown on the journey. Figure 8.4 

y y+1 y+2 y+3 y-1y-2 y-3
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shows a typical solution to this task and the use of terms to manipulate the expres-

sion. In the post test at the end of MST-II, 80% and 50% of the English and the 

Marathi medium students respectively could write an expression for the situation 

but only 67% and 25% of them respectively verified the correctness of the end 

result by computation. It is possible that they did not feel the need to show such 

an obvious thing by computation since it could be directly verified by counting. 

Correct/ Types of errors MST-I MST-II 

Correct 31 35 

Representational errors 29 29 

Simplification errors 13 29 

Not attempted 23 0 

Others  4 7 

Table 8.2: Percentage responses by types of error in finding the distance between 
two points on the letter-number line in the post test in two trials (N=31) 

Note. Others = Strategies which could not classified into any of the other ones. 
The task was not posed in MST-III. There was only one item of this kind in any 
test. 

In contrast, another task on the number line which required finding the difference 

between two points on it, by counting the number of steps as well as by represent-

ing the difference as an expression and manipulating it to get the result, was 

harder for the students (see Q.23 in Appendix IIB and Q.13 in Appendix IIIB). 

Table 8.2 shows the performance of the students in the task at the end of MST-I 

and II. The hardest thing for the students was writing the correct expression repre-

senting the situation although they could find the difference orally by counting or 

mentally calculating the number of jumps. Students made representational errors 

by writing the sum of the two points, subtracting the bigger from the smaller 

number or not using the brackets when necessary. They also made errors in sim-

plification (e.g. k-k=k, 2×k) including errors in bracket opening rules and integer 
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operations. For example, students’ solutions for finding the distance between k-13 

and k-7 were: k-7-k+13=k-6 or k-7-(k-13) = 2×k-6 or k-7+k-13=k×2-(7-13)=+6. 

Each of these solutions has errors in representation, simplification and sign errors. 

The increase in simplification error and decrease in ‘no attempts’ indicates a small 

gain in performance in MST-II with regard to students’ capability to at least rep-

resent the situation using an algebraic expression.  

This task was introduced to provide a simple context for working with algebraic 

expressions. The task of writing an expression for the distance between two points 

(e.g. distance between x-4 and x+3) is quite challenging for students not exposed 

to symbolic algebra. However, students could take recourse to the fall back strat-

egy of simply counting the intervals between the two points on the letter-number 

line. It was expected that this would provide feedback on whether the expression 

and the simplification was correct. But, this task did not work as expected. Some 

of the difficulties were (i) it involved a complicated representation using the 

bracket; (ii) the representation for the distance between the two points does not 

follow the same order as given in the question (that is, distance between a and b is 

given by b-a, if b is more than a) and (iii) the motivation for solving the problem 

using algebra was reduced since they could obtain the solution directly by imagin-

ing the letter-number line or by drawing it and thereby counting the number of 

jumps required to go from one point to another.  

The classroom discussions during MST-II, especially in the English group show 

that although the students thought that the distance between two points obtained 

through simplification and through direct counting must be the same, they lacked 

the resources to convincingly secure this. Simplification itself seemed to be a hur-

dle and many of them were not surprised at two different answers obtained for the 

same problem. They gave ad-hoc justifications for the discrepancy and randomly 

attempted to correct the solution without displaying any understanding of the 
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symbolic representation or its transformation. Students’ reasoning in this situation 

did not match their capabilities seen in the context of reasoning about expres-

sions. The Marathi students performed better in the classroom, systematically 

identifying the bigger number and writing the expression and simplifying. How-

ever, their test performance was not very different. This was not the case in the 

more sequential activity of number-line journey which was much simpler in two 

senses: requiring step-by-step representation involving only two operations of ad-

dition and subtraction, and the operations required were only on numbers, the let-

ter did not need to be operated upon (even the students were aware of this). Hence 

this task was closer to arithmetic than algebra.  

8.3 Calendar pattern 

During MST-II, a context of exploring and justifying calendar patterns (Bell, 

1995) was used. Students were required to find relationships between the numbers 

in the rows and columns of a calendar and represent those using letters (see Q.26 

in Appendix IIIB). Further, they were asked to find patterns in the arrangement of 

the numbers and also justify a given pattern (e.g. in Figure 8.5, A+H = C+F = 

B+G = D+E = 2×x). The post test results for this task are not very satisfactory 

with none of the English medium students able to either fill all the blank cells 

with appropriate relationships or able to justify the pattern (Figure 8.5). In con-

trast, 44% of the Marathi medium students could fill the blank cells correctly and 

19% could justify the given pattern.  

 

 
 
 
 
 

Figure 8.5: Calendar task 
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However, the classroom performance was better than the test performance, al-

though the nature of the difficulties and errors students made during the post test 

were the same as those seen during the classroom discussions. Students in both 

the groups understood simple relations between the numbers in the calendar: rela-

tion among numbers in rows, among numbers in columns and among numbers 

diagonally arranged. They could represent these relationships using a letter (Fig-

ure 8.6), but many students (esp. English medium) made errors while filling cells 

using a letter in a 3×3 grid (as in Figure 8.5) due to their poor knowledge of inte-

gers. Figure 8.6(a) shows a student’s first exploration on the calendar task, in 

which all the relations are correctly identified and represented in a generalized 

fashion. The last ‘plus’ shaped grid is interesting as none of the cells contain ‘g’, 

the student’s choice of the letter to make the representation. This indicates a situa-

tion specific use of the letter as specific number drawn from the letter-number-

line context and was observed in many other instances. In the classroom, students 

pointed out that ‘the number to the left of m is m-1, so the cell just before m is m-

1’ which indicates the influence of the letter-number line. Figure 8.6(b) shows 

increase in complexity of the pattern. The first pattern is correctly identified; rep-

resented and proved (the sum of the two outer numbers on the diagonal is equal to 

twice the middle number). But, the cells of the ‘plus’ grid are not correctly filled 

and the pattern which is proved does not follow from the figure. Figure 8.6(c) 

shows another student’s attempt to prove a pattern with the same shape (sum of 

the outer numbers in a row/ column to be twice the number in the middle).  

Students also worked with the more difficult shapes, like the 3×3 grid and tried to 

fill the cells by carefully analyzing the relations between the numbers in the rows 

and the columns. However, not all students could fill the cells correctly. It was a 

difficult task and there were many chances of errors, the requirement being to fill 

nine cells. Figure 8.7(a) shows a student’s work on filling the cells and then prov-
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ing a very simple pattern of constant difference between the first and the last 

number across the rows.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.6: Students’ initial work on the ‘Calendar’ task in the classroom in MST-
II 

In Figure 8.7(b), there are two errors in filling the cells in the top row, the student 

writing a-8 above a+1 instead of a-6 and a-9 above a+2 (corrected by the 

teacher), perhaps maintaining the symmetry with a+8 which is below a+1 and 

a+9 which is below a+2 or due to incorrect knowledge of order relation among 

integers. The relations involving only ‘+’ sign in the last row are correct. Al-

though the student had identified a constant difference of 21 between the sums of 

the adjacent rows, it could not be proved because of errors in filling the cells. The 

errors were less in both the groups of students when they operated on only posi-

tive numbers. Figure 8.7(c) is a correct representation of the general relationships 

a 

c 

b
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and shows a reasonably successful attempt to prove the constant difference of 21 

between rows.  

Students’ responses in another task, of proving among three consecutive numbers 

‘the sum of the first and the last is equal to twice the middle’, again showed the 

interference from the letter-number line context. They chose the three consecutive 

numbers in many ways like n-1, n, n+1 or n+9, n+10, n+11 or n+98, n+99, n+100. 

However, they appreciated the combination n-1, n, n+1 to be the easiest represen-

tation of three consecutive numbers which makes the proof simple. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.7: Students’ work on the ‘Calendar’ task – exploring patterns in 3×3 grid 
from the classroom worksheets in MST-II 

Justifying the pattern for consecutive numbers and for calendar patterns was diffi-

cult for the students due to their shaky understanding of simplification of alge-

braic expressions at this time, more so due to the presence of ‘singletons’ in all 

these expressions. Errors like m+m=0 or m, m-m=m or 2×m appeared often, in 

a b

c
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spite of writing the terms. Many were satisfied by checking the pattern with num-

bers and did not seek to prove it for a general case, lacking the understanding of 

justification/ proof. The task proved to be too difficult for the students due to the 

many expectations of the task: generalizing number relations and representing 

them using the letter, exploring and making sense of patterns among these num-

bers and justifying them. Not enough time was spent to create understanding of 

these requirements or to explore patterns in the calendar or discuss issues regard-

ing proof or justification. It was only by the end that the students seemed to make 

sense of the task when a few students could explicitly state what the result of the 

simplification should be. This new evolving understanding of the task did not 

immediately lead to independent correct representation and proving. But this task 

did give them the opportunity to discuss symbolic representations, like the need 

for putting brackets, in their attempts to express the pattern to be justified.  

8.4 Think-of-a-number game 

The multiple requirements of filling the cells with generalized numbers, identify-

ing, representing and proving the pattern in the calendar task made it difficult for 

students to work on the task, leading to the exploration of other tasks which 

looked at only single aspects like generalization or proving. The capacities which 

would develop as a result of engaging with these tasks can then be combined to 

work on tasks like calendar patterns. It is in this context that the activity ‘think-of-

a-number’ (Mason et al., 1985) game was introduced. The task required the stu-

dents to operate on a number following a sequence of instructions and then ex-

plain why everyone would get the same answer. The following set of instructions 

is an example of the game: ‘Think of a number. Add 2. Multiply it by 3. Subtract 

3. Subtract the original number. Add 10. Subtract twice the original number. Add 

2. What is the answer you have got? Why is it that each one of you have got the 

same answer?’. This task is more complicated than the sequential letter-number 
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line task but simpler than the calendar patterns task, requiring a sequential repre-

sentation of operations on a number followed by interpretation of the end result, 

and also incorporating the possibility of proof.  

Post test data 

In MST-I, all except eight students in the study sample who belonged to group B1, 

were introduced briefly to the task. The ideas of proving and justifying were new 

for the students. The post test contained a question on this task (see Q.26 in Ap-

pendix IIB). Responses that provided a proof of the generality of the result ob-

tained by numerical computations, that is, generated the algebraic expression for 

the situation and manipulated it correctly to arrive at the conclusion were scored 

as successful. The post test result showed that the Marathi students (44% success) 

were better than the English medium students (one student out of the seven). A 

closer look at the post test written responses and the classroom discussions indi-

cate the reason for the low performance. The teacher dominated the discussions 

and initiated the use of letter to represent the number which could be considered 

by any person. These ideas were not always accepted by the students, more be-

cause they failed to appreciate the need to justify the answer using algebra.  

Further, the representation was easily learnt by the students when the sequence of 

instructions were simple but needed constant support when they were more com-

plex, especially when brackets were required. Manipulating the expression to 

reach the valid conclusion was also difficult for most of them. Some of the stu-

dents were found to do arbitrary calculation in the middle and write the correct 

answer in the end (both in the post test and the classroom). For example, for the 

problem in the post test in MST-I (Think of a number. Add 5 to it. Subtract 2 

from it. Subtract original number.), one of the students solved it as n+5-2=12-n=3 

and further wrote n+n+5-2=0+5-2=3. In this solution both the representation and 
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further manipulation is incorrect but the student is aware that the solution of the 

simplification has to be 3. Others did not know the goal of the exercise and were 

not surprised by a discrepant answer, neither in the class nor in the test. These is-

sues were not discussed in the classroom which made the problem beyond reach 

for most of the students. Their poor knowledge of simplification procedures of 

algebraic expressions and integer operations contributed to their lack of success.  

This task was not taken up in MST-II, but was introduced again in MST-III. 

When it was reintroduced, the students did not reveal any familiarity with the 

task. Students worked on the task as before, and also made similar problems for 

their peers. In the post test they were asked to respond to the problem ‘Think of a 

number. Subtract 1 from it. Multiply the result by 2. Add 5. Subtract the original 

number. Add 4. Subtract the original number. What do you get? Show that every-

one will get the same answer’ (see Q.1 in Appendix IVB). Here the Marathi group 

again performed better (62%) than the English group (13%).  

 Only 
arithmetic 

Only algebra Arithmetic and 
algebra 

English  8 0 7 

Marathi 1 2 13 

Total 9 2 20 

Table 8.3: Number of student responses by strategy for solving the think-of-a-
number game in MST-III (nenglish=15, nmarathi=16) 

Table 8.3 shows the nature of students’ solutions to the task. Students who had 

proposed only an arithmetic solution to the problem (step-by-step computation or 

arithmetic expression) belong to the category ‘Only arithmetic’, students who had 

proposed only an algebraic solution but no arithmetic solution belong to the cate-

gory ‘Only algebra’ and those who had offered both kinds of solution belong to 

the category ‘Arithmetic and algebra’. Almost all the Marathi students attempted 
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an algebraic solution in contrast to the English group where only half the students 

did so. The rest of the students were satisfied with an arithmetic solution, either a 

step-by-step one or an arithmetic expression.  

Table 8.4 further explores the correctness or otherwise and the nature of the solu-

tions proposed by the students in an effort to prove the universality of the result. 

‘ARseq’ denotes the category where students had solved the problem by operating 

sequentially on the number as per the instruction. ‘ARexpn’ denotes the category 

where students only made an arithmetic expression in response to the problem and 

‘ALexpn’ denotes the category where students made an algebraic expression in 

response to the problem. Since it was not enough to generate an algebraic expres-

sion but also to manipulate it correctly (solutions were considered to be correct 

when the algebraic expression was correct and correctly simplified), another sub-

category ‘ALsimp’ was created to identify the correctness/ incorrectness of the 

simplification procedure on the correct algebraic representations as marked in 

‘ALexpn’. It can be seen that many Marathi medium students not only wrote an 

algebraic expression for the situation but also successfully simplified the expres-

sion to show the generality of the solution.  

 Not 
done 

ARseq ARexpn ALexpn ALsimp 

  C I C I C I C I 

English  4 1 0 2 1 4 3 2 2 

Marathi 0 0 0 1 0 14 1 10 4 

Total 4 1 0 3 1 18 4 12 6 

Table 8.4: Distribution of number of correct and incorrect responses for various 
strategies in the think-of-a-number game (nenglish=15, nmarathi=16) 

Note. ARseq = Sequential operation on number, ARexpn = Arithmetic expression, 
ALexpn = Algebraic expression, ALsimp = Simplification of algebraic expression 
(a subcategory of ALexpn), C = Correct, I =  Incorrect, Not done =  not attempt-
ing the solution. 
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The Marathi medium students readily accepted the formal way of proving in this 

context and adopted it in their attempts, visible in the post test as well. Solutions 

as in Figure 8.8 (a) could be seen only among the Marathi medium students in the 

post test. This student first wrote the algebraic solution followed by the arithmetic 

solution, clearly writing below the arithmetic solution that the answer will be the 

same irrespective of the number chosen. Some of the English medium students 

made the expression with one particular number (Figure 8.8(b)) and some did not 

use bracket in the appropriate place. A few replaced the general number repre-

sented by the letter with the particular number they had chosen for the numerical 

computation in the middle of the expression (see Figure 8.8(c)), where instead of 

subtracting ‘x’ the student subtracted ‘2’. In contrast, most of the Marathi medium 

students could make the correct representation but a few made errors while sim-

plifying the expressions.  

 

 

 

 

 

 

 

 

 

 

Figure 8.8: Solutions for the think-of-a-number-game in the post test of MST-III 

Classroom discussion 

The classroom discussions gave a glimpse of the students’ developing algebraic 

thinking and their ability to use symbolic expressions in the process. The students 

a 

cb 
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from both the groups actively participated in proving the patterns in the answer 

for the task given by the teacher as well as designing similar problems for their 

peers. Although students began with inductively generalizing the result from nu-

merous examples, they were soon found to give verbal justification for the pat-

tern, keeping track of the transformations mentally. For example, an explanation 

given by a student for the problem ‘Think of a number. Add 6. Subtract 2. Sub-

tract the original number. Subtract 3.’ was the following: ‘50-50=0, 6-5=1’. Al-

though she was using a specific number 50 for her explanation, what this student 

was actually pointing out was that the starting number cancels out in the trans-

formations and the only thing left is 6-5 which is equal to 1 irrespective of what 

the starting number was. This situation could be easily exploited to begin the use 

of the letter to denote the original number on which the sequence of operations 

could be carried out. Students’ ability to see an expression as composed of terms 

and flexible combination of terms might have helped them to understand the 

transformations on the starting number without much difficulty and use it in the 

context of algebraic expression. In a very simple situation, ‘Think of a number. 

Add 2. Subtract 2. Add original number. Subtract original number’, NN remarked 

‘She told to add 2, then subtract 2. So we will get 0. And again add original num-

ber and subtract original number, so it becomes 0. x+2-2+x-x = x (+2-2=0, +x-

x=0)’. She was able to see the parallels in the two solutions: arithmetic and alge-

bra.  

However, students began the manipulation of the algebraic expressions in this 

context randomly, making similar errors as has been discussed earlier in the con-

text of the letter-number line and calendar patterns: writing x+x=x or x-x=x or 2x. 

They tried to fix the discrepancy in an ad-hoc manner and misconceptions regard-

ing the letter were revealed in the process, like ‘letter is equal to 0 and we do not 

know its value’. The misconception could have developed due to the emphasis on 
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the letter-number line and the understanding that the letter-number line is sym-

metric about ‘x’ and so ‘x’ is like ‘0’, which is the origin in the number line. Dis-

cussions such as the one described in the previous paragraph were important in 

making the students realize that following the valid rules of transforming the al-

gebraic expression would lead to the same answer/ relation as the arithmetic solu-

tion. Further, the discussions with regard to representation and syntax were fruit-

ful in developing an understanding of the need for brackets and reinforced the 

dual interpretation of brackets as precedence operation and resulting in equal ex-

pressions as a result of bracket opening rules.  

Another task on which the students worked in pairs was to make similar problems 

for their peers and also predict the pattern in the answers everyone would obtain. 

All the students enthusiastically participated in constructing the questions but the 

Marathi group students were seen to make slightly more number of complicated 

problems (e.g. Think of a number. Add 2. Multiply by 2. Add 10. Subtract 8. Sub-

tract double the original number. Add 1. Subtract 7. The answer for everyone is 

0.) than their English medium counterparts, who avoided the use of brackets and 

multiplication of a previous result (e.g. Think of a number. Add original number. 

Subtract 3. Add 4. Subtract 1. Subtract original number. Everyone gets back their 

original number). The strategy of relying on mental tracking of the transforma-

tions followed by verbal explanations did not allow them to easily make the tran-

sition to more complicated operations on the number, where it was essential to 

make the symbolic representation to remember the transformations. This exercise 

could have contributed to the Marathi students’ better performance in the post test 

as well.  

Figure 8.9 shows some examples of students’ efforts to generate questions for the 

Think-of-a-number game during classroom discussions. The examples display 

that students were working at all levels and also that some students understood the 
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purpose of the task and the need for symbolization better than others. Some stu-

dents made the problem, checked it by numerical instances and used algebraic 

expression to show the pattern in the answer (for example Figure 8.9(c)). Many of 

these were not seen in the English group. At times they did make a mistake in ei-

ther inducing the pattern from the numerical instances or in the manipulation of 

the algebraic expression, thus not being able to arrive at a definite conclusion 

(Figure 8.9(a)). There were also others who continued to work with the numerical 

instances and not feeling the need to prove or find the pattern in the answers (Fig-

ure 8.9(b)).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.9: Examples of students’ efforts to generate problems for ‘Think-of-a-
number’ game during classroom discussion 

a b
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Students posed their question made in pairs to the whole group who worked on 

them and that acted as an assessment of the quality of the question and the de-

signers’ knowledge about their question and the result. The discussions largely 

revolved around the representation of the problem, that is, the algebraic expres-

sion, the need and meaning of brackets, integer operations and manipulation of 

expressions. Although, students’ experience with reasoning about expressions in 

the context of syntactic based transformations was helpful in allowing the stu-

dents to think of these situations with the help of expressions, the emphasis on 

bracket opening rules overshadowed the meaning and purpose of brackets in en-

closing parts of expression to be given precedence in operation (repeated attempts 

described in Chapter 5). This was also a situation where the students were sponta-

neously seen to decompose a product term with a variable factor as sum of ‘sin-

gletons’, which when combined with a term of opposite sign led to zero (as in 

Figure 8.9 (a and c)). The rewriting of a product term as the sum of ‘singletons’ 

was seen in only one student’s response to the procedural task of simplification of 

algebraic expression and not seen while generating equal expressions to a given 

expression. It is likely that this strategy came in response to this particular situa-

tion and perhaps due to their engagement with verbalizing the explanation where 

they had experienced the cancellations in their mental calculations. Of course, it 

was helped by their knowledge of ‘terms’ of an expression.  

Results from individual interviews 

The difference between MST-I and III was that students had understood the goal 

of the task which made it possible for them to anticipate the result of the manipu-

lation of the algebraic expression. But the important point to explore here is 

whether the students found the algebraic representation more useful compared to 

the arithmetic representation and the step-by-step solution process. The interviews 

conducted with the students after MST-III delved into these matters. The task 
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posed in the interview was ‘Think of a number. Add 2 to it. Subtract 5 from it. 

Subtract the original number. Add 4. Write an expression for this instruction’ (see 

Algebra test Q. 3 and Interview schedule: Algebra (Task 4) in Appendix VB). 

Students were first told to write an expression for the situation prior to the inter-

view (‘Solution’). Students were then shown a card with an algebraic expression 

representing the situation (x+2-5-x+4) and asked to identify if it was the correct 

and would lead to the same value as their expression (‘Expression for given situa-

tion’). Further, two questions were asked: (i) students were shown a card showing 

the expression x-5+2+4-x and asked whether it was a correct representation for 

the above situation (‘Another expression’), (ii) they were asked if the values of 

the above expression and the initial expression (x+2-5-x+4 or an arithmetic ex-

pression made by the student) will be the same (‘Value of expressions’). Another 

question was concerned with their ability to interpret an expression or its simpli-

fied form in the context of the game: make a similar problem for the expression 

x×2-4+5-1-x = x (‘Making problem’). Finally they were asked to explain the util-

ity of algebra in this situation (‘Use of algebra’).  

Table 8.5 summarizes the responses of the students to this task during the inter-

view. The table shows that out of seventeen students, five wrote an arithmetic ex-

pression as the solution for the task. Four others did not write an expression at all 

and worked out the solution step-by-step. Two of these students when asked to 

write an expression for the situation failed to write one. The rest of the students 

(8) wrote an algebraic expression. But all of them correctly identified the alge-

braic expression (x+2-5-x+4) shown as representing the situation, thereby demon-

strating their ability to understand symbolic representation in this context; some 

were not able to produce one independently. Although, the students considered 

the other equivalent expression (x-5+2+4-x) to be representing the same situation, 

they showed awareness of the change in order of the instructions compared to the 
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original situation. Their prior experience of judging equivalence of algebraic ex-

pressions led them to easily infer the value of this expression to be equal to the 

original expression, except four students who were unsure about the equality in 

value.  

Four students simplified the original algebraic expression representing the situa-

tion with difficulty (‘Simplification’, not specifically asked in the interview). 

They also were the ones who were not so sure about the equality of the answers of 

the original arithmetic/ algebraic expression (x+2-5-x+4) and the equivalent alge-

braic expression (x-5+2+4-x). The other students (13) had no trouble in simplify-

ing the expression and many times they worked it out orally or inferred from the 

solution to the arithmetic expression or the step-by-step numerical solution. The 

interview also threw light on the reasons for the low performance in the post test 

in this task. Not many students thought algebra to be useful for the situation and 

therefore displayed resistance to use algebra as a tool for representing or drawing 

a conclusion. On being asked to explain the utility of the algebraic expression as a 

representation in this context, one student BK said ‘a number represents a gen-

eral number and if the same operations are carried out on the number, it can be 

shown that everyone would get the same answer’. These students were treating 

the number as a quasi-variable (Fujii and Stephens, 2001) and treated the two 

kinds of numbers (number in the mind and the other numbers appearing explicitly 

in the expression) used in the situation differently. Very few of them saw the use 

of the letter as standing for any number, succinctly representing the situation and 

thus helping to prove the pattern in the answer for the general case. But when 

given an algebraic expression they could ‘create’ the corresponding ‘think-of-a-

number’ game. They could also interpret the simplified expression correctly, for 

example, that ‘x’ in the simplified expression denotes the number originally 

thought by an individual. The coding of the students’ responses will be explained 
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as earlier by some interview excerpts of students marked with an asterisk in the 

table below (Table 8.5). 
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Name 1. Solution 2. Expression for 
given situation 

3. Simplifica-
tion 

4. Another 
expression 

5. Value of 
expressions

6. Making 
problem 

7. Use of al-
gebra 

BP NUMSoln IAL SSAL IAL SEV SMPCI UCAL 
PD AR IAL SALD IAL USEV SMPCI - 
BK AR IAL SSAL IAL SEV SMPCI NUMQV 
AY NUMSoln FWE, IAL SSAL IAL SEV SMPCI SEAL 
NN AR IAL SSAL IAL SEV SMPCI NUMQV 
SG NUMSoln FWE, IAL FSAL IAL USEV SMPCI - 
PG* AR WAR, IAL SSAL IAL SEV SMPCI SEAL 
JS* NUMSoln WAL, IAL SSAL IAL SEV SMPCI NUMQV 
NW AL IAL SSAL IAL SEV SMPCI - 
RG AL IAL SSAL IAL SEV SMPCI - 
AS AR WAL, IAL SSAL IAL SEV SMPCI UCAL 
AN* AL IAL SSAL IAL SEV SMPCI SEAL 
SV AL IAL SSAL IAL SEV SMPCI NUMQV 
MC* AL IAL SSAL IAL SEV SMPCI NUMQV 
AB AL IAL SALD IAL USEV SMPCI SEAL 
BM AL IAL SSAL IAL SEV SMPCI - 
TJ* AL IAL SALD IAL USEV SMPCI UCAL 

Table 8.5: Responses of the students interviewed after MSC-III for the Think-of-a-number game (*indicates stu-
dents whose interviews are discussed in the text). 

Solution to the task – Representation of the problem (Col. 1): 

(AR) Arithmetic – the subject has written an arithmetic expression as a representation of the situation 

(AL) Algebraic – the subject has written an algebraic expression as a representation of the situation 

(NUMSoln) Numeric solution – the subject has evaluated the problem step by step using a specific number instead of writing an expres-
sion 
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Identification of the algebraic expressions (Col. 2 and 4): 

(WAL) Writes an algebraic expression – the subject on being asked to write an expression, writes an algebraic expression for the situation 

(WAR) Writes arithmetic expression – the subject on being asked to write an expression, writes an arithmetic expression for the situation 

(FWE) Fails to write an expression – the subject on being asked to write an expression, fails to write one 

(IAL) Identifies algebraic expression – the subject identifies the algebraic expression shown to him/ her as a correct representation of the 
situation  

Simplifying the algebraic expression (Col. 3): 

(SSAL) Satisfactorily simplifies algebraic expression – the subject satisfactorily simplifies or demonstrates the ability to simplify the alge-
braic expression to arrive at the conclusion 

(SALD) Simplification of algebraic expression with difficulty – the subject simplifies the algebraic expression with difficulty and lot of ef-
fort  

(FSAL) Fails to simplify algebraic expression – the subject fails to simplify the algebraic expression or does not understand the process of 
simplification 

Value of the two algebraic expressions and the arithmetic expression (Col. 5): 

(SEV) Sure about equality in value – the subject understands that the values of all the expressions would be same 

(USEV) Unsure about equality in value – the subject is not sure that the values of all the expressions would be same 

Making a problem for the given expression (Col. 6) 

(SMPCI) Satisfactorily makes a problem with correct interpretation – the subject satisfactorily makes a problem for the given expression 
and also correctly interprets it 

(SMP) Satisfactorily makes a problem – the subject satisfactorily makes a problem for the given expression and fails to interpret it 

Use of algebra (Col. 7) 

(SEAL) Satisfactorily explains the use of algebra – the subject satisfactorily explains the use of algebra for purposes of proving 

(UCAL) Unclear about the use of algebra – the subject does not have enough understanding/ clarity about the use of algebra for the situa-
tion but gives vague explanation 
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(NUMQV) Numbers as quasi variable – the subject explains the situation using numbers and thinks the use of numbers as same as that of 
letters 
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Students mainly thought in four different ways: (i) wrote/ recognized an algebraic 

expression and were aware of its purpose (4 students), (ii) wrote an arithmetic/ 

algebraic expression and thought of the number as a generalized number or quasi-

variable (5 students) and (iii) wrote an arithmetic expression or solved sequen-

tially to get the answer and were unclear about the use of algebra (2 students). 

One student although used an algebraic expression, was unclear about the use of 

algebra and explained with the help of numbers repeatedly without commenting 

on the generality of the solution. Five students were not asked the question of 

purpose of algebra explicitly. Two of them were uncomfortable with this task, 

were not very sure about the equality of the values of the original arithmetic/ al-

gebraic expression and the equivalent algebraic expression and had trouble sim-

plifying the algebraic expressions. The other three could answer all the questions 

satisfactorily but that is not sufficient to conclude about their ‘belief’ in the alge-

braic approach. 

The student TJ on being posed with the task wrote an algebraic expression. TJ’s 

responses indicate that he could not think of the generality of the solution and the 

purpose of algebra. 

SN: What have you done, explain me. 

TJ: Think of a number, so I thought of 3. Add 2 to it. Subtract from it means that 
from the sum of these two subtract 5. That is why I have used a bracket and we 
would get one answer after combining these two and from that 5 is subtracted. 
Again to subtract the original number means it would be three here [pointing to 
the x]. 

SN: But you have written ‘x’ here. 

TJ: Yes. Here it would be 3. And then it would be equal to +4. 

SN: But you have written the whole expression with x, so if the number you 
thought in the mind is x, then how will this expression be? 

TJ: Wherever there is the original number, write x there. 

SN: How, show by writing? 
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TJ: [He rewrites the expression (x+2)-5-x+4] 

Although he had written an algebraic expression, while explaining his answer to 

the interviewer SN, he repeatedly thought in terms of a number. The algebraic 

expression is probably an outward performance for him to satisfy the teacher, 

even though he shows enough awareness of the possibility of replacing the letter 

by a number or vice-versa. He evaluated the algebraic expressions for two values 

of x: 2 and 3 and found the same answer ‘1’, but was unsure of the value of the 

algebraic expressions itself, guessed it would be x-1 and found on simplification 

x+1. After much effort from the interviewer, he could be convinced that x-x=0, 

which he seemed unable to connect with all his earlier arithmetic experience. Ac-

cording to him +x and –x cancelled and ‘x’ remained. It is not easy to induce a 

cognitive conflict when students lack conviction about the utility of a procedure 

or a tool; for them computing with arithmetic expressions and algebraic expres-

sions are two different worlds and the answer can differ in these worlds. Some of 

the students had not moved to the algebra world but had a more sophisticated un-

derstanding of arithmetic expressions which was helpful in solving many of the 

tasks they were working on. The students knew what the representations meant 

and how inferences could be drawn in these situations, but the purpose of algebra 

was still not clear to them. 

The student SG was similar and he even failed to write an arithmetic or algebraic 

expression and found the answer by sequential computation. He could recognize 

the correct representation for the situation, probably not understanding the signifi-

cance of the algebraic way of solving the task. He too was not perturbed by the 

discrepancy in the answers in the arithmetic and the algebraic expressions (1 and 

x+1), but knew that equivalent algebraic expressions would have the same value 

(in this case it was x+1). The step-by-step computation on the number was not 

sufficient to see the overall change in the initial number at the end of the sequence 
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of transformations and thus he was unable to connect his explanation with the al-

gebraic expression. He tended to search for ad-hoc explanations for the discrepan-

cies (like, the value of x is 1), not paying attention to either meaning or logic of 

the syntax. He repeatedly checked his solution with the number but was not able 

to spot the error in the simplification of the algebraic expression. He had difficulty 

in understanding the meaning of the letter and the algebraic expression as repre-

senting the general case. With a lot of support he could simplify the expression in 

this situation although he had correctly simplified the two expressions which he 

was asked in the beginning of the interview. 

Another student MC when asked the same question also wrote an algebraic ex-

pression but he did not have any specific reason for the choice of the letter ‘m’ in 

comparison to a number. His responses show that, unlike TJ, he thought of the 

number as a generalized number. 

SN: Why did you take ‘m’? 

MC: That is the main/ original expression, that is why. 

SN: But why did you take a letter? You could have worked with a number as 
well? 5, 10, but why did you take ‘ m’? Why did you take a letter? 

MC: The number in the mind. 

SN: It is the number in the mind, therefore m. 

MC: Yes. 

SN: But can’t the number in the mind be numbers 5, 10, 15? 

MC: It can be. 

SN: But then why did you take ‘m’? 

MC: Just like that. 

… 

SN: What do you think, is it better to use number or letter? 

MC: Number. 

SN: But why did you use letter? Is it better to use number? Why? 

MC: We can check the answer. 
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SN: Can’t we check with letter? 

MC: We can. 

SN: But you have to put back a number for the letter. 

MC: Yes. 

SN: How do you check with letter? 

MC: +m-m the answer is 0, that is how. 

MC agreed that both letter and the number could be used in this task but preferred 

to use the number which allowed him to check the answer. He was comfortable 

with simplifying the algebraic expression (he had done so before the interview 

began) and was sure that inferences could be drawn from the simplification but 

this did not give him any more sense of ‘truth’ than the one derived from the nu-

merical world. He was sure of the equivalence of the two algebraic expressions 

and also indicated the awareness of invariance in value of the expression due to a 

change in the letter from ‘m’ to ‘x’. For many of these students writing an alge-

braic expression was part of the norm, it does not necessarily indicate an apprecia-

tion for the generality and the power of the algebraic expression.  

Another student JS had worked out a solution in a step-by-step manner but wrote 

an algebraic expression when asked by the interviewer. She demonstrated a fairly 

good understanding of equivalence of algebraic expressions and the task itself, 

knowing well that the values of all these expressions would be equal, but she sim-

plified the first algebraic expression to see the result. Some students among those 

who were interviewed were aware that the arithmetic or the step-by-step solution 

and the original algebraic expression should have the same solution and did not 

simplify whereas some others simplified to be sure. A few had great difficulty in 

this regard like TJ and SG. This task once again checked for their understanding 

of equivalence and simplification of algebraic expressions. JS did not have any 

trouble making the question for the expression and interpreting the result of the 



 344 

simplification. She made a problem for the expression 2×x-4+5-x-1 as follows: 

‘Think of a number. Multiply 2. Minus subtract 4, add plus add 5, subtract origi-

nal number, subtract 1’. She also was able to interpret the final ‘x’ as getting back 

the original number. Like MC, she too thought expressions with numbers were 

sufficient to draw conclusion about the situation, displaying the ‘quasi-variable’ 

idea. 

PG wrote an arithmetic expression (5+2-5-5+4) for the task. But he recognized 

the algebraic expression (x+2-5-x+4) to be denoting the situation and went on to 

answer all the other questions satisfactorily. He was one of the few students who 

understood the purpose of using the ‘x’ in the expression and put it quite articu-

lately.  

RB: So what is the difference between this [x+2-5-x+4] and your expression 
[5+2-5-5+4]?  

PG: Teacher, only the number is different which I have thought. And here it is 
‘x’.  

… 

RB: Now tell me is there any advantage of writing these x’s compared to the 5 
you have written? Is there any advantage of doing this? By writing ‘x’? 

PG: You are giving 5 of the students for writing this. So all the 5 students will 
come the same. Some of them takes 7, some of them takes 2, it will come the 
same.  

RB: So is there any advantage of using the ‘x’? That is the question? 

PG: ‘x’ means any number. Any number can be done like this. That is why it is 
used. 

PG did not see any difference between his expression and the algebraic expres-

sions shown to him due to his ability to perceive the general structure of the ex-

pression. He would have seen the ‘truth’ of the result in the arithmetic expression 

but he knew to convince others of the universality of the result the letter had to be 

used. The student AN on the other hand wrote an algebraic expression in response 

to the situation and knew the purpose of algebra but was not very articulate about 
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it. She remarked that ‘because which is that number we do not know. That is why 

writing any letter would do, but not a number.’ She insisted on using the letter for 

writing the expression as the number is not known but was sure that the same an-

swer will be arrived at by solving it with any number. The idea of proof or justifi-

cation was not very clear to her. It is not the case that the number is not known 

but that one needs to show the result for all values of the letter.  

Overall, most of the students did not appreciate the use of algebra in this problem. 

This is not to say that they did not understand the representation or they were not 

thinking algebraically. Almost all of them understood the processes involved in 

such problems but were satisfied to understand or explain the problem numeri-

cally. Their problem does not lie in understanding a chain of deductive logic or in 

accepting the ‘truth’ that is established by the algebraic method (cf. Healy and 

Hoyles, 2000; Liebenberg et al., 1999b, Cerulli and Mariotti, 2001, discussed in 

Chapter 2, pp. 90-91, p. 73, p. 43 respectively). The interviews revealed that most 

of them were capable of identifying the representation, manipulating the expres-

sion and could anticipate the equality in value of the various expressions encoun-

tered during the task. Representing the problem using an algebraic expression is 

not sufficient to demonstrate the acceptance of the algebraic way of approaching 

the problem. Nor is it the case that arithmetic representation was accompanied by 

non-appreciation of the generality of the solution. These students were comfort-

able in explaining and convincing themselves, peers or the teacher using a mix of 

verbal language and symbols but many of them did not appreciate the need to 

communicate in a manner which would convince everyone without any ambigu-

ity. This could be one reason why the students time and again fell back on their 

numerical understanding and reasoning based on it. The students seem to progress 

from a ‘quasi-variable’ approach to a complete algebraic approach while develop-

ing the idea of proving and justifying. This gradual progression is essential to 
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build the need for an algebraic approach (Hanna and Jahanke, 1993), which lends 

the unambiguous symbolic representation and also the understanding that manipu-

lating the algebraic representation by conforming to the rules of transformation 

would lead to conclusions which would be true and certain (Dettori et al, 2001). It 

is possible that if the focus is on more complex problems, then the need for alge-

bra would be more evident. The dilemma in such a situation is whether to use stu-

dents’ intuitive understanding or expectations and begin the process of representa-

tion in simple situations or use more complicated tasks to make it challenging 

enough where this kind of representation would be essential. This is evident also 

from the questions which the students made for their peers, the simpler ones did 

not require any representation but the harder ones could not be found without the 

support of the representation.  

8.5 Pattern generalization 

In this section, discussion of a task, used during MST-III, specifically focusing on 

generalization in the context of patterns in shapes, will be taken up. This is a 

highly studied task in the research literature and embeds algebraic expressions in 

the context of prediction and writing a general rule. In this study, students worked 

on patterns of shapes such as those shown in Figure 8.10 where they were asked 

to answer questions about specific positions in the pattern and make a rule as in-

dicated in the first two problems in the figure. This task is different from the 

think-of-a-number game in certain respects. It required some understanding of 

generalization to be able to abstract the relation between the starting number and 

the final result by a process of ‘seeing the general in the particular’, which many 

of the students were capable of. Subsequently, this understanding needed to be 

transformed into representation and manipulating the representation. As the 

analysis of the task in the previous section revealed, students’ beliefs about the 
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usefulness of the algebraic approach are an important factor in the successful 

completion of context based algebra tasks.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8.10: Pattern generalization tasks used in MST-III during classroom dis-

cussion 

Post test data 

The performance of the students in the post test in generating and representing a 

rule for patterns of shapes using expressions (a matchstick pattern of triangles, 

Figure 8.11) was also far better for the Marathi medium students compared to the 

1 2 3

1 2 3

1 2 3

How many diagonals can be drawn from a vertex and how many triangles 
can be made if we continue the pattern? 

I. Polygons and Diagonal pattern

II. Matchstick square pattern

How many matchsticks will be required to make the 4th figure? 
How many matchsticks will be required to make the 34th figure? 
How many matchsticks will be required to make the nth figure? 

III. Ladder Pattern 

IV. Increasing square pattern

1 2 3
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English medium students, both for specific numerical positions as well as for the 

general case (for example, predicting the number of matchsticks required to make 

triangles for the 4th, 5th, 17th and 59th positions and then write a rule for mth posi-

tion) (Table 8.6). Most of the English medium students could not successfully 

write the generalized rule, even though some could correctly write the expressions 

for the specific positions. The emphasis on generating the rule and writing arith-

metic expressions for specific positions perhaps distracted some of these students 

away from looking at the number pattern and extending it at least for the two im-

mediately successive positions, which is a simple task. 

Figure 8.11: Matchstick pattern used in the post test of MST-III (see Q.2, Appen-
dix IVB) 

 

Positions  4th 5th  17th  59th  mth 

English 47 53 33 33 13 

Marathi 81 81 81 75 69 

Table 8.6: Performance of students (in percentage) in the post test of MST-III in 
finding the number of matchsticks/ rule for various positions in the pattern     

(nenglish=15, nmarathi=15) 

The students’ written responses were categorized by the strategies that they used 

to arrive at the number of matchsticks in each of the specific positions as well as 

the general rule. Table 8.7 reports the number of students following particular 

strategies as can be interpreted from their written response. It also shows the 

break-up of students into those who got all the responses to the specific numerical 

positions correct and the correct general rule. A strategy is called ‘Expression for 

specific positions’ (ExpnSP) when the students have written arithmetic expres-

sions for the specific positions before converting that into an algebraic expression 
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representing the rule for the pattern. The expressions display a pattern which can 

be abstracted by appropriate shift of attention, stressing and ignoring certain as-

pects of the expression. One has to separately treat the numbers in the expression 

which are unchanging and numbers which are connected to the index number, 

thus feeding into the general rule. The possibility of connecting the general rule or 

the arithmetic expression for the specific positions to the structure of the figure 

will be discussed later when the classroom discussion will be explored. Also, one 

finds expressions which begin as a recursive relation but are soon converted into 

an explicit functional rule. For example, one student wrote the expressions 2+7, 

2+9 for the 4th and the 5th positions respectively but derived the rule 2+2×m-1 by 

subsequently connecting 7 to 4 by the relation 2×4-1, 9 to 5 by the relation 2×5-1. 

A few students wrote erroneous arithmetic expressions, which nevertheless con-

tained a growing pattern different from the given one. Students were also found to 

use incorrect methods like writing expressions or values randomly for particular 

positions and/ or the rule, not maintaining a pattern across the positions (Ran-

dExpn/Val) and recursive relation (RCRSN), that is, adding 2 to the preceding 

output, both of which did not lead to any success.  

Strategies  English Marathi Total 

No. of students 7 14 21 

All specific posi-
tions correct 

5 11 16 ExpnSP 

Correct Rule  2 12 14 

RandExpn/Val No. of students 5 2 7 

RCRSN No. of students 1 0 1 

Not done  2 0 2 

Table 8.7: Number of students following various strategies in the pattern generali-
zation task in the post test of MST-III (nenglish=15, nmarathi=16) 
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Note. ExpnSP = Expression for specific positions, RandExpn/Val = Random ex-
pressions or values for specific positions, RCRSN = Recursion strategy, Not done 
=  instances of not attempting the task.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.12: Sample of students’ responses in the pattern generalizing task from 
the post test of MST-III 

Figure 8.12 shows some varied responses of the students in the pattern generaliza-

tion task in the post test of MST-III. Figure 8.12(a) shows a correct response to 

the pattern where the student systematically wrote arithmetic expressions and ex-

tended the pattern for the specific positions as well as wrote the general rule. This 

is in contrast to 8.12(b) where the student found the number of matchsticks for 4th 

and 5th position by recursion. He obtained the number of matchsticks for the later 

positions by simply multiplying the numerical position by 3, making the linearity 

error (since one figure needs three matchsticks, k figures would need k×3). He 

further showed a misunderstanding about the letter in interpreting 3×m as ‘3 

matchsticks’ for mth position. The solution in Figure 8.12(c) is correct but for the 

a b

c 
d
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missing bracket around (m-1), again by writing arithmetic expressions for each 

position before generalizing. The last solution in Figure 8.12(d) begins with the 

recursive relation which has been interestingly put as an arithmetic expression 

(2×1+1, 2×1+3, 2×1+5 etc, 2 being added to the result of the previous one). How-

ever, the student also abstracted the relation of the numbers 3, 5, 7, 9 with the in-

dex number for purposes of prediction to larger values and the general rule. But 

the student made errors for the 59th position and the general rule. 

Classroom discussion 

Even though the students did not perform very well in the post test, many of their 

written responses were interesting. They worked on various patterns, like Poly-

gons and Diagonals, Matchstick square pattern, Ladder pattern and lastly, Increas-

ing Squares pattern (see Figure 8.10). Students carefully wrote the arithmetic ex-

pressions for each position before generalizing them to the algebraic rule. Some 

of the arithmetic expressions could be easily connected to the structure of the pat-

tern as they were created by counting the number of matchsticks/ dots/ squares by 

grouping them in some visually salient ways. Some others could not be similarly 

connected as they were generated by only focusing on the number pattern and not 

the growing shapes. A few others were initiated by focusing on the recursive rela-

tion, which could be easily converted into an explicit rule since the patterns were 

linear functions. Table 8.8 summarizes and gives a glimpse of the rules generated 

by the students in the classroom for the pattern generalization activity. They are 

categorized as rules which the students could connect to the given pattern of 

growing shapes and those they could not. 

A majority of the rules generated in the classroom could not be physically con-

nected to the pattern as they were quite complicated and challenging, made with 

only the number pattern in mind and required a group effort to find the general-
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Rules 

ized rule. Several researchers have suggested that the rule for generalization be 

kept close to the structure of the pattern and encourage strategies based on count-

ing, the argument being that students should be able to make sense of the alge-

braic expressions they form in this context (e.g. Healy et al., 2001). 

 

Rules connected to the 
pattern 

Rules not connected to the 
pattern 

Polygon and 
Diagonal 

Diagonals = k-3 

Triangles = k-2 

 

Matchstick 
Square   

4+(m-1)×3 

3×m+1 

2×m+(m+1) 

 

4×m-(m-1) 

4×(m+1)-(m+3) 

5×m-(m×2-1) 

3×(m+1)-2 

Ladder (n×3)+2 

3×(n+1)-1 

2×(n+1)+n 

 

5×n-(n-1)×2 

6×n-(n×2+n-2) 

5×n-(n×2-2) 

Increasing 
Squares 

1+4×(k-1) 

 

1, 2×2+1, 2×3+3, 2×4+5, 
…2×23+ (abandoned due to 
difficulty in generalization) 

4×k-3 

5×(k-1)-(k-2) 

2×(k+k-1)-1 or 2×(2×k-1)-1 

2×(k×2-2)+1 or 2×(k+k-2)+1 

5×k-(k+3) 

Table 8.8: Rules generated by students for the pattern generalization task in the 
classroom during MST-III 

In contrast, students’ classroom responses in this study indicate that it is also pos-

sible for students to meaningfully abstract patterns from numbers alone in the 

Pattern 
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form of complex expressions and arrive at the functional rule. Most of them were 

able to perceive the relation between the position/ index number of the figure with 

the numbers in the arithmetic expressions to be able to symbolize them algebrai-

cally. They appreciated the need to make expressions in a pattern for each of the 

specific positions so that they can be easily generalized for the nth position and 

also the predictive value of a general expression, that is, its use in determining the 

value for any position. In fact, a few students’ attempts to make random expres-

sions for specific values or equivalent expressions to the already generated ones 

were discouraged by their peers because such expressions could not be general-

ized and thus did not serve any purpose. Linearity error (i.e. if f(n)=k, then 

f(mn)=mk), while generating the rules in the classroom, was minimum (only one 

instance) due to carefully writing the arithmetic expressions for the particular nu-

merical positions and checking if it satisfied the other given positions in the pat-

tern before writing the general rule. Also, the specific positions for which the stu-

dents had to predict the value were rarely multiples of each other (e.g. finding the 

values for f(k) and f(nk), see ‘seductive numbers’, Sasman et al., 1999 discussed 

in Chapter 2, section 2.7.1) and so less likely to induce linearity error. 

Like in the previous task of think-of-a-number game where verbalization played a 

role in representation and understanding transformations on them, in the pattern 

generalization task verbal explanations paved the way for symbolization. To de-

scribe the rule for the nth position or n squares in the Matchstick Square Pattern, a 

student gave the rule 4+n–1×3. The explanation given was ‘n-1 is 61 (pointing to 

the 62nd position) and like that n-1’. Another said ‘whichever number minus 1 and 

in n it is minus 1’. The rule is not completely correct since the brackets are miss-

ing (which they went on to later discuss and rectify), but the basis of the expres-

sion was in the verbalization of the rule they had made.  
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To correct expressions like the above, both the groups seemed inclined to find 

syntactic based reasons focusing on equivalence of expressions without paying 

much attention to the meaning of the symbols. This could be a result of the influ-

ence of the instruction in tasks of ‘reasoning about expressions’. While trying to 

understand the need for bracket around n-1 in the above rule, students gave rea-

sons like ‘3 is the common factor’ or ‘we get the right answer’(checked by substi-

tuting a value for the letter). This is inappropriate; and the correct reason was 

rightly pointed out later by one student: that the bracket around n-1 is needed to 

give precedence to the operation of subtraction before multiplication. In another 

instance for the same pattern, students wrote the arithmetic expressions 4, 4×2-1, 

4×3-2, 4×4-3 for the first, second, third and fourth figures respectively from 

which the rules n×4-n-1 and n×4-(n+1) were generalized for the nth position. The 

incorrectness of these rules was not recognized from the second expression (n×4-

(n+1)) and its equivalence with the first, but from the fact that –n-1 leads to sub-

tracting a number more than the figure number, where as one less than the figure 

number needed to be subtracted for the rule to work. This led to the corrected rule 

n×4-n+1 followed by n×4-(n-1) which is more transparent and maps the arithme-

tic expressions closely. This problem was faced repeatedly during the teaching 

sequence and especially with respect to the use of brackets where there was inter-

ference between bracket opening rules and the need for brackets.  

Students were also expected to find if two or more rules generated for the same 

pattern were equal, in order to create the need to work on the representations they 

had made. Surprisingly, not many students spontaneously thought of substituting 

the letter by a number and checking the value and many were not sure whether the 

different rules for the same pattern are equal. On the other hand, they were aware 

that the rules ought to be equal as they were generated from the same pattern and 

involves the same input-output numbers. Most students chose the strategy of sim-
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plifying the expressions and bringing them to the simplest form, which is clearly a 

result of the extensive activities with respect to judging equivalence of expres-

sions throughout the trials. For example, to show that the rules 3×n+1 and 4×n–

(n–1) are equivalent, students simplified the latter expression and showed it to be 

equal to 3×n+1. Those who chose the substitution strategy soon accepted the sim-

plification strategy, as in the former method there was no way of arriving at the 

‘certain’ knowledge that the rules are equivalent for all values of the letter. All the 

same, it is important for students to realize that even substitution of the letter by a 

number in the two rules/ expressions also should give the same value. The fact 

that some of them were interested in simplifying the expressions and checking if 

they could be brought to the same form is worth noting. But this did not imply an 

understanding that once it is shown that two expressions are equivalent using 

transformations, then they are equal for all values of the letter. For example, one 

of the students said that ‘unless the value of the letter is known, it would not be 

possible to judge the equivalence of the expressions’. The understanding of the 

letter in an expression was still incomplete for such students.   

The responses of the students noticed in the final trial of the study (MST-III) in 

these tasks were facilitated by students’ ability to reason about expressions that 

helped them to separate the context from the expression and engage in discussions 

about the expression, appreciate other forms of the expressions and draw conclu-

sions based on syntactic transformations. Most students did not have any diffi-

culty in generating functional relationships (cf. English and Warren, 1998; Stacey, 

1989; Sasman et al., 1999). However, the gap between syntactic based under-

standing of symbols and transformations on them and using them meaningfully in 

contexts needs to be bridged, that is, the students need to undergo another transi-

tion between ‘reasoning about expressions’ to ‘reasoning with expressions’. With 
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repeated discussions of the kind mentioned above, students started to appreciate at 

least the role of brackets while representing contexts.  

Results from the interview data 

A pattern generalizing task was included in the interview at the end of MST-III, 

which required the students to generalize a pattern as shown in Figure 8.13 and 

find the number of dots for various positions (5th, 11th, 58th and kth) (see Algebra 

test Q.4 and Interview schedule: Algebra (Task 5) Appendix VB).  

 

 

Figure 8.13: Pattern generalization task used in the interview after MST-III 

Further, the students were shown another rule (algebraic expression) and asked if 

the rule was equivalent to the one they had generated. In the first part of the task 

which was about finding the number of dots for the specific positions and the 

general rule, many of the students needed help in obtaining a general formula for 

the nth pattern. The interviewers directed the students’ attention to ways of count-

ing the dots and helped them to verbalize the rule before they could symbolize 

them. Table 8.9 gives a summary of the students’ performance in the task. The 

students’ responses are coded for their ability to write the value/ expression for 

specific positions and the general rule (Columns 1 to 4), the strategy used by them 

to arrive at these (‘Strategy’, Column 5) and their ability to show the equivalence 

or otherwise of two rules for the above pattern (‘Equivalence’, Column 6). 



 

 357

Name 1. 5th position 2. 11th position 3. 58th position 4. kth position 5. Strategy 6. Equivalence 
BP CH CH CH CH CNTG SIMP 

PD* CH CH CH CH ExpnSP CNTG SIMP 
BK* C C C C CNTG NE – SIMP 
AY C C C CH ExpnSP NE – SIMP 
NN C C C C RCRSN/ExpnSP NE – SIMP 
SG C CH CH CH ExpnSP NE – FEqv 
PG C C C C ExpnSP SIMP 
JS* C CH C CH RCRSN/ExpnSP NE – SIMP 
NW C C C IG ExpnSP SIMP – FEqv 

RG C C C CH ExpnSP NE – SUBST – 
SIMP 

AS C C CH CH RCRSN CNTG NE – SUBST – 
FEqv 

AN* C C C C RCRSN/ExpnSP SIMP 
SV C C C C ExpnSP SIMP 

MC* C CH CH CH ExpnSP NE – SUBST – 
SIMP 

AB CH CH CH CH RandVal CNTG NE – SUBST – 
NE – FEqv 

BM C CH CH CH RCRSN CNTG SIMP 
TJ CH CH CH CH ExpnSP ExpnSP SIMP 

Table 8.9: Responses of the students interviewed after MST-III for the pattern generalization task (*Asterisk indi-
cates students whose interviews are discussed in the text). 

Prediction for positions (Col. 1 to 4): 

(C) Correct – the subject wrote the correct value/ rule to find the number of dots 
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(CH) Corrected with help – the subject writes the correct value/ rule with help from the interviewer 

(IG) Incorrect generalization – the subject incorrectly generalizes the rule for the kth position 

Strategy used for generalizing (Col. 5): 

(CNTG) Counting – the subject generated the rule based on counting the dots by perceptually grouping them (e.g. k+k-1+k-1 or k+(k-1)×2)  

(ExpnSP) Expressions for positions – the subject writes expressions for specific positions in a pattern (e.g. 1+3×(k-1), k×2+k-2, 4×(k-1)-(k-
2), k×3-2) without connecting to the figure/ pattern 

(RCRSN) Recursive adding – the subject arrives at the value by identifying the recursive relation between two consecutive positions  

(RandVal) Random values – the subject writes random values for the positions and the general rule 

(A B) The subject is made to change his/her strategy from A to B during the interview 

(A/B) The subject starts with a strategy A but himself/ herself shifts to B to complete the task 

Equivalence of expressions/ rules (Col. 6): 

(SIMP) Simplification – the subject chooses simplification as the strategy for showing two rules to be equivalent 

(SUBST) Substitution – the subject chooses substitution as the strategy for showing two rules to be equivalent  

(NE) Not equal – the subject states that two rules are not equal  

(FEqv) Fails to show equivalence – the subject fails to show the equivalence of the rules 

(A-B) The subject starts by the response A and then shifts to B 
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Most of the students (12) could find a meaningful strategy of counting the pattern 

or describing it verbally and were able to connect it with the figure/ index number 

but not all could symbolize correctly and completely. (These responses are those 

without the arrow in column 5.) Of the twelve students, three students could cor-

rectly find the number of dots for the specific numerical positions but could not 

write the general rule. Four others could verbally explain the pattern but could not 

express it as expressions, either arithmetic or algebraic. The remaining five were 

the ones who required no help from the interviewer and could complete the task 

on their own, both specific numerical positions and the kth position. However, not 

many students on their own connected their rules to the spatial or counting pat-

terns in the figures, except two students. The five students other than these twelve, 

had to be guided to look for efficient ways of counting which can lead to gener-

alization. These five students started with one of the strategies like ExpnSP or 

RCRSN or RandVal and were directed to the CNTG or a more easily generaliz-

able ExpnSP strategy (e.g. ExpnSP CNTG), which could help them to complete 

the task. They failed to check the validity of their rules with respect to the pattern, 

a problem which was also seen in the post test and has already been pointed out in 

the literature (Healy et al., 2001).  

For most of the students the way to check for equality of the two rules was 

through showing that the two expressions can be brought to the same form. Seven 

students straightaway went on to check for the simplification of the two expres-

sions, while six others started by saying that the two expressions are not equiva-

lent and later showed the equivalence of the two expressions by simplification, at 

times even using substitution of the letter by a number in the process (2 students). 

The remaining four students failed to show the equivalence of the expressions, 

even though two of them used substitution to check if the expressions were 

equivalent. Some of those who attempted to show the equivalence of the expres-
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sions using simplification could not do so without help, as they tended to compare 

surface features of the expressions or were not very sure of what was required to 

be done to show the expressions to be equivalent.  

One student BK while comparing 3×k-2 with k+k-1+k-1 said that the expressions 

were not equal as ‘in one of the expressions there is 3×k and in the other there is 

only k, -2 is same in both the places’. While simplifying she made an error in 

writing k+k+k as k. In such cases writing the terms and extracting the common 

factor helped the students see the equivalence of the expressions. Similarly, the 

student PD hesitantly simplified the two expressions (k-1)×2+k (her rule) and 

3×(k-1)+1 to 3×k-2 but was never sure of what she was doing and the purpose of 

it and asked the interviewer for feedback. She had no trouble in the simplification 

procedure, although she was required to use distributive property here.  

The student AN, on the other hand, was confident and knew what needed to be 

done to show the expressions to be equivalent. She had generated the expression 

k×3-2 for the given pattern. When asked if the expression 3×(k-1)+1 could be 

equal to her expression, she immediately chose to simplify the expression 3×(k-

1)+1 and showed them to be equivalent: ‘Both the numbers are to be multiplied 

by 3, then 3×k and 3×-1, therefore 3×-1 means -3 will be the answer here. And 

3×k, -3 and +1, -2 will be the answer and +3×k’.  

The student JS found the rule k+k+k-2 for the pattern with some guidance. She 

adopted the method of simplifying the expressions to show they were equivalent 

but committed some calculation errors for which she again needed help. When 

asked to test the equivalence of the expressions k+k+k-2 (her rule) and 3×(k-1)+1, 

she simplified the expressions as 2×k+k-2 and 3×k-2 respectively. Comparing the 

surface structures of the expressions (2×k with 3×k and k-2 with -2, probably an-

other interference from the letter-number line context) she concluded that they are 
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not equal. She could not see the equivalence of 2×k+k with 3×k till she wrote the 

terms on the insistence of the interviewer and then immediately concluded them 

to be equivalent.  

MC was the only student who successfully used both substitution by a number as 

well as the simplification process to verify the equivalence of his rule with 3×k-2. 

He had found the rule 4×(k-1)-(k-2). He effortlessly showed the equivalence of 

the two expressions. The following is the excerpt from the interview on this task. 

SN: Now tell me you have got this rule for k [4×(k-1)-(k-2)], if someone else has 
got the answer 3×k-2, then is that correct? 

MC: It is correct. 

SN: How do you know? 

MC: I replaced k by one value. 

SN: Then this and this are equal? 

MC: Yes. 

SN: How? Can you show me? Please try. 

MC: The answer of this [4×(k-1)-(k-2)] expression is this [3×k-2]. 

Although students needed help in the task, many were able to complete it with 

that support. The interviewer guided the students’ attention to the structure of the 

expressions, prompting them to use the idea of terms to judge the equivalence of 

the expressions when they matched the surface features of the expressions con-

cluding the expressions to be not equivalent. Many of these students had success-

fully explained the simplification of the algebraic expressions in the interview, but 

they hesitated in using the same strategies and principles in the context of justifi-

cation. Repeatedly, this gap or divide between reasoning about expressions and 

reasoning with expressions could be seen.  

The two contexts of think-of-a-number game and pattern generalization used dur-

ing MST-III gave slightly different opportunities for engaging in algebraic think-
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ing and using algebra as a tool to the students. In the context of think-of-a-number 

game, especially when the situation was simple involving only addition and sub-

traction, students could write algebraic expressions representing the situation and 

manipulate it due to the sequential operations in the task mirroring the structure of 

the expression. But, the issue that came to the fore in this context was the need for 

using algebra as a tool for proving and justifying and the belief in the efficacy of 

the method. Think-of-a-number game as a task allowed for algebraic thinking and 

reasoning but did not necessitate the use of algebra. The present task of pattern 

generalizing is closely tied with the idea of prediction. Verbalizing different ways 

of describing the pattern helps in arriving at the generalized rule and is an impor-

tant step but is not sufficient to exploit the potential of the task. The generalized 

algebraic expressions are not only useful for prediction (in fact, a clearly articu-

lated verbal rule would be sufficient for prediction) but also to appreciate the 

equivalence of the various rules for the same pattern, which requires manipulating 

the expressions. Thus, it also gets connected with reasoning about expressions. 

The task has the potential to create a context for solving linear equations as well. 

Understanding of substitution 

Pattern generalization task was also one context where students could display pre-

liminary understanding of the very important idea in algebra of ‘substitution’. 

This was amply demonstrated by the students in the task of generating equal ex-

pressions for a given expression when they rewrote a term as a sum, difference or 

product or a combination of two operations. In the pattern generalizing activity, 

the idea of substitution was required when they had to write the rules for not only 

the nth position but also the (n+1)th, (n+2)th positions which they accomplished 

with not much difficulty. For example, in the Square Pattern, a student remarked 

that the rule for the mth position 4+(m-1)×3 is same as 4+n×3 (an indication of the 

letter as belonging to the set of alphabets, mistakenly concluding that m-1=n in-
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stead of l). Another student responded by pointing out that 4+n×3 is the rule for 

the (n+1)th position and m-1 is not equal to n. She understood that in the general-

ized rule for the (n+1)th position, one less than the figure number needs to be mul-

tiplied by 3 (1st - 4+0×3, 2nd - 4+1×3, 3rd – 4+2×3, (n+1)th – 4+n×3), and also that 

the choice of the letter is immaterial and that ‘m’ and ‘n’ have no quantitative re-

lation as far as algebra is concerned. Except during the first exposure to the letter-

number line context, similar misinterpretation of the letter was not generally ob-

served. Henceforth, students wrote the rules for (n+1)th and (n+2)th positions with 

ease. They carefully analyzed the relations between the index number and the 

various components of the algebraic expressions describing the pattern to arrive at 

the rules for the (n+1)th or (n+2)th positions, but never by substituting n+1 or n+2 

in place of n. This is not to say that the students did not make any error in the 

process but that they had schemes in place to complete the task as a group. Indi-

vidual ability for substitution of this kind was not assessed during the trials. The 

two rules for the nth position in the context of the Increasing Squares pattern were 

4×n-3 and 5×(n-1)-(n-2). The corresponding expressions for the (n+1)th position 

were found to be 4×(n+1)-3 and 5×n-(n-1) respectively, the justification for the 

latter being ‘one has been subtracted from the expression’ in the rule for the nth 

position (that is, n-1 is one less than n and n-2 is one less than n-1). A similar 

analysis of the relationships between the index number and the various compo-

nents of the general rule led to the correct expression 5×(n+1)-n for the (n+2)th 

position, subtracting one from n+2 and then one from n+1. The students naturally 

treated n+1, n+2 as numbers having relation with n, which is noteworthy. This 

could be as a result of their exposure to many of the earlier tasks, especially on 

the letter-number line. 

These observations indicate that they have an implicit understanding of substitu-

tion which is not still formal and suggest that the idea of substitution appears to 
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develop in stages of growing abstraction and difficulty. The students first learn to 

substitute a number for an expression (in evaluating an expression within brack-

ets, for example) followed by an expression for a number (as seen while generat-

ing equal expressions). They then grasp the generality in the procedures embodied 

in an expression where it is possible to replace a number by another one without 

changing the essence of the procedure (this is the idea of the quasi-variable). Fur-

ther, they learn to substitute a letter by a number to understand the connection be-

tween arithmetic and algebraic procedures and syntax. They also generalize pat-

terns replacing the particular numbers by a letter to encode the general rule suit-

able for prediction. Finally, they learn to substitute a letter by an expression or 

vice-versa and an expression by another expression. The responses of the students 

in the study pointed to several examples of the earlier kinds of substitution but 

very few instances of the last kind were found. The students were not exposed to 

many situations where they would have required substitution of the last kind and 

probably they were not yet ready for it.  

8.6 Summarizing the contexts and students’ understanding 
of algebra in contexts 

Contexts where algebra could be used as a tool were an important part of the 

teaching learning sequence. Situations, which lead naturally to the use of algebra 

giving meaning to the letter and the expressions, have been valued in research as 

they demonstrate the purpose of algebra and situate the rules and procedures 

meaningfully. The choice and design of tasks that make algebra meaningful to 

students is governed by many subtleties, like the nature of thinking required to 

solve the problem – algebraic or arithmetic, the extent to which algebraic symbols 

are required, whether the solution can be induced from specific cases or general 

solutions are needed, whether the general solution resembles actions on specific 

cases or it is different (Booth, 1989b; Radford, 1996; Mason, 1996; Kieran, 
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1989b; Arcavi, 1995, discussed in Chapter 2). In this study, several tasks were 

used to give the students a sense of using algebra for generalized representation as 

well as the need for developing a sound knowledge of syntactic transformations. 

Besides representing situations in a general manner, the tasks were also chosen to 

develop among students the ability to generalize, prove and justify. The purpose 

of choosing such tasks was to use their previously developed knowledge of con-

cepts, rules and procedures and skills in reasoning about expressions in the con-

text of syntactic based transformations and to move them towards reasoning with 

expressions. The tasks were gradually made more challenging with respect to the 

nature of representation required and the degree of manipulation that was needed 

to arrive at the conclusion. From the simple situations only requiring representa-

tion, to the letter-number line with a little more complexity and then to justifying 

and proving patterns in number arrangements in calendar and think-of-a-number 

game requiring not just representation but also manipulation, and finally the pat-

tern generalization where symbolic representation was the key issue, students 

were exposed to many contexts in algebra.  

The results indicate that many of the students could not use algebra for represent-

ing simple situations. As pointed out earlier, this could be attributed to their not 

seeing the purpose of the exercise. The symbolic representations they made often 

were not correct, and showed ignorance of the conventions of algebraic notations 

and misinterpretations of the letter. Subsequently, these tasks were dropped/ de-

emphasized in the teaching. Students’ performance in the subsequent tasks indi-

cates that most of them, barring a few instances, correctly interpreted the letter as 

standing for a number. Through their experience in using symbols in different 

ways in the context of reasoning about expressions, they had enough exposure to 

making simple representations and also to unclosed expressions. They could 

choose/ identify an appropriate representation for different tasks such as the letter-
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number line, think-of-a-number game, understand the small changes made on 

them, even when a few of them failed to generate one themselves. An exception 

to this was the task of finding the distance between two points on the letter-

number line. Some students did not make progress in this task, probably because 

they had recourse to simpler ways for finding the distance. Also, only some stu-

dents were convinced about the need for an algebraic representation and this was 

evident from their interviews after MST-III, especially in the think-of-a-number 

game. The students were able to use algebraic thinking on numbers and conclude 

correctly, without necessarily using algebraic symbols. Since many of the prob-

lems chosen for the students were not very complex, this might have had a role to 

play in the students not choosing the reasoning based on symbolic algebra. Most 

of these tasks required general solutions but were close to the solutions of particu-

lar cases, thus making it possible to engage in algebraic thinking using verbal 

means without recourse to algebraic symbols.  

It was only in the pattern generalizing task that symbolic representation was inte-

gral to the exercise, first in writing a rule for the nth position and second in com-

paring the rules for equivalence. Although the students were more successful in it 

while working in the classroom, they did not achieve enough competence to work 

independently. Most of the time they were able to find meaningful ways of arriv-

ing at the generalized rule, to see functional relationships connecting the index 

number to the output but had trouble in writing the algebraic expression represent-

ing the rule while working alone. A few did not check the correspondence of their 

rules and arithmetic expressions with the given pattern. Throughout the study, 

students were engaged in some form of generalization and in a sense were already 

initiated into a ‘culture of generalization’ (Lee, 1996). They generalized the vari-

ous constraints and possibilities on transformations and used them for identifying 

and generating equal expressions. They also generalized the rules of transforma-
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tion learnt in the context of arithmetic expressions to manipulating algebraic ex-

pressions as well as evaluating more complex arithmetic expressions. Even while 

using arithmetic expressions to describe the pattern, many students were able to 

see the general in the particular by separating the numbers that were changing 

from the non-changing ones and relating these to the figure/ index numbers for 

the generalized rule. Students in many studies (see Chapter 2, section 2.7.1) have 

been found to be unable to understand the task requirements, are able to verbalize 

the patterns they see in a figure but cannot symbolize it, their focus being on re-

cursive relations and not functional ones which can be generalized (English and 

Warren, 1998; Lee, 1996; Stacey, 1989; Sasman et al., 1999). However, the stu-

dents in this study did not face many of these problems probably because of their 

prior experience with working on expressions and reasoning about syntactic as-

pects of expressions. An important point to be noted is that the algebraic expres-

sions which describe the pattern are not derived from mere empirical induction 

but involve deliberate acts on the part of the students to focus their attention on 

various parts of the pattern, capture the essence in the form of an arithmetic ex-

pression for each position and from it abstract the algebraic expression, by ignor-

ing and emphasizing certain parts of the arithmetic expression. Both the contexts 

of think-of-a-number game and pattern generalization help develop the ability to 

see the general in the particular and also the general solutions are close to solu-

tions for particular instances.  

Further, many students found it difficult to manipulate the algebraic expressions 

in the context even when they showed sufficient grasp of the rules and procedures 

and the similarity in arithmetic and algebraic structure (both surface and sys-

temic). This issue is not simply a matter of transfer from the syntactic world to 

contexts but also deeper issues of warrant or need. To be able to successfully ma-

nipulate a symbolic expression in the context, students needed anticipatory skills 
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and visualization of the goal, as other researchers have pointed out (Arcavi, 1994; 

Boero et al., 2001). Only when this was in place, could they also appreciate better 

the purpose of manipulating the expressions. Students’ failure in the task of find-

ing the distance between two points on the letter-number line and the calendar 

task can be attributed to their not being able to make sense of the expectations 

from the task, either finding it not worthy of such a complicated method or being 

too complex to handle with their limited capacities and understanding. This is also 

seen in the initial resistance to use algebra for purposes of justification in the 

think-of-a-number game and instead relying on verbal descriptions/ explanations 

in the classroom, and then a gradual shift towards symbolic expressions with in-

crease in complexity of the problem. Their interview responses in the think-of-a-

number game further elaborated this observation and gave evidence of the extent 

of their understanding of such manipulation and its interpretation. In the context 

of the pattern generalization task, students appreciated the need to simplify the 

algebraic expressions to show their equivalence as well as displayed a preliminary 

understanding of substitution. These tasks led to fruitful discussions in the class-

room with respect to syntax and the semantics of the situation but did not always 

result in successful completion of the task. In these discussions, their prior knowl-

edge obtained through reasoning about expressions was frequently drawn upon, 

with regard to rules and procedures of transforming expressions and understand-

ing of equality of expressions.  

From the limited experience of this study, it can be said that developing ideas of 

proof and generalization among students requires time and exposure and has to be 

developed like any other concept or skill, in the course of which students pass 

through stages. Stage 1: Verbalization and articulation of one’s understanding of 

processes and relationships play a key role in the process of reasoning with ex-

pressions and can be considered to be the first step. Stage 2: This can be followed 
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by the ‘quasi-variable’ understanding derived from the use of arithmetic expres-

sions in a way that the truth for all possible cases can be revealed. This will re-

quire a shift in attention from the specific case represented to the general situation 

(‘delicate shift of attention from the specific to the general features, appropriately 

stressing and ignoring features’, Mason (1996)). Stage 3: The stage when students 

engage with manipulating expressions to predict or convincingly prove and justify 

the result to be true for all possible cases that they enter the domain of reasoning 

with expressions. The choice of tasks is very crucial in enabling students to move 

from one stage to the next. 
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Chapter 9: Discussion and Conclusion 

9.0 Background 

In the teaching approach that was adopted, algebra was approached through 

the generalized arithmetic route, that is, with an understanding that algebra 

encodes the general properties and rules of arithmetic, and then complemented 

with contexts where algebra was used as a tool for generalizing, proving and 

justifying. The study aimed to develop a teaching-learning sequence which 

could help the students move from arithmetic to algebra smoothly by capitaliz-

ing on their intuitive understanding of numbers and operations on them. The 

teaching sequence exploited the structure inherent in the arithmetic expres-

sions and tried to build a sequence which strengthened both procedural and 

structural knowledge of arithmetic and algebraic expressions among students 

of grade 6.  

The teaching intervention, which was a design experiment with multiple trials 

and multiple groups spread over two years (2003-2005), had two intercon-

nected goals: to develop the teaching learning sequence and to observe and 

characterize the changes in the students’ understanding as they interacted with 

the instructional material and attempted to move from arithmetic towards al-

gebra. It enabled students to shift from computational understanding of ex-

pressions to understanding based on properties of operations, with a focus on 

structure of expressions and relationships between terms in an expression, so 

that one could operate with the expressions, rather than operate on the num-

bers. The approach identified a set of concepts, namely terms and equality, 

which could explicate the structure of expressions and subsume the rules, pro-

cedures and conventions of operating on expressions. These concepts could in 

the first place be used for reasoning about syntactic transformations of expres-

sions. The understanding that the students developed could then, in turn, sup-

port reasoning with the expressions, applying the knowledge of symbols and 
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their manipulation developed till now to solve problems. The teaching inter-

vention also led to the operationalization of some principles of teaching like 

capitalizing on students’ intuitions and articulation/ verbalization capabilities 

to situate the new learning as well as to take them forward to developing new 

knowledge.  

The two concepts of ‘terms’ and ‘equality’ thus supported the transition from 

arithmetic to algebra and acted as ‘bridge concepts’. The identification of 

these concepts and their elaboration with the teaching sequence was a signifi-

cant part of the teaching trials. The bridge concepts allowed the students to 

build on their previous knowledge and intuitions/ expectations with respect to 

operations and generalize the properties and rules of working with them to the 

new algebraic symbols. These two concepts also gave the students visual sup-

port to perceive the structure of expressions, especially correct unitizing/ pars-

ing of expressions and understanding the crucial idea of equality, and a lan-

guage for communicating their understanding. The approach afforded a mean-

ing for the symbols in algebra by creating the number as a referent for the let-

ter. Further, it was important that this learning be used in rich contexts where 

algebra is a tool and that students must explore the ways the algebraic sym-

bolic representation and transformation can be applied. In this way not only 

would the students grasp the purpose of algebra but they will also be using the 

letter for representing entities in the problem world, in the process objectifying 

it.  

In the chapters 6, 7 and 8, students’ performance in the various tasks was dis-

cussed in order to understand their grasp and use of the different concepts, 

rules and procedures taught during the study. The analysis was carried out on 

the pre and the post test data, individual interviews, as well as supported by 

evidences from classroom discussions, daily worksheets of the students and 

teachers’ logs. Chapter 6 elaborated students’ understanding of procedures and 

rules with respect to arithmetic and algebraic expressions and the connection 
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which students made between the two domains. Chapter 7 explicated students’ 

sense of structure of the expressions and their understanding of the important 

idea of equality based on the perception of structure. Chapter 8 looked into 

students’ understanding of different aspects of algebra such as the meaning of 

the letter or the expression, representation and manipulation of expressions as 

a way to arrive at conclusions or substitution, while working on contexts of 

generalization and justification. In this chapter the research questions which 

this thesis attempted to address will be revisited and the findings of the previ-

ous chapters will be summarized and interpreted in order to throw light on the 

questions.  

9.1 Answering the first question: Arithmetic necessary 
for transition to symbolic algebra 

The first set of research questions that the thesis addressed are the following: 

• What kind of arithmetic understanding would help in learning symbolic 

algebra? 

o How should the teaching of arithmetic expressions be restructured to 

prepare for a transformational capability with algebraic expressions? 

o How effective is such a teaching learning sequence in understanding 

beginning syntactic algebra? 

o Which tasks of the ones identified are more effective in making the 

shift possible from arithmetic to symbolic algebra? 

9.1.1 Previous research on the nature of arithmetic leading to 
algebra  

The range of studies described in the review of literature point out enormous 

difficulties which the students face in making sense of conventions and nota-

tions of algebra and symbolic expressions. An underlying reason is that in al-
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gebra symbols stand for both process and product in contrast to computational 

arithmetic where these two can be separated. Lack of structure sense of arith-

metic expressions, poor understanding of properties of operations and possess-

ing only operational/ computational knowledge of arithmetic rather than repre-

sentational and relational understanding were found to be the root causes of 

the trouble (e.g. Chaiklin and Lesgold, 1984; Booth, 1984, 1988; Kieran, 

1989a, 1992; Linchevski and Livneh, 1999, discussed in Chapter 2, sections 

2.2.2, 2.2.3, 2.3.4). Further, the reasoning styles in the two domains are differ-

ent which require a change in the attitude of the students, which involves look-

ing for relations, generalizing them and expressing the generality using sym-

bols and manipulating the generalities to arrive at new conclusions. Ideally, 

the instruction in arithmetic in the primary school years should give students 

adequate ground to abstract general rules and properties which should initiate 

them into the domain of algebra. It is precisely because of this reason that al-

gebra follows arithmetic in many traditional curricula. However, the transition 

to algebra does not happen unless one explicitly focuses on arithmetic in the 

primary grades that is aimed at moving away from rigid algorithmic proce-

dures. Thus one does not see any connection between arithmetic and algebra 

in students’ thinking or understanding when they reach the middle school.  

Some of the efforts which have been made to give meaning to the symbols 

have utilized and exploited the connection between arithmetic and algebra. 

Despite the opposition and reservation of some researchers (e.g. Lee and 

Wheeler, 1989; Balacheff, 2001) to such an approach, there exists empirical 

and theoretical support for the arithmetic-algebra connection (Chapter 2, sec-

tions 2.3 and 2.4). Algebraic expressions and symbols get the referent and the 

meaning and a way for validating the results when situated or generalized 

from the arithmetic context (Linchevski and Livneh, 1999). Kirshner (2001) 

suggested that learning algebra is not about learning rules but about perception 

based patterns. He argued that a structural approach to teaching algebra, using 



 

 375 

symbols and rules rationally and reasoning with them would be better than a 

referential approach to algebra. The studies by Liebenberg et al. (1998, 1999a, 

b), Malara and Iaderosa (1999), Linchevski and Livneh (1999, 2002) and Liv-

neh and Linchevski (2003, 2007) (see discussion in Chapter 2, section 2.6.2) 

also indicated the influence of students’ arithmetic learning on algebra learn-

ing: errors in arithmetic leading to similar errors in algebra or knowledge of 

‘better’ arithmetic, paying attention to the structure of expressions, leading to 

improved performance in algebra. Some of these studies further pointed out 

that it is the transformational arithmetic rather than computational arithmetic 

which will be of more help in making the transition to algebra as students fail 

to abstract the procedures and structure unless they engage in a reflective, 

“meta-cognitive” (Malara and Iaderosa, 1999) learning of arithmetic. This 

study takes the above as important lessons and begins to make the ground for 

an approach to teaching algebra building on arithmetic, rather than making it 

redundant.  

9.1.2 Restructuring arithmetic teaching and its effectiveness 
in learning beginning syntactic algebra 

In the present study arithmetic teaching was restructured so that it can be con-

nected with symbolic algebra. The study did not start with a fully developed 

sequence for teaching but a sequence evolved over the trials. The decisions for 

changing some parts of the teaching learning sequence were based on the stu-

dents’ performance in the classroom, especially as revealed in the discussion 

sessions, from their practice exercises and from the written tests at the end of 

each trial. As has been discussed earlier in Chapter 5, it was the ‘radicalized’ 

structural treatment of arithmetic, with a deeper understanding of expressions 

and constraints and possibilities of transforming them that enabled the transi-

tion to algebra.  

First and foremost, the students were moved away from their habit of compu-

tation to look at relations expressed in an expression by verbalizing the mean-
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ing of the expression using phrases ‘more than’, ‘less than’, ‘sum’, ‘differ-

ence’, ‘product’, ‘times’. Further, the teaching and learning of arithmetic was 

refocused away from precedence rules and learning of procedures to a deeper 

analysis of the structure of expressions. The concept of ‘term’ was identified 

which, through visual cues, allowed correct parsing of expressions. The prece-

dence rules or sequential order of evaluation of expressions were replaced by 

structural rules, replacing the vocabulary of addition and subtraction by the 

vocabulary of combining positive and negative terms (which implicitly meant 

no subtraction operation on terms), thereby making it possible to combine 

terms in any order. The structure of the expression, made explicit by marking 

the terms of the expression, was the only factor which allowed or constrained 

transformations on them. Brackets were an important part of the teaching-

learning sequence due to the need for multiple interpretations (static prece-

dence operation and dynamic bracket opening rules) that are required while 

working in algebra. The bracket opening rules were also reformulated using 

the concepts of term and equality. The ideas of ‘inverse’ and ‘multiple’ were 

found to be useful to understand the bracket opening rules. This approach fur-

ther made it possible for students to judge equality/ inequality of expressions, 

and compare pairs of expressions by analyzing the terms and anticipate the 

effect of changing the terms on the value of the expression. This ensured that 

the structure of the expression will complement the procedures on the expres-

sion. By simultaneously carrying out activities of both these kinds, the ap-

proach was successful in combining non-transformational tasks, like anticipat-

ing results and judging equality with computational activities, like evaluating/ 

simplifying expressions.  

Findings from the analysis: Procedural tasks and rules 

Evaluation of arithmetic expressions 

The students improved in their overall performance in the procedural and 

structural tasks and understanding of rules. Students learnt to parse expres-
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sions with ease using the idea of terms and use it in many situations. The re-

sults after MST-I showed the prevalence of errors in perceiving the structure 

of expressions as well as inconsistency in applying similar kinds of judgments 

across the tasks. However, as the trials progressed there was reduction in 

structural errors (due to faulty parsing, like ‘LR’ and detachment) while evalu-

ating simple arithmetic expressions but they did resurface in more complex 

situations, suggesting the lack of automaticity among students in the simpler 

contexts. They gained flexibility in evaluating the simple (e.g. 3+4×5 or 13-

5+7) and the more complex expressions (e.g. -28+49+8+20-49 or 7×18-

6×11+4×18) finding easy ways of computing them, indicating their apprecia-

tion of the structure of the expressions and the ability to take advantage of it. 

Over the trials, more number of students chose ‘relational strategies’ to evalu-

ate the expressions (more in the case of expressions with only simple terms 

than with product terms), switching from the more tedious left to right evalua-

tions or solving the product terms which also led to more errors. Integer addi-

tion/ subtraction was a weak point resulting in low performance in some items, 

even when this subsumed under the ‘terms approach’ to evaluating expres-

sions. This subsumption substantially improved students’ ability to work on 

the various tasks flexibly, but errors related to integer operation continued to 

appear.  

The interviews and the classroom discussions further substantiated the find-

ings from the written test and indicated the students’ ability to avoid structural 

errors in the simple situations. They showed that students were aware of 

uniqueness of the value of the expression even though one could use multiple 

ways of evaluating them. Most students comfortably explained the evaluation 

process of simple expressions as well as correctly accepted or rejected an al-

ternative solution posed to them using appropriate structural concepts by the 

end of the third trial, although they hesitated in some instances at the end of 

MST-II. The approach enabled students to focus attention on different parts of 
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the expression simultaneously, which has been found to be difficult in the 

studies reported in the research literature (cf. Liebenberg et al., 1999a; Malara 

and Iaderosa, 1999). Most students are not aware of the rules of transformation 

or are swayed by perceptual patterns and do not consistently apply them to 

evaluate expressions (see discussion in Chapter 2, section 2.3.4). It was in 

these contexts of evaluating expressions of various kinds that the students ex-

plicitly discussed the constraints and the possibilities in transformation of ex-

pressions. This was supported by the visual cues given by marking the terms 

in the boxes as well as the support given by a specific language through the 

naming convention like simple terms, product terms, bracket term, negative 

term, positive term, etc. The flexibility in manipulating arithmetic expressions 

together with correct perception of structure of expressions paved the way for 

the manipulation of algebraic expressions.  

Simplification of algebraic expressions 

By the last trial, most students were comfortable with simplifying algebraic 

expressions (e.g. 3×x+4+4×x-5), applying the same rules as in arithmetic. In-

terviews with the students with respect to algebraic expressions after MST-III 

revealed their awareness of equivalence of all the steps in the process of sim-

plification. For example, the expressions 3×x+4+4×x-5 and 7×x-1 are equiva-

lent and so are the steps in between. Although most students were able to 

evaluate algebraic expressions for a given value of the letter even when they 

made sign and calculation errors; a few students, however, made structural 

errors coupled with non-substitution of the letter by a number till the last trial. 

The students interviewed did not show any such difficulty. The unfamiliarity 

with the task could be a reason for some students not to understand the re-

quirement of the task.  

The appreciation of the similarity between manipulating arithmetic and alge-

braic expressions was difficult and developed only in subsequent trials when 

attempts were made to focus away from computation in the context of arith-
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metic and pay attention to the relational information conveyed by an expres-

sion. Consistency in perceiving the structure of expressions and understanding 

the properties of operations that are used in the context of arithmetic is an im-

portant step to move to algebra. The coherence in the teaching-learning se-

quence which was developed by MST-II (discussed in Chapter 5, section 

5.2.2) could be a factor influencing the change as is seen by the end of the last 

trial. The students successfully generalized their understanding of rules from 

the context of evaluation of arithmetic expressions to simplification of alge-

braic expressions, displaying the connection between the two domains in their 

understanding. The operations on numbers needed to be converted into ‘ob-

jects’, which could be processed mentally without implementing a physical 

calculation procedure at each step. These could then be combined using the 

properties of operations.  

Evaluating expressions with bracket and bracket opening rules 

Evaluation of expressions with brackets, which had an important place in the 

teaching approach, did not have similar performance levels and it was harder 

to deal with. The teaching approach laid emphasis on using the brackets as a 

precedence operation as well as treating it as a structural symbol which can be 

removed using rules keeping the value of the expression the same. The second 

conception of bracket is important for manipulating algebraic expressions 

where it may not be possible to solve the sub-expression embedded in the 

bracket, while the first one is needed for representation purposes. Although 

they were quite successful in solving simple expressions with brackets (e.g. 

3×(4+5)), their performance in the more complex expressions with brackets 

(e.g. 25-(4+3×5)) was not error free. Many of them learnt to use bracket open-

ing rules to evaluate expressions but for some students, this was accompanied 

by a lack of appreciation of the meaning of the bracket as enclosing parts 

which have to be given precedence in operation. Also, while evaluating ex-

pressions in brackets the structural errors resurfaced (like ‘LR’ and detach-
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ment). Both the written test and interviews revealed that the two notions of 

bracket were absorbed by some of the students as procedures and not as ‘pro-

cepts’ which did not allow them to easily anticipate the effect of removing and 

putting the brackets. They failed to simultaneously understand that the brack-

eted (sub-)expression could be substituted by either a number or another equal 

expression, which is an indication of an evolved ‘proceptual’ understanding. 

Students made more errors when the bracket was preceded by a negative sign 

rather than the multiplication sign.  

In a later development in the teaching approach, the rules for evaluating 

brackets were reformulated in structural terms using the ideas of ‘inverse’ of 

an expression (for negative bracketed term) or ‘multiple’ of an expression, 

which operationalize the distributive property. The teaching approach took a 

while to identify a correct way to deal with the brackets. The initial strategies 

of embedding bracket opening rules in contexts did not work well due to the 

presence of many distracters and the difficulty in recalling and applying the 

rules in a syntactic situation. Inducing the rule from multiple examples also 

was not very successful as the rules were often wrongly interpreted and over-

generalized. The shift to an emphasis on equality in value of the two expres-

sions – with and without brackets, together with analysis of the terms paved 

the way to a deeper understanding of brackets and bracket opening rules. 

Some of the ways which were found to be more effective in understanding the 

different roles of bracket are: (i) students’ perception of patterns consolidated 

through the concepts of inverse value and inverse expression, and multiple of 

an expression. For example, 13+4-5=12 ⇒ -13-4+5=-12, where -12 is identi-

fied as the inverse value of 12 and -13-4+5 is the inverse expression of 13+4-

5, symbolized as –(13+4-5). Similarly,  4+5=9 ⇒ 8+10=18 where 18 is twice 

9 and 8+10 is the expression (4+5) multiplied by 2 symbolized as 2×(4+5); (ii) 

embedding them in the context of generating equal expressions where the 

brackets are used to create new expressions (an expression equal to 32-
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24+7+23 is 32-(24-7)+23 or 32-(20+4)+7+23). Discussions of the latter type 

of examples in the classroom revealed the over-generalizations of rules by 

students and confusion between the meaning and purpose of brackets, but also 

led to fruitful and rich explorations. Expressions with brackets also require an 

adequate structural treatment similar to expressions without brackets and en-

gagement with reasoning about them in the context of syntactic transforma-

tions to make sense of the dual interpretation of the brackets.  

Structural understanding of expressions and equality 

The structural tasks probed students’ understanding of the important concept 

of equality which connects arithmetic and algebra. These tasks revealed their 

deeper understanding of expressions and a fair degree of understanding of 

constraints and possibilities of transformations, properties of operations and 

anticipation of the result of those operations. They understood that terms can 

be rearranged to keep the value same or they can be changed in ways that the 

net result does not change, rearranging the signs or numbers changes the 

value, a positive term increases the value of the expression and a negative term 

decreases it. Research literature discussed in Chapter 2, both exploratory and 

classroom interventions, indicate the difficulty students in general have in un-

derstanding these ideas. In particular, classroom discussions of how a given 

expression could be transformed while keeping its value invariant led to sig-

nificant revelations about students’ understanding. Further, these tasks served 

as better diagnostic and learning tools with respect to the understanding of 

equality than the more traditional task of filling in the blank. 

Students sometimes made errors in equalizing expressions by filling the blank 

(e.g. 23+4=__-3), displaying the misconceptions which are already reported in 

the literature. This task required computation and low performance in tasks 

could be due to the automaticity which these students have with respect to the 

perception of the ‘=’ sign. However, they could judge the equality/ inequality 

of a list of arithmetic and algebraic expressions with respect to a given expres-
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sion without computation and also generate expressions equal to a given one, 

focusing on the relationships between the terms and the transformations that 

were applied to it. These tasks require conscious effort on the part of the stu-

dent to first identify the equality/ equivalence and then to communicate the 

reason for the judgment.  

Interviews after MST-II and III also revealed students’ abilities to identify 

equal expressions from a list and to compare unequal expressions identifying 

the smaller/ greater expression in a pair. This was accomplished, not through a 

mechanical short-cut procedure but rather through a meaningful use of the 

concept of ‘terms’. Comparison of such complex expressions was unfamiliar 

to them and their flexible use of terms to anticipate the change in value which 

made one expression greater or smaller than the other was an important find-

ing in the interview. They performed reasonably well in the written test in both 

arithmetic and algebraic expressions, although their performance in expres-

sions with product terms was slightly lower than other expressions, where a 

few of them consistently failed to use the correct parsing/ unitization to iden-

tify the equal expression. This was however not seen when they generated the 

equal expressions themselves. A few students also faced difficulty in judging 

equality of expressions when it involved brackets, a problem which was no-

ticed in the evaluation tasks as well. The responses were not error free but the 

overall nature of responses, as revealed through the different sources of data, 

indicate that they had strategies in place to deal with these tasks and to rectify 

their errors and they were clear about equality in value as an essential criterion 

for two expressions to be equal. Further, most of them were aware that equiva-

lent algebraic expressions (e.g. 3×x+4+4×x-5 and -5+4×x+4+3×x) will be 

equal for all values of the letter. Two ways of justifying it were seen: by re-

placing the letter by a number in both the expressions to arrive at two arithme-

tic expressions which they know would have equal values or directly inferring 

that particular cases would hold true since the general case is true.  
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Overall, students made quantitative and qualitative (in terms of strategies and 

reasoning) progress in the various tasks over the trials. By the end of the trials 

many students were able to connect the domains of arithmetic and algebra and 

move back and forth between them. Moreover, the students’ performance in 

arithmetic and the algebra tasks were correlated and over the trials, with in-

creasing performance in arithmetic, students’ performance in algebra also be-

came better. But students needed a basic minimum performance in arithmetic 

and consistency in their understanding of procedures and structure to be able 

to work on algebra tasks. The third sub-question dealing with the efficacy of 

the tasks will be taken up after discussing the performance of the students in 

the contexts that were used to embed algebra.  

9.2 Answering the second question: Relation between 
syntactic algebra and understanding purpose of algebra 

• Does understanding the syntax and symbols of algebra support students in 

understanding the purpose of algebra and in the application of algebra for 

generalizing and justifying? 

The discussion in the previous section dealt with students’ reasoning about 

expressions and revealed their understanding of syntactic aspects of arithmetic 

and algebra, namely manipulation of expressions and the idea of equality/ 

equivalence. Most of the students, by the end of the trials, showed sufficiently 

mature understanding of the above aspects of expressions as revealed by their 

interview responses, their responses in the written test and classroom discus-

sions. The second part of the study dealt with using the same ideas in contexts 

where expressions could be used to derive conclusions about the situation. In 

the process, students were challenged to use the concepts, the meanings they 

had constructed of the symbols in the first part of the study and their knowl-

edge of techniques of manipulating expressions.  
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Discussions in Chapter 2 revealed the difficulties faced by the students while 

working on tasks which embed algebra and use it as a tool to solve problems. 

The performance of the students in this study indicates that their knowledge of 

reasoning about expressions based on syntactic transformations influenced 

their understanding and approaches to solution while reasoning with expres-

sions. Their earlier experience created a predisposition for symbolic represen-

tations and thinking with an expression. However, fewer students could con-

vert this understanding to one which could enable them to successfully com-

plete the tasks of reasoning with expressions or appreciate the ‘purpose of al-

gebra’. The issue is not simply one of transferring the abilities from the syn-

tactic world to the context situations where algebra is to be used as a tool or of 

creating a situation so that the letter gets embedded in the context and thus 

creating meaning for the letter or algebra. Two elements that play an important 

role in these tasks are (i) the culture of generalizing, proving and verifying, 

with which the students in traditional curricula have very little experience and 

which needs to be developed and (ii) students’ belief about the effectiveness of 

using algebra in these tasks.  

The effect of the above two factors was seen in the students’ performance 

across the trials, especially in their abilities to represent the situation using an 

algebraic expression and manipulation of the representation.  The letter-

number line journey and think-of-a-number game were not found to be diffi-

cult to represent as they involved a sequential (and a rather arithmetical) step-

by-step representation of operations. But in the former context, students did 

not see the need to manipulate, the result being very obvious from the figure; 

and in the latter, many did not even see the need to make an algebraic repre-

sentation when arithmetic expressions and narrative arguments were sufficient 

to explain the result. More complex versions of the ‘think-of-a-number’ game 

did lead to the need for symbolic representation to keep track of the transfor-

mations on the initial number. On the other hand, representation for the ‘dis-
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tance’ task on the letter-number line was quite difficult for the students as it 

required describing a relation between the two points and did not necessarily 

follow the order in which the points appeared in the question. Pattern generali-

zation task was the only one where the representation, although not simple, 

was found to be necessary to predict the values for larger positions and to 

write the general rule which satisfied the pattern. The ‘calendar’ task, which 

included both the aspects of making generalized representations and justify-

ing/ proving, was a challenging task for the students and they were not ade-

quately prepared for it. The students barely managed to represent the relations 

between the numbers in the rows and columns and did not succeed much in 

identifying and proving patterns.  

Initial efforts of many students to manipulate the algebraic expressions repre-

senting the situations were random, many a time followed by an arbitrary an-

swer, largely due to non-appreciation of the goal of the task. Some others, who 

were aware of the goal of the task, wrote the expected answer after the end of 

a random manipulation. Their limited abilities in the initial trials to simplify 

algebraic expressions contributed to the lack of success in these contexts. Stu-

dents need to accept manipulation of algebraic expressions to be a valid way 

of arriving at the conclusion together with an anticipation of the goal of the 

task toward which the representation can be maneuvered.  

In the last trial, with a change in the approach to deal with this issue which 

encouraged verbalization of the explanations for the answers, some students 

were seen to engage in algebraic thinking and use narrative arguments, often 

displaying a quasi-variable approach, to convince others about the generality 

of a result or to draw conclusions. One must note however, that this did not 

necessarily require algebraic representation. A few successfully used algebraic 

representations, could anticipate the goal and accordingly manipulate it to 

prove the result. Still, a few continued to repeatedly verify the conjecture/ 

proposition for specific instances, not realizing the limitation of the approach. 
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This pattern of responses led to the understanding that students’ abilities to 

manipulate algebraic expressions and their knowledge of transformation rules 

is put into use only after they understand the purpose of the task, the need for 

algebraic representation and can anticipate the goal. Otherwise, the manipula-

tion of algebraic expressions in the contexts is random or the use of algebra is 

completely ignored. Possessing the syntactic knowledge of algebraic expres-

sions predisposes students to think in terms of expressions within the contexts 

but does not guarantee success. Thus, besides the ‘push’ from arithmetic 

which lays the ground for initial understanding of algebraic symbols and ex-

pressions and reasoning about expressions (‘phase of structural development’), 

one needs the ‘pull’ from a culture of generalization and the need for general 

justifications, not restricted to specific instances, to move to the ‘autonomous 

stage’. Eventually it should also lead to an anticipation of the most efficient 

choice of the representation itself (developing ‘symbol sense’) which will be 

crucial for problem solving of this nature (Arcavi, 1994; Boero et al., 2001).  

9.3 Tasks that enable the transfer from arithmetic to 
symbolic algebra  

o Which tasks of the ones identified are more effective in making the 

shift possible from arithmetic to symbolic algebra? 

Suggestions from the research literature and analysis of the data collected in 

this study (sections 9.1.1 and 9.1.2) pointed out that the tasks which enable the 

transition from arithmetic to symbolic algebra are those which move away 

from computation and engage in reflection about properties of operations. 

Thus, evaluation tasks based on a thorough analysis of expressions and simul-

taneously building an understanding of rules of transformation and the condi-

tions under which the rules are applicable are essential to be able to use them 

consistently in the context of simplification of algebraic expressions.  



 

 387 

Further, the above should be complemented by tasks where students do not 

compute but only judge/ identify equalities and equivalences between expres-

sions and substantiate their responses. Generating equal expressions for given 

expression is another task which combines both procedural knowledge as well 

as structural knowledge without the necessity of computing. These tasks tap 

the important concept of equality and include knowledge of rules and proce-

dures of transforming expressions, and judge students’ understanding of pos-

sibilities and constraints of transformations. However, a more direct and ex-

plicit understanding of the ‘=’sign needs to be developed prior to this for 

bridging arithmetic and algebra. Engaging students in fill in the blank so that 

expressions are equal on both sides of the ‘=’ sign as well as comparing small 

expressions using <, =, > with and without computation are important bridging 

activities from purely procedural to a structural/ relational understanding of 

expressions.  This study showed that although students displayed a sound un-

derstanding of equality in the more structural tasks without computation, some 

students could not fill the blank correctly with computation; their automatic 

tendency to write the answer in the blank overpowering their understanding of 

equality. In fact, the fill in the blank task is very arithmetic in nature as the 

blank is filled by trial-and-error and does not require any relational under-

standing. 

Students need to be supported by adequate conceptual ideas like ‘term’, ‘=’ 

sign, equality, inverse, identity (not used in this study) and symbols like the 

bracket showing its dual purpose, which will allow the students to communi-

cate their responses and explain them, that is allow them to reason about ex-

pressions. The study explored various ways of approaching evaluation/ simpli-

fication of expressions as well as bracket opening rules. The connection be-

tween arithmetic and algebra could be established by first understanding the 

meaning of the expressions (3+x is a number which is three more than x and 

3×x is a number which is three times x) as distinct from the value it stands for, 
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and then explicitly showing structural similarity between the two domains and 

hence similarity in the rules of transformation. Also, de-emphasizing computa-

tion together with an emphasis on reasoning about expressions (that is, reason-

ing based on syntactic transformations), communicating verbally and/ or sym-

bolically the reasons for the choice of the responses created a background to 

accept symbols as not being arbitrary and not only used for computations but 

also for representing situations/ change. It further allowed them to accept un-

closed expressions, which was helpful while dealing with symbolic algebra.  

Efforts were made to situate the bracket opening rules in the story situations 

and in the context of finding area of rectangle (inspired by CSMS study, 1984) 

leading to two equivalent but perceptually different representations but were 

not successful. Students’ conception of area and perimeter of figures was very 

poor and could not support the development of new concepts and symbols. In 

the story situations, the stories seemed to distract their attention and did not 

lead to the identification of the essential features of the bracket opening rule. 

Further, rules were over-generalized from these contexts, indicating insuffi-

cient attention paid to the structure of the expressions. Some useful ways of 

dealing with brackets have already been pointed out in a previous section (sec-

tion 9.1.2), namely, connecting the bracket opening rules to the concept of 

equality and analysis of terms and patterns in expressions. An effort was made 

to give meaning to simple algebraic expressions, like x+4, in contexts requir-

ing representation (two rods each of length 4 cm and x cm respectively are 

joined to form a rod of length ___ cm) but tasks of this sort were not success-

ful with many students. The limitation of such tasks was that the purpose of 

representing situations with one of the dimensions marked by a letter was not 

clear to the students and probably made no sense to them. There was no larger 

goal which such a representation could be used for. 

As against these situations, contexts were created where algebra could be used 

as a tool and students could engage in reasoning with expressions. These con-
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texts required students to make algebraic representations and then manipulate 

them to arrive at a conclusion. The letter-number line was the simplest context 

of this kind and the least challenging. The purpose of this task was to simulta-

neously capture the process – the act of operating with the letter, adding and 

subtracting 1, 2, 3 etc. to the letter, as well as to show each expression (like x-

1) to be the result of the process. This also reinforced the idea of lack of clo-

sure in algebraic expressions. The context allowed the creation of a few more 

tasks which not only required representation using an algebraic expression but 

also necessitated manipulations on it. The letter-number line journey (which 

was a sequence of actions) and finding the distance between two points on the 

letter-number line, were two tasks relevant in this context. As pointed out ear-

lier, students found representing the ‘journey’ simple and the ‘distance’ very 

hard. The first ‘journey’ task is more arithmetic in nature due to the non-

sequential representation followed by manipulation which does not require 

working with or on the unknown. The second ‘distance’ task, in contrast, re-

quires a complex representation with brackets and it is necessary to work on/ 

with the letter. Even though the task had the potential to give rise to cognitive 

conflicts due to the existence of two ways in which one could find the solution 

(by counting the number of jumps between two points and by representing and 

simplifying), algebra was hardly used in this situation as there were other easy 

means of arriving at the answer. The purpose of using algebra need to be clear 

to the students, for it to be used in the first place.  

Tasks like the think-of-a-number game are promising as they involve simple 

representation and that representation can be meaningfully used to draw infer-

ences about the situation. However, students would need to understand the 

meaning of verification/ proof to be able to successfully complete the task. In 

the response to this task, the effect of the students’ belief of the efficacy of the 

algebraic solution was again seen. But it led to fruitful discussions both about 

representation, explanation of solutions and manipulation of the algebraic ex-



 

 390 

pressions as a way to reach the conclusion. The difficulty with this task is one 

of choosing between a simple problem situation for writing the expression and 

engaging in algebraic thinking, and a more complex situation challenging nar-

rative arguments making it necessary to use a symbolic representation. In the 

latter case it might be hard to begin the discussion due to lack of transparency 

in the situation.  

Explorations of number patterns in calendar was found to be very challenging 

as it included multiple requirements – making general representation of the 

arrangement of the numbers in the calendar followed by representing patterns 

among numbers and finally proving them to be true for all similar arrange-

ments. This task needs to build on ideas of generalization, representation and 

proving. Pattern generalization from growing shapes was another context 

used, which was fairly able to capitalize on students’ capabilities to generalize 

and write algebraic expressions for the general rule. It was closer to students’ 

experience in reasoning about expressions where they had already developed 

sufficient skills to shift their attention from the particular to the general, care-

fully identifying and preserving the invariances and generalizing the con-

stantly changing numbers. Students engaged in verbalizing functional rules, 

either by using a counting strategy leading to a rule or by writing expressions 

in pattern for specific positions and generalizing it to an algebraic expression. 

Showing the equivalence of two rules for a single pattern was also not an en-

tirely new idea for them due to their exposure to tasks requiring them to iden-

tify equivalent algebraic expressions. This was also a good ground to begin 

discussion about substitution, although still at the informal level.  

9.4 Answering the third question: Meaning of letter, ex-
pression, syntactic rules of transformation 

• ‘What meanings do students attach to letters, expressions and syntactic 

rules of transformations in this learning approach?’ was the third question 

which the thesis aimed to answer.  
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The emphasis in the teaching approach was on seeing an expression in flexible 

ways: as a statement expressing relationship and a value. One of the major 

hurdles in making sense of algebraic symbolism is to understand the meaning 

of the letter and the duality of the various symbols. Most students understood 

the letter to be a number; barring a few instances where a couple of students 

labeled the letter as one in the sequence of alphabets or misinterpreted ‘x’ to 

be equal to ‘0’, drawing parallels from the symmetry around ‘0’ in the integer 

number line. On the other hand, they also showed the understanding that one 

letter can be replaced by another letter while representing, making no differ-

ence to the conclusion drawn.  

Expressions were also flexibly understood as expressing relations as well as 

encoding a sequence of operations leading to a unique value (in the case of an 

arithmetic expression) and multiple values (in the case of an algebraic expres-

sion) depending on the value substituted for the letter. The approach was suc-

cessful in eliminating the spontaneous tendency of students to compute the 

value of the expressions. Students could verbalize the meaning of simple ex-

pressions like 5+4 or x-3 (four more than five or three less than x) as well as 

see a statement like x-3+5=x+2 as expressing a relation between x-3 and x+2 

(x-3 is five less than x+2) and the fact that subtracting three and adding five to 

x leads to x+2. They could extend this understanding developed in the context 

of the letter number line to situations where they had to fill in the blank to 

make two expressions equal. The discussion quoted in Chapter 7 (section 

7.1.2) while students were engaged in the task: 45+29=47+28__, shows stu-

dents’ capacity to think of the blank as not only a number which would lead to 

the same answer as the left hand side but also see the relationship between the 

left and right hand of the ‘=’ sign: the expression on the right hand side is one 

more than the left hand side, and therefore the conclusion that one needs to 

subtract one from the right hand side. The pattern generalization task also 



 

 392 

showed students’ ability to treat n+1, n+2 as entities for which rules could be 

extended and written as for ‘n’. 

Similarly, students knew that equal expressions would have equal values, as 

only valid transformations are used which completely compensate for any 

change in a term or a part of the expression. In the process, they developed a 

sense of reversibility and substitution – an expression or part of the expression 

could be replaced by a number or conversely, a number could be replaced by 

an expression. On the other hand, expressions where terms had been changed 

compared to the given one in such a way that they were no longer equal, were 

judged unequal and were further estimated to be more or less than the original 

expression, without computation.  

This flexibility in thinking about expressions is often reported to be lacking 

among students and many of the research studies discussed in Chapter 2 (esp. 

section 2.3.4) indicated students’ poor sense of structure of expressions (e.g. 

Chaiklin and Lesgold, 1984; Kieran, 1989a, 1992; Wagner and Parker, 1999; 

Hoch and Dreyfus, 2004), which leads them to believe the rules of transforma-

tion to be arbitrary, both in arithmetic as well as algebra. It is probably due to 

the flexible approach adopted in this teaching sequence for simplifying/ evalu-

ating expressions (rather than precedence rules) that the structure could sup-

port their procedural understanding and the possibility arose of using the same 

rules across the tasks.  

9.5 Answering the fourth question: The procedure-
structure connection 

The fourth and the final question asked in the thesis was: 

• How do procedural understanding and structure sense of expressions mu-

tually support one another? 
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Students’ scores in procedural tasks and structural tasks are highly positively 

correlated. But one needs a minimum competence in procedures to internalize 

and abstract those properties for perceiving structure and further use it in 

tasks. By the last trial, students made appreciable progress in both procedure 

and structure tasks. A preliminary analysis of certain questions/ items based 

on students’ perception of structure showed the nature of the interrelationship 

between procedural understanding and structural understanding to be complex 

and the necessity of consistently applying the procedures and rules in different 

situations as a pre-requisite for developing structure sense (Banerjee and 

Subramaniam, 2005).  

Students’ understanding as revealed from their written responses as well as 

their articulations during classroom discussions and interviews while reason-

ing about expressions in the context of syntactic transformations throws light 

on the connection. In the first trial of the main study, students did not appreci-

ate the connection between the use of terms to check for the precedence rule 

to be applied and its use for checking the equality of expressions. The rigidity 

of the precedence rules and lack of clear indication of the purpose of identify-

ing terms led some students not to use terms and in the process they made 

structural errors like ‘LR’ and ‘detachment’. In the next two trials, one finds 

the use of a variety of strategies, flexible combination of terms based on the 

structure of the expressions while evaluating them, gradually also reducing the 

structural errors. The same complementary use of procedural knowledge and 

structure sense is also found while substantiating the correctness or otherwise 

of a procedure for evaluating an expression. An example of such a response is 

seen while students responded to the probe of whether the expression 25-10+5 

could be solved as 25-15: ‘it is not bracket. If there is bracket we can do like 

this’ or ‘-10+5=-5’. Response for the opposite case of whether 25-(10+5) 

could be solved as 25-10+5, was also similarly argued; that there is a minus 

sign outside the bracket, so the signs of both terms must change. The bounda-
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ries between procedure and structure begin to become fuzzy in such re-

sponses. In the case of simplifying the algebraic expression also, students’ un-

derstanding of the steps of simplification and their equivalence came from an 

understanding of the possibilities and constraints of transformations (e.g. ‘Be-

cause this is a product term and we do not know what the number ‘a’ is. So we 

have to do it like this only’ (response of a student while explaining why 

5×a+6-2×a+9 will be equal to 27 when 3×a+15 is 27 for a=4), which includes 

an appreciation of both surface and systemic structure. Most of them under-

stood the generality of the whole process, whether one used a common letter 

variable in the product term or a common numerical factor among two terms 

(e.g. ‘these are equal expressions’). These students had successfully ‘interior-

ized’ (Sfard, 1991) the process and could mentally run through the steps with-

out the need to see the result of each step. 

Similarly, in the context of tasks which were predominantly structural, stu-

dents used both their understanding of structure and operation sense to answer 

the questions. Students’ judgment about an expression being more or less than 

another required them to correctly parse/ unitize the expression as well as use 

their anticipations of performing an operation. For example, while comparing 

the expressions 24-13+18×6 and 24-18+13×6, many students correctly 

pointed out that the first expression is greater than the second and one of them 

explained that ‘Here it is 18×6, and there 13×6. It has become less and here 

[24-13+18×6] also -13 is there, and -18 is here [24-18+13×6]. Only here 

subtraction, the product is more’. It is the successful combination of correct 

parsing together with correct anticipation which led to such judgments. An 

unsuccessful combination of these two can be seen where a student judges the 

expressions 49-37+23 and 49-5-37+5+23 to be unequal and the former ex-

pression to be smaller ‘Here +49 is correct and here +, -5 and -37 is there. 

Therefore these two will get added and the sum is +42 and the sum of these 

two [+5+23] is +28 and the answer of this [49-42+28], and this [49-37+23] 
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expression is a little smaller’. For many others this was a straightforward 

situation of equality as -5+5=0. Many of the discussions in the classroom 

while generating equal expressions for a given expression showed similar 

complementary use of structure and procedure sense. Also what is worth not-

ing is the comfortable and meaningful use of symbols while reasoning about 

expressions. The use of the symbols in these ways enabled the extension of 

meaning for the standard symbols in the context of arithmetic and their subse-

quent use in the domain of algebra. These evidences are promising enough to 

believe in the complementary nature of procedures and structure and not in the 

dichotomy between them.  

9.6 Conclusion 

The present study dealt with the issue of transition from arithmetic to algebra, 

which built on students’ understanding of arithmetic and operations. It elabo-

rated on the specific supports, in the form of vocabulary (like specific ways of 

naming the terms), concepts (terms and equality), rules and procedures (re-

formulated in structural terms) required for making the transition from arith-

metic to algebra, without which it was difficult for students to see the connec-

tion between arithmetic and algebra. Further, it pointed out the purpose, 

strengths and the limitations of the various tasks used at different points of the 

study. The thesis proposes a teaching guideline on the basis of the trials for 

making a smoother transition from arithmetic to algebra (see Appendix VI). 

The approach which was adopted and evolved during the study has the poten-

tial to substantially bridge the gap between arithmetic and algebra. The spe-

cific features of the approach which facilitate this connection are: 

(i) building on students’ understanding of arithmetic operations and 

intuitions 
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(ii) moving away from computation and emphasizing structure of the 

expressions 

(iii) fostering an understanding of expressions in terms of information it 

contains, relationship embedded in it and the value it stands for 

(iv) identifying concepts of terms and equality, which are structural and 

can help in consistently understanding rules of transformation of 

expressions 

(v) reformulating the procedures of evaluating arithmetic expressions 

in structural terms and using the same rules, terminology, notations 

and conventions in transforming expressions in arithmetic and al-

gebra 

(vi) deepening the understanding of structure of expressions by focus-

ing on invariance of value of expressions, thereby elaborating the 

understanding of equality and equivalence of expressions 

(vii) choosing tasks so that procedures get connected with structure 

sense 

(viii) explicit attention to the number as a referent for the letter 

(ix) emphasizing the process-product duality or flexible ‘proceptual’ 

understanding through tasks 

(x) developing the ability to communicate and reason with symbols  

 

These are important aspects of the arithmetic-algebra transition and have been 

points of concern in many of the exploratory studies elaborated in the review-

of-literature chapter of this thesis.  
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The approach succeeded in many ways in dealing with the syntactic and the 

semantic aspects of arithmetic and algebraic expressions. It highlighted the 

importance of linking procedures with structure in the attempt to connect 

arithmetic and algebra. Meaning for algebra and algebraic symbols was cre-

ated through syntactic based reasoning and transformations of expressions 

(reasoning about expressions) and also through an exposure to tasks demon-

strating the purpose of algebra (reasoning with expressions). Working on these 

two kinds of tasks probably leads to different kinds of understanding among 

students, both of which are valuable and are complementary and it is not pos-

sible to prioritize one over the other. Thus tasks for algebra have to be care-

fully chosen so that both kinds of understanding develop among students.  

Although students’ understanding of rules of transformations and operation 

sense was visible in the context of syntactic transformations and reasoning 

about expressions, it was not fully used while reasoning with expressions. 

Students could display algebraic thinking by the end of the last trial and con-

vincingly explain their solutions but the transfer to the symbolic mode was not 

easy, even when they could understand the process of the representation and 

manipulation to draw conclusions. The unsatisfactory development of the 

teaching approach with regard to this aspect of algebra, largely guided by the 

assumption that knowledge of algebraic symbols and manipulation would di-

rectly lead to their use in contexts, was probably responsible for many of the 

effects seen in students’ responses, besides their own beliefs about the utility 

of algebra in these situations. Symbolic proofs/ justifications need to be pre-

ceded by developing understanding of the need for algebra and engaging stu-

dents in verbalizing the process of solution, a point which was realized only in 

the last trial. It is hypothesized that reasoning about expressions may help in 

reasoning with expressions by enabling the students to think in terms of ex-

pressions.  
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At the middle school level, when mathematics begins to become more formal 

and starts to consolidate the learning that has happened in the primary school 

years, symbols play an important role in communicating this understanding 

and leading to further learning. They have to be skillfully developed, together 

with an associated vocabulary which would allow students to express them-

selves. Thus, there is a need to make ‘reasoning’ an important feature of the 

classroom, engaging students in articulating their expectations/ anticipations, 

strengthening the developing symbol sense and operation sense in the process. 

This study was only an example of achieving the above. 

The study took a single perspective of algebra, as generalized arithmetic. In 

the process, other approaches to algebra were not explored sufficiently. Fur-

ther, the study, through a detailed analysis of students’ responses and the 

teaching intervention, tried to explore and show the potential of the approach 

in making the teaching and learning of the two domains - arithmetic and alge-

bra, more coherent and connected. It was not designed to experimentally es-

tablish the efficacy of this approach with respect to the traditional or any other 

approach. However, one of the limitations of the study was that the data from 

later refined teaching trials was confounded by more teaching, thus making it 

sometimes difficult to ascertain the improvement in students’ performance due 

to better teaching. The analysis of the data also became difficult when some 

questions in the tests were frequently changed, resulting in the loss of com-

parison between two tests on certain items. Interviews at more frequent inter-

vals could have helped in clarifying the nature of learning and understanding 

students achieved after each teaching trial. These are some points which need 

to be kept in mind while extending this study. Another direction in which the 

study can be extended is to include problem solving by framing and solving 

equations within the scope of the approach and also include rational numbers 

in the arithmetic expressions and as referents for the letter. Another challenge 

is to evolve the approach to incorporate non-linear algebraic expressions, mul-
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tiple variables in expressions and operations on linear and non-linear expres-

sions. 
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Appendix – I: List of tasks used in the study 
 

Domain of tasks Nature of tasks Example of tasks 

Understanding what an expres-
sion is 

Writing expressions for num-
bers and verbal sentences and 
vice versa 

Identifying terms of an expres-
sion 

e.g. Writing an expression 
for ‘a number which is two 
more than five’, ‘three less 
than  any number’ 

Verbally describe 18-6, x-5 

Identify terms of 13-8+17, 
3×6-9+5×4×2, 4-2×x+6
  

Evaluating and simplifying 
expressions 

e.g. Evaluate expressions 
like 7+2×6, 43-8+12 

Simplify expressions like 
2×x-6+5×x+9 

Tasks based on the ‘=’ sign, 
with and without computation, 
requiring explanation of the 
answer.  

e.g. 13+8     21-1 (Put <, =, 
> in the box) 

15-8 = ___ +3 

345+487 = 346+488__ 

234-148 = 235__ 

Reasoning about 
expressions 

Comparing expressions with-
out calculation and explaining 
the responses  

Judging equality of expres-
sions: arithmetic and algebraic, 
only simple terms or simple 
and product terms 

Generating equal expressions 
for a given expression using 
any transformation 

e.g. Compare expressions 
like the following 

24+53     25+52,  

65-36     63 – 37 

Identify expressions equal 
to 23+17×15+12 from the 
ones given below: 

1) 17+23×15+12 

2) 23+17×12+15 

3) 15×17+23+12  

4) 23+3×(17×5+4) 

Reasoning with 
expressions 

Letter number line 

Representing relations between 
numbers and quantities using a 

e.g. Letter-number line 
journeys, distance between 
two points on the letter-
number line 
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letter 

Calendar patterns  

Think of a number game 

Pattern generalization from 
shapes  

Identifying patterns in the 
arrangement of numbers in 
calendar, representing the 
using the letter and proving 
them 

Justifying the pattern in the 
answers of the students 
with respect to the starting 
number  

Finding the generalized 
rule for describing the pat-
tern, showing if two differ-
ent rules for the same pat-
tern are equivalent 
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Appendix – IIA: Pre test (MST-I)
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Appendix – IIB: Post test (MST-I) 
 



 

 426 



 

 427 



 

 428 



 

 429 



 

 430 

 



 

 431 

Appendix – IIIA: Pre test (MST-II) 
(1st November to 20th November, 2004) 
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Appendix – IIIB: Post test (MST-II) 
(1st November to 20th November, 2004) 
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Appendix – IVA: Pre test (MST-III) 
Homi Bhabha Centre for Science Education 

TIFR, Mumbai (12.04.05) 

Name: ____________________________  School: ______________ 
 
Q1. Write the terms for each of the following expressions.  

1) 13 + 18 – 21    2) 14 – 3 × 7 + 5 × 8 × 9 

3) 3 – 5 × k + 4 + 9 × k 

Q2. Evaluate. 

1) 13 + 4 × 6    2) 26 – 13 – 7 

3) 32 – 18 + 8    4) 6 × (4 + 9) 

5) 16 – (5 + 2 × 7)    6) 27 – 3 × (4 + 2) 

7) 34 – (17 – 5 + 9) 
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Q3. Write the sentences corresponding to the expressions. 

1) A number which is 5 more than 9 _____________________________ 

2) A number which is 3 less than a number p _______________________ 

3) A number which is 8 less than 15 _____________________________ 

4) A number which is 6 more than w______________________________ 

Q4. Fill in the blanks. 

1) 24 + 7 = ____ + 2   2) 31 – 5 = 16 + _____ 

3) ____ + 9 = 6 × 8   4) 3 × ____ = 24 – 6 

Q5. The following are the responses of three students in evaluating the expres-
sion 14 + 5 × 7 – 3. Mark (√ ) against the option which you think is cor-
rect, otherwise mark (×). 

1) 14 + 5 × 7 – 3 =19 × 7 – 3 = 133 – 3 = 130 

2) 14 + 35 – 3 = 49 – 3 = 46 

3) 19 × 7 – 3 = 19 × 4 = 76 

Q6. Evaluate. 

1) 19 – 8 =      2) –15 – 7 =  

3) 24 – 17 =      4) +18 – 6 = 

5) –18 + 6 =     6) 15 – 28 = 

Q7. Find, without calculation, which of the following expressions are 
equal to the expression 32 + 24 × 9 + 21? Mark (√ ) against the options 
which are equal to the above expression, and mark (×) if it is not equal. 
There may be more than one correct7answer.  

1) 21 + 32 + 24 × 9   2) 24 + 32 × 9 + 21 

3) 32 + 24 + 21 × 9   4) 9 × 24 + 32 + 21 

Q8. Find, without calculation, which of the following expressions are equal to 
the expression 9 × x + 12 – 6 × x – 17? Mark (√ ) against the options which 
are equal to the above expression, and mark (×) if it is not equal. There 
may be more than one correct answer.   

1) –17 + 9 × x + 12 – 6 × x   2) 21 × x – 6 × x – 17 

3) x × 9 – 6 × x + 12 –17   4) 9 × 12 + x – 6 × x – 17 
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Q9. Find, without calculation, which of the following expressions are equal to 
the expression 23 – 4 × 6 – 9? Mark (√ ) against the options which are 
equal to the above expression, and mark (×) if it is not equal. There may be 
more than one correct answer.  

1) 23 – (4 × 6 + 9)    2) 23 – 4 × 6 – 8 + 1 

3) 23 – (7 – 3) × 6 – 9    4) 22 – 4 × 6 – 8 

Q10. Find, without calculation, which of the following expressions are equal 
to the expression 87 – 38 + 26? Mark (√ ) against the options which are 
equal to the above expression, and mark (×) if it is not equal. There may be 
more than one correct answer. 

1) 87 – (38 + 26)    2) 26 + 87 – 38 

3) 87 – 30 – 8 + 26   4) 87 + 13 – 38 + 26 – 13 

Q11. Mark (√) against the options which is equal to the given expressions and 
mark (×) if not. 

1) 24 – (6 + 7)      2) 16 × (9 + 8)   

a) 24 – 6 + 7    a) 16 × 9 + 16 × 8 

b) 24 – 6 – 7     b) 16 × 9 + 8 

3) (13 + 6) – 11     4) 19 – (13 – 5)  

a) 13 + 6 – 11    a) 19 – 13 – 5    

b) 13 – 6 – 11    b) 19 – 13 + 5 

5) 16 + (12 – 4)      6) 3 × (9 – 4)  

a) 16 – 12 + 4    a) 3 × 9 – 4  

b) 16 + 12 – 4     b) 3 × 9 – 3 × 4 

 
Q12. Find easy ways to solve the following expressions.  

1) 23 – 49 + 7 + 19   2) 38 – 17 – 12 + 17 – 6  
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3) 4 × 12 + 12 × 9 – 12 × 5  4) 5 × 11 – 6 × 13 + 8 × 11 

Q13. Complete the following number lines.  
 
 

 

 

 

 
 
 
 
 
Q14. Write an expression for the following number line journey and simplify 
the expression. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

27 

-32 

k 

c c+1 c+2 c+3 c–1 c–2 c–3 
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Q15. Find the value of the expressions for m = 4. 

1) m – 6      2) 6 + 2 × m 

Q16. If a – 65 = 34, then a – 66 = ? Give reasons for your answer. 

Q17. Shivani is 5 years older than Lalitha. If Lalitha’s age is x years, how old 
is Shivani? 

Q18. Simplify. 
1) 2 × n + 17 + 6 × n – 9   2) 14 × b – 5 – 6 × b + 13 
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Appendix – IVB: Post test (MST-III) 
Homi Bhabha Centre for Science Education 

TIFR, Mumbai (29.04.05) 

Name: _____________________________  School: _____________ 
 
Q1. Think of a number. Subtract 1 from it. Multiply the result by 2. Add 5 to 

it. Subtract the original number from the result. Add 4. Subtract the origi-
nal number once again. What do you get? Show that everyone would get 
the same answer. 

Q2. The following triangle pattern is to be made with matchsticks. Look at the 
pattern carefully and answer the questions below. Show how you found the 
answer. 

 
 
 
 
 

1) How many matchsticks will be required to make the 4th figure? ______ 

2) How many will be required to make the 5th figure? ______________ 

3) How many matchsticks will be required to make the 17th figure? _____ 

4) How many matchsticks will be required to make the 59th figure? _____ 

5) How many matchsticks will be required to make the figure at the mth 
position? ________________________________________________ 
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Q3. Take any three consecutive numbers. Show that                                                
1st number + 3rd number = 2 × (2nd number) 

Q4. Write the terms for each of the following expressions.  

1) 18 + 27 – 14    2) 15 – 5 × 9 + 3 × 6 × 4 

3) 5 – 7 × k + 2 + 11 × k 

Q5. Evaluate. 

1) 21 + 4 × 6    2) 34 – 19 – 5 

3) 27 – 8 + 3    4) 8 × (4 + 9) 
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5) 25 – (4 + 3 × 5)    6) 34 – 6 × (9 – 5) 

7) 28 – (13 – 7 + 5)   8) 19 – 2 × (3 + 6 × 7) 

Q6. Fill in the blanks. 

1) 31 + 4 = ____ + 3   2) 24 – 7 = 14 + _____ 

3) ____ + 9 = 7 × 5   4) 8 × ____ = 48 – 16 

Q7. The following are the responses of three students in evaluating the expres-
sion                  16 + 4 × 8 – 5. Mark (√ ) against the option which you 
think is correct, otherwise mark (×). 

4) 16 + 4 × 8 – 5 = 20 × 8 – 5 = 160 – 5 = 155 

5) 16 + 32 – 5 = 48 – 5 = 43 

6) 20 × 8 – 5 = 20 × 3 = 60 

Q8. Evaluate. 

1) 15 – 3 =      2) –19 – 12 =  

3) 19 – 12 =      4) +21 – 16 = 

5) –17 + 9 =     6) 12 – 23 = 

Q9. Find, without calculation, which of the following expressions are 
equal to the expression 32 + 24 × 9 + 21? Mark (√ ) against the options 
which are equal to the above expression, and mark (×) if it is not equal. 
There may be more than one correct7answer.  

1) 21 + 32 + 24 × 9   2) 24 + 32 × 9 + 21 

3) 32 + 24 + 21 × 9   4) 9 × 24 + 32 + 21 
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Q10. Find, without calculation, which of the following expressions are equal 
to the expression 9 × x + 12 – 6 × x – 17? Mark (√ ) against the options 
which are equal to the above expression, and mark (×) if it is not equal. 
There may be more than one correct answer.   

1) –17 + 9 × x + 12 – 6 × x   2) 21 × x – 6 × x – 17 

3) x × 9 – 6 × x + 12 –17   4) 9 × 12 + x – 6 × x – 17 

Q11. Find, without calculation, which of the following expressions are equal 
to the expression 23 – 4 × 6 – 9? Mark (√ ) against the options which are 
equal to the above expression, and mark (×) if it is not equal. There may be 
more than one correct answer.  

1) 23 – (4 × 6 + 9)    2) 23 – 4 × 6 – 8 + 1 

3) 23 – (7 – 3) × 6 – 9    4) 22 – 4 × 6 – 8 

Q12. Find, without calculation, which of the following expressions are equal 
to the expression 87 – 38 + 26? Mark (√ ) against the options which are 
equal to the above expression, and mark (×) if it is not equal. There may be 
more than one correct answer. 

1) 87 – (38 + 26)    2) 26 + 87 – 38 

3) 87 – 30 – 8 + 26   4) 87 + 13 – 38 + 26 – 13 

Q13. Mark (√) against the options which is equal to the given expressions and 
mark (×) if not. 

1) 25 – (5 + 9)      2) 12 × (6 + 13)   

a) 25 – 5 + 9    a) 12 × 6 + 12 × 13 

b) 25 – 5 – 9     b) 12 × 6 + 13 

3) (15 + 8) – 11     4) 29 – (17 – 8)  

a) 15 + 8 – 11    a) 29 – 17 – 8    

b) 15 – 8 – 11    b) 29 – 17 + 8 

5) 21 + (18 – 12)      6) 8 × (14 – 5)  

a) 21 – 18 + 12    a) 8 × 14 – 5  

b) 21 + 18 – 12     b) 8 × 14 – 8 × 5 

Q14. Find the value of the expressions for n = 7. 
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1) n – 14     2) 5 + 8 × n 

Q15. If u – 53 = 26, then u – 54 = ? Give reasons for your answer. 

Q16. Meena is 7 years younger than Preeti. If Preeti’s age is x years, how old 
is Meena? 

Q17. Vikram has t marbles. Shyam has 5 marbles more than Vikram and Yo-
gesh has two times as many marbles as Shyam. How many marbles does 
each of them have? 

 
 
 
 
 
 
Q18. Simplify. 

      1) 16 × y – 7 + 3 × y + 13   2) –2 × x + 5 + 7 × x – 12 

   3) 6 + 13 × m – 2 – m     4) n – 9 + 8 × n + 16 



 

 451 

Q19. Find easy ways to solve the following expressions.  

1) 48 – 56 + 17 + 9   2) 69 – 26 – 11 + 26 – 8  

3) 3 × 16 + 16 × 12 – 16 × 7  4) 7 × 18 – 6 × 11 + 4 × 18 
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Appendix – VA: Interview Schedule and test 
(MST-II) 

Name: ___________________________________ School: ______________ 
 
 
A) Solve/ Evaluate: 

1) 15 + 6 × 5     2) 25 – 10 + 5 

3) 25 – (10 + 5)     4) 6×(3+2) 

 
B) Which of the following expressions are equal to the expression 18 – 13 + 
15 × 4? 

a) 18 – 15 + 13 × 4 

b) 4 × 15 + 18 – 13 

c) 18 – (13 – 15 × 4) 

 

C) Which of the following expressions are equal to the expression 25 – (10 + 
5)? 

a) 25-10+5  

b)  25-10-5 

 
D) Which of the following expressions are equal to the expression 49 – 37 + 
23? 

a) 49 – 5 – 37 + 23 + 5 

b) 37 – 49 + 23  

c) 23 + 49 – 37  
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Interview Schedule 
 
Task 1: 15 + 6 × 
5 

Correct answer 
15+30=45 

Why do you solve it like this? 

  One student did it like this: 
21×5=105. Do you think this is 
correct? 

 No Why? 
 Yes But you are getting different an-

swers? Is that possible? 
Which one do you think is correct? 

 Wrong answer 
21×5=105 

Someone did it like this: 
15+30=45. Do you think this is 
correct? 

 Yes  Why? 
 No That student said that you cannot 

combine a product term and a sim-
ple term. Is that so? 

 No The student said the product term 
has to be converted to a simple 
term and then combined. Is he/she 
correct? 

Task 2: 18 – 13 + 
15 × 4. Which of 
these 18 – 15 + 
13 × 4, 4 × 15 + 
18 – 13 and 18 – 
(13 – 5 × 4) are 
equal to the 
above? 

4 × 15 + 18 – 13 and 
18 – (13 – 5 × 4) 

Calculate and see. Are they equal? 

 Yes Drop it 
 No Why? 
 18 – 15 + 13 × 4 Are you sure? Do you want to cal-

culate and check? 
 Yes/ No Why? 
Task 3: 25 – 10 + 
5 

Correct answer 
15+5=20 

Why like this? 

  If someone does it like this 25-
15=10, is this correct? 

 No Why? 
 Yes?  Can you get two different answers 

for the same question? 
 Wrong answer 25-

15=10 
One student in an interview did it 
like this: 15+5=20. Do you think 
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this is correct?  
 Yes Why? 
 No That student said you should al-

ways move from left to right when 
the expression has only + and – 
sign. Is this correct? 

Task 4: 25 – (10 
+ 5) 

Correct answer 25-
15=10/ 25-10-5=15-
5=10 

Why this way? 

  Is 25-10+5=15+5=20 correct solu-
tion of the above problem? 

 No Why? 
 Yes    You are getting two answers for 

the same question. How is that? 
Which, according to you, is more 
correct? Why?  

 
 
 

Wrong answer 25-
10+5=15+5=20 

One person did it like this: 25-10-
5=15=5=10. Another person did it 
like this: 25-15=10. Are they cor-
rect? (only one will be given to the 
student) 

 Yes Why? 
 No The first person said you should 

always change the signs of the 
terms inside the bracket. The sec-
ond one said you should always do 
bracket first. Are they correct? 

Task 5: 25 – (10 
+ 5). Which of 
the following are 
equal to the above 
25-10+5 or 25-
10-5 

25-10+5 Calculate these and see? Are they 
equal? 

 No Why? 
 Yes Drop it 
 25-10-5 Are you sure? Do you want to 

check by calculations? 
 Yes/No Why? 
Task 6: 6×(3+2) Correct answer 

6×5=30/ 
6×3+6×2=18+12=30

Why like this?  

  Someone did it like this: 
6×3+2=18+2=20. Is this correct? 

 No Why? 
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  Is this equal to 6×3+6×2? If yes, 
then why? 

 Yes  You are getting two answers for 
the same question. How is that? 
Which, according to you is more 
correct? Why? 

 Wrong answer 
6×3+2=18+2=20 

A student solved the problem like 
this: 6×3+6×2=18+12=30. An-
other one did it like this: 6×5=30? 
Are they correct? (only one will be 
given depending on the student’s 
answer) 

 Yes  Why? 
 No  The first student said that you have 

to use distributive property and 
multiply both the terms inside the 
bracket with the number outside 
and the second student said that 
you do brackets first. Are they cor-
rect? 

Task 7: 49-
37+23. Which of 
the following is 
equal to this: 49-
5-37+23+5, 37-
49+23 or 23+49-
37? 

49-5-37+23+5 and 
23+49-37 
 

Do you want to calculate and 
check?  
 

 No Why? 
 Yes Drop it 
 37-49+23 Are you sure? Do you want to cal-

culate and check? 
 Yes/No  Why? 
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Appendix – VB: Interview Schedule and test 
(MST-III) 

Arithemtic test 
 
Name: _____________________________________   Date: _________ 
 
 
Q1. Evaluate. 

A) 5 + 3 × 6     B) 22 – 7 + 9 

C) 22 – (7 + 9)     D) 5 × (3 + 8) 

Q2. Which of the following expressions is equal to the expression 24 – 13 + 
18 × 6? Answer without calculation. 

1) 24 – 18 + 13 × 6 

2) 24 + 18 – 13 × 6 

3) 6 × 18 – 13 + 24 

4) 24 – (13 – 18 × 6) 

Q3. Which of the following expressions is equal to the expression 48 – 23 + 
59? Answer without calculation. 

1) 48 – 23 – 2 + 59 + 2 

2) 48 – 59 + 23  

3) 48 – (23 + 59) 

Q4. Which of the following is equal to the expression 22 – (7 + 9)? Answer 
without calculation. 

1) 22 – 7 + 9 

2) 22 – 7 – 9 
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Algebra test 
 
Name: __________________________________  Date: __________ 
 

Q1. Simplify. 

1) 5 × a + 6 – 2 × a + 9   2) b + 9 + 6 × b – 5  

Q2. Identify which of the following expressions are equal to the expression  
13 × m – 7 – 8 × m + 4? 

1) 13 × m – 7 – 8 × 4 + m 

2) -7 + 4 +13 × m – m × 8 

3) m × (13 – 8) – 7 + 4 

4) 13 × m – (7 – 8 × m) + 4 

Q3. Think of a number. Add 2 to it. Subtract 5 from it. Subtract the original 
number from it. Add 4. Write an expression that you get by following this in-
struction. 

Q4. Look at the pattern carefully and answer the following questions.  

 

 

1) How many dots will be there in the 5th figure? ___________________ 

2) How many dots will be there in the 11th figure? __________________ 

3) How many dots will be there in the 58th figure? __________________ 

4) How many dots in the kth figure? _____________________________ 
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Interview Schedule: Arithmetic 

Task 1: Can you 
solve the expres-
sion 5+3×6? 

If yes and solves by the 
terms method correctly, ie, 
5+18=23 

Why like this? Any other 
reason for doing it like 
this? 6×3+5=18+5 

 If yes Give reason. 
 

 If no  Ask if 8×6 is a correct 
way of solving it? 

Are these two 
ways the same? 
Would these two 
ways, if done cor-
rectly, always give 
you the same an-
swer? 

If yes Why? Explain. 

 If no Why? Explain.  
 If solves incorrectly as 

8×6=48 
Explain what you have 
done. Give hint: one stu-
dent did it like this 
5+18=23, is this correct?  

 If yes Why? You have two an-
swers. Which is correct or 
both are correct? 

 If no Why? Wait for students’ 
answer. The student said 
that product term is done 
first. Is this correct? 

Task 2: Can you 
solve the expres-
sion 22-7+9? 

If yes and solves it cor-
rectly, ie, 24 

Do you know any other 
way of solving it? 

 If yes Show how you can solve 
it otherwise.  

 If no Ask if 22-16=6 or 
22+2=24 or 15+9=24 a 
correct way of solving it? 

Are these two 
ways the same? 
Would these two 
ways, if done cor-
rectly, always give 
you the same an-
swer? 

If yes Why? Explain. 

 If no Why? Explain.  
 If solves it incorrectly as 22- Explain what you have 
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16=6 done?  
Give hint: one student did 
it like this 15+9=24. Is 
this correct? 

 If yes Why? You have two an-
swers. Which is correct or 
both are correct? 

 If no Why? Wait. The student 
said that one is a negative 
term and one is positive. 
You have to combine 
terms. Is this correct? 

Task 3: Can you 
solve the expres-
sion 22-(7+9) 

If solves it correctly as 22-
16=6 or 22-7-9=15-9=6 

Why like this? Explain. 

Do you know any 
other way of solv-
ing the expression? 

If yes Show it. Explain. 

 If no Ask if 22-16=6 or 22-7-
9=15-9=6 a correct way 
of solving it? 

 If solves it incorrectly as 22-
7+9=15+9=24 

Why? Give hint 22-7-9=6 
or 22-16=6. Is this cor-
rect? 

 If yes Why? You have two an-
swers. Which is correct or 
both are correct? 

 If no You should change the 
signs of the terms inside 
the bracket or you should 
solve inside the bracket. 
Is this correct? 

Task 4: Can you 
solve the expres-
sion 5×(3+8) 

If solves it correctly as 5×11 
or 5×3+5×8 

Why like this? Explain. 

Do you know any 
other way of solv-
ing it? 

If yes Show it. Explain. 

 If no Ask if or 5×3+8 or 5×11 
or 5×3+5×8 a correct way 
of solving it? 

 If solves it incorrectly as 
5×3+8=15+8=23 

Why? Give hint 5×11 or 
5×3+5×8. Is this correct? 

 If yes Why? You have two an-
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swers. Which is correct or 
both are correct?   

 If no You should multiply both 
the terms by the common 
factor or solve the bracket 
first. Is this correct?  

Task 5: Which of 
the following are 
equal to 24-
13+18×6 

24-18+13×6 and 24-
13+18×6 

Why?  
Do you want to calculate 
and check? Will their an-
swers be same or not? 
Which would be more/ 
less? 

 24+18-13×6 and 24-
13+18×6 

Why?  
Do you want to calculate 
and check? 

 6×18-13+24 and 24-
13+18×6 

Why?  
Do you think their an-
swers will be equal? If 
6×18-13+24 has value 
115, then what is the 
value of 24-13+18×6 

 24-(13-18×6) and 24-
13+18×6 

Why?  
Do you want to calculate 
and check? 

Task 6: Which of 
the following are 
equal to 48-23+59 

48-23-2+59+2 and 48-
23+59 

Why?  
Are 48-23-2+59-2 and 
48-23+59 equal? Will 
their answers be equal? 
Which will be more/ less 

 48-59+23 and 48-23+59 Why? 
 48-(23+59) and 48-23+59 Why? 
Task 7: Which of 
the following  is 
equal to 22-(7+9) 

22-7+9 and 22-(7+9) Why? 

 22-7-9 and 22-(7+9) Why? 
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Interview Schedule: Algebra 

Task 1: Simplify 
5×a+6-2×a+9 

Correct answer 3×a+15 Why did you do like 
this? Explain 

What does the letter 
stand for? 

If says number If you substitute a=4 in 
3×a+15 and in 5×a+6-
2×a+9, if someone gets 
27 for the first expression 
and 33 for the later, then 
is he/she correct? Would 
you get the same answer? 
Is 3×a+15=18×a? Why  

 Incorrect answer 11×a-
2×a+9=9×a+9=18×a 

Why did you do like 
this?  

What does the letter 
stand for here? 

If says number If you put a=3, would 
you get the same answer 
for 5×3+6-2×3+9 and 
18×a 

 Solves arithmetic expression 
correctly and identifies the 
terms (may be also the com-
mon factor of the product 
terms) 

Is it similar to the alge-
braic expression given to 
you? Would you like to 
simplify the algebraic 
expression again? 

 Solves arithmetic expression 
incorrectly moving from left 
to right sequentially 

Give a hint that the ex-
pression contains a prod-
uct term or when two 
product terms can be 
combined? 

 If no response to the hint Drop it 
 If the student understands the 

hint 
Ask him/her to solve the 
arithmetic expression and 
then the algebraic ex-
pression 

Task 2: Simplify    
b+9+6×b-5 

Correct answer 7×b+4 Why did you do like 
this? Explain 

  If you substitute b=5 in 
7×b+4, you get 39. Then 
what is the value of 
b+8+6×b-5? Would you 
get the same answer? Is 
50 a correct value for the 
expression?  is 
7×b+4=11×b? 

 Wrong answer 9×b+6×b-
5=15×b-5=10×b 

Why did you do like 
this? 
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  If you put b=2 then 
would you get the same 
answer for 10×b and 
b+9+6×b-5?  

 Solves it correctly and identi-
fies the terms 

Is it similar to the alge-
braic expression given to 
you? Would you like to 
simplify the algebraic 
expression again? 

 Solves it incorrectly moving 
from left to right 

Give a hint that the ex-
pression contains a prod-
uct term. How would we 
solve such an expres-
sion? 

 If no response to the hint Drop it 
 If the student understands the 

hint 
Ask him/her to solve the 
arithmetic expression and 
then the algebraic ex-
pression 

Task 3: Identify 
which of the fol-
lowing expressions 
are equal to 13×m-
7-8×m+4  

13×m-7-8×m+4 and 13×m-
7-8×4+m.  

Are they equal? 
For m=2, 13×m-7-
8×m+4=7, then what is 
13×m-7-8×4+m? 

 If yes Why? Explain. Give an 
arithmetic expression 
13×2-7-8×2+4 and 13×2-
7-8×4+2 and ask if they 
are equal 

 If no Why? Explain 
  On substituting the same 

value for the letter, 
would you get the same 
answer for both the ex-
pressions? Can you put 
different values of ‘m’ in 
the same expression? 

 13×m-7-8×m+4 and                 
-7+4+13×m- m×8 

Are they equal? 

 If yes Why? Explain.  
  Would you get the same 

value on substitution by a 
number? 

 If no Why? Explain. Give two 
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arithmetic expressions 
13×2-7-8×2+4 and -
7+4+13×2-8×2 and ask if 
they are equal. 

 13×m-7-8×m+4 and m×(13-
8)-7+4                 

Are they equal? 

 If yes Why? Explain 
  Would you get the same 

value on substitution by a 
number? 

 If no Why? Explain. Give two 
arithmetic expressions 
13×2-7-8×2+4 and 
2×(13-8)-7+4 and ask if 
they are equal. 

 13×m-7-8×m+4 and 13×m-
(7-8×m)+4 

Are they equal? 

 If yes Why? Explain. Give two 
arithmetic expressions 
13×2-7-8×2+4 and 13×2-
(7-8×2)+4  and ask if 
they are equal. 

 If no Why? Explain 
Task 4: Think of a 
number. Add 2 to 
it. Subtract 5 from 
it. Subtract the 
original number 
from it. Add 4. 
Does the expression 
x+2-5-x+4 match 
the situation? 

If yes Why? 

  Does x-5+2+4-x match 
the situation? Would they 
give the same value in 
the end? 

 If yes How? Why? 
 If no How? Why? 
 If no to x+2-5-x+4 Write the expression 

which you think fits the 
situation 

Is there any advan-
tage of using the 
letter in the ‘think-
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of-a-number’ 
game? Or 6+2-5-
6+4 is enough. Ex-
plain. 
Frame a question 
for x×2-4+5-x-1. 
What does it mean 
to get ‘x’ as the an-
swer after simplify-
ing the expression 
x×2-4+5-x-1? 

  

Task 5: Give any 
pattern. Ask the 
student to find one 
rule for the pattern. 

  

Give another rule to 
the student and ask 
if they are the 
same? How do you 
know they are 
same? 

  

Task 6: a+b=b+a. 
What does ‘a’ and 
‘b’ stand for? Is it 
true? 
a-b=b-a? a+x-x=a? 
What do these sen-
tences mean? 
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Appendix – VI: Teaching Guideline 
The following teaching guideline is proposed on the basis of the study under-
taken as part of the thesis. 

Task 1: Verbalizing task in arithmetic expressions 
Looking at expressions as standing for a number and understanding the infor-
mation conveyed by the expression. In the process, verbalizing the meaning of 
expressions using relational terms. For example, 10+5 and 5×3 are both equal 
to the number 15. These two expressions therefore are equal to each other.  

Examples: 
a. Writing different expressions for a given number. For example, express 15 

in different ways (15 = 5×3, 10+5 etc.) 

b. Given an expression writing the meaning and vice-versa. For example, 5×3 
is “a number which is five times three”. “5 more than 10” is 10 + 5 

Task 2: Compare expressions with computation: 
Ask students to compare two expressions by using the signs <, =, > by com-
puting their values. This will familiarize them with the signs used for compar-
ing and allow them to look at relations between expressions.  

Ask students to fill in the blanks by a number so that the expressions have 
equal value. They will learn that two expressions are equal if their values are 
equal and will also understand that ‘=’ sign does not separate the question 
from the answer but is a relation of equality between two sides.   

Examples:  

a.   Compare the following expressions using signs <, =, >: 

12+18 __ 30-1  7+9 __ 9+7 

15-5 __ 2 ×5  24÷6 __ 20+4 

b. Fill in the blanks: 

19-6 =__ +4  4×__ = 28-4 

__ +8 = 5×7  28+9 = 40-__  

Remarks: 

One can see many misconception among students regarding ‘=’ sign and 
comparing them. Handle them by emphasizing the relational idea of expres-
sions.  

Task 3:  Introduce number line only with whole numbers  

Understand number line in terms of unit distance between any two consecutive 
points. All numbers can be represented on the number line with 0 as the origin. 
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Establish relations between numbers and numbers with respect to origin. Mov-
ing to the right is equivalent to adding (number of unit distance) and the num-
bers increase. Moving to the left is equivalent to subtracting and the numbers 
decrease. Emphasize this vocabulary of ‘moving right’, ‘moving left’ on the 
number line.   

Examples:  

a.   Draw number line starting from 0. 

b.  Compare numbers on the number line. Given two numbers, which is more/ 
less? Why? 

c.  Jumps on the number line: Explore relations between two points on the 
number line. For example, given the two points 3 and 8, from 3 you have 
to jump 5 places to the right to reach 8. Reinforce verbalizing like “8 is 5 
more than 3 and represent 3+5=8”. Do the other way round, 8-5=3. 

d.  Portions of the number line: Focus on parts of the number line, like a num-
ber line starting from 34, mark the three points to the left and to the right. 
  

Task 4: Introduce integers with the help of contexts 
Like above and below the sea level, temperatures above and below 00C, debit 
and credit. Use these contexts to emphasize the existence of numbers below/ 
less than zero.  

Then extend the number line to numbers to the left of 0. Reinforce the rela-
tions as in Task 3. 

Bring following points to students’ attention: Any positive number is greater 
than any negative number (as they are always to the right of the negative num-
bers), all negative numbers are smaller than 0, all positive numbers are greater 
than 0.   

Examples:  

Repeat tasks 3 a, b, c, d with the complete number line.  

Remarks: 

Revise often order relations between negative numbers and compare with 
positive numbers. Be cautious against over generalizations, like numbers to 
the left of any number are negative, e.g. numbers to the left of 27 are the num-
bers -26, -25 etc. or -28, -29 etc. 

Task 5: Guess the number game 
Introduce letters in the context of missing numbers with the four basic opera-
tion facts. The missing number can be replaced by a ‘letter’. Here ‘x’ stands 
for an unknown. 
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Introduce letters in the context of open number sentences, where letters can 
take more than one value. 

Use letters in the context of perimeter problems with one or more dimensions 
as not known  

Examples:  

a. Find the appropriate number which can fill the box so that the relation is 
true, e. g. 8+ =13. 

b. Replace the box by any letter and find the value of the letter. 

c. Find all possible values of x and y in x+y=15. 

d.   Find the perimeter of a triangle, rectangle with dimensions given. e.g. if 3 
and x are the lengths and breadth of a rectangle then the perimeter is 
3+x+3+x  

Remarks:  

As this is the first exposure to algebraic expressions, expressions can be left 
open without any simplification. 

Task 6: Verbalizing task with simple algebraic expressions, emphasizing the 
letter as any number 
Use the context of guess the number game to reinforce relational understand-
ing of simple algebraic expressions, emphasizing the letter as standing for a 
number.  

a. Repeat task 1 a, b. For example, x+4 is ‘a number which is four more than 
any number x’. Use substitution by any value for the letter to demonstrate 
this. 

b.  Find the number, if four more than the number is 15 (that is, x+4=15)  

Task 7: Introduce letter-number line 
Construct it by generalizing the number line already made. This will introduce 
them to simple unclosed expressions like x+1, x-1 etc. as well as reinforce 
their meaning like ‘one less than x’. 

Examples:  

a. Draw letter-number line. 

b. Compare the expressions on the letter-number line. 

c. Repeat task 3c. 

d. Replace the letter by any number and make the number line.  

Remarks: 
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Task 7d will use the ideas of the integer number-line and reinforce order rela-
tions among signed numbers. Students can use the letter-number line to verify 
the correctness of their solutions. 

Task 8: Introduction to terms of an expression 
Terms are components of an expression demarcated by + and – sign, the + and 
the – sign attached to the number following it. If no sign is attached to the first 
number of the expression, then it is considered to be a positive term. For ex-
ample, in 3+5×2-7, +3, +5×2 and -7. Put terms in boxes. Name the terms +3, -
7 as simple terms and +5×2 as a product term. Every term of an expression is 
either positive or negative, whether simple or product. +3 is a positive term 
and -7 is a negative term.   

Examples: 

Identify and write terms of an expression. e.g. 19-7+5, 13+6×4-12, 7+2×x+4 

Task 9: Combining terms 
In place of the traditional precedence rules of evaluating expressions, combin-
ing of terms will be used for evaluating expressions to give flexibility to the 
procedures. Replace the vocabulary from addition and subtraction to that of 
positive and negative terms.  

How do we combine terms?  

For example, in 12+5, there are two simple terms +12 and +5. Both are posi-
tive terms. Positive terms can be considered as white cards. Combining 12 
white cards and 5 more white cards will yield 17 white cards. Therefore 
+12+5=+17. 

In -12-5, there are two simple terms -12 and -5. Both are negative terms. 
Negative terms can be considered as black cards. Combining 12 black cards 
and 5 more black cards will yield 17 black cards. Therefore -12-5=-17. 

In 12-5, there are two simple terms, +12 and -5. One is a positive term and the 
other is negative term. To combine these, we can make pairs of opposite col-
oured cards which will cancel each other. In this example, we have 5 pairs of 
black and white cards whose result is 0, and are left with 7 white cards. So the 
solution for +12-5=+7. 

In -12+5, there are two simple terms, -12 and +5. One is a positive term and 
the other is negative term. To combine these, we make pairs of opposite col-
oured cards. We get 5 pairs of black and white cards which is 0 and are left 
with 7 black cards. So the solution for -12+5=-7. 

Since every term can be thought of as a set of black or white cards, it is possi-
ble to combine them in any order, that is, commutativity holds between any 
two such terms.   

Examples: 
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a. Evaluate by combining terms:  

15-9 -14+6  9-25  23-8  -17-9 

Take all combinations of numbers, begin with positive or negative term, 
bigger number first or smaller number first 

Remarks:  

Combining terms is nothing but integer addition. Subtraction has been implic-
itly converted to addition. Here the ‘card method’ of combining terms can be 
used. There are many other methods but this seems to be the most suitable in 
this approach.  

The exercise is simple but needs reinforcement for further complex tasks. 

Task 10: Evaluation of arithmetic expressions 
Expressions with only simple terms: 14-5+7. The expression contains three 
simple terms, +14, -5+7. To evaluate the expression, combine the terms +14, -
5 to get +9 and combine this with +7 to get +16. (card method can be used for 
the combining procedure) 

Expression containing simple and product terms: 3+6×5-8. This expression 
contains three terms +3, +6×5 and -8. Only simple terms can be combined. 
Hence the product term +6×5 needs to be converted to a simple term which is 
equal to +30. Now the expression contains three simple terms, +3, +30, -8. 
They can be combined as explained above.  

Examples: 

a.   Evaluate expressions:  

16-5+8  19+2×3-9  17-3×4-6  15+9-4    
21-7+9  -8+5+3×6   -17+8-11  

Remarks: 

For the time being the expressions have been evaluated from left to right. But 
this need not be emphasized as combining terms in any order would lead to the 
same answer. This they will verify shortly. Some students may be quick to 
make this observation by themselves. This is not to be discouraged.  

Task 11: Simplifying simple algebraic expressions  

Explain the similarity between 3×x and 3×2. Explain that 3×x is same as add-
ing x repeatedly three times. It is 3 times x. 

Using this understanding, simple algebraic expressions with same letter factor 
can be combined. For example, 3×x+2×x = x + x + x + x + x = 5×x. 

For subtraction, the take away model can be used. E.g. 5×x-3×x can be under-
stood as taking away 3 x’s from 5 x’s and can be written as x+x+x+x+x = 
x+x=2×x.  
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Examples: 

a. Expand product terms as sum of ‘singletons’. 

3×7, 4×a, 6×b, n×4 

b. Write the following expressions as product terms. 

4+4+4+4+4 

y+y+y 

m+m+m+m+m+m 

g+g+g+p+p 

c. Simplify:  

5×3+6×3, 5×2+3×4, 4×t+3×t, 6×v-4×v, 5×s-4×r 

Remarks: 

In some of these exercises students would be tempted to write a closed answer 
like for g+g+g+p+p as 5×gp. These kinds of errors can be handled by a careful 
use of language with the understanding that letter stands for any number and 
reinforcing the meaning of the expressions.  

Task 12: Identifying equal expressions (without computation) 
Given a list of expressions, students can guess (just by looking at the expres-
sion) and then verify by computation that expressions with the same terms 
have the same value. Some students think that if the numbers in an expression 
are the same their solution will be equal. They do not realize the importance of 
the sign attached to the number. This task emphasizes the utility of the concept 
of terms in parsing the expression and gives them an understanding that terms 
can be combined in any order.  

a. Which of the following expressions are equal to the given expression?  

(1) 27-16+48 

27+48-16  16-27+48 

48-16+27   27-48+16 

(2) 49+4×12+18 

49+4×18+12  4+49×12+18 

12×4+49+18  18+12×4+49 

Remarks: 

Students will discover a very useful idea of invariant transformations in ex-
pressions (transformations which do not change the value of the expression). 
They will realize that in product terms, commutativity will be applicable only 
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within the product term. For example 49+4×12+18 is not equal to 
4+49×12+18. 

Task 13: Making equal expressions:  
Rearranging terms would give them practice of moving around the terms in 
the expression without changing the value of the expression.  

Examples: 

a.   Ask students to make equal expressions by rearranging terms. For exam-
ple, given the expression 19-7+28 make as many equal expressions as 
well. Similarly expressions with product terms should be used (e.g. 
34+15×9-65).  

Task 14: Easy ways of evaluation 
To apply the knowledge they have gained in the previous two tasks, ask stu-
dents to evaluate expressions using easy ways.  

For example, in -28+49+8+20-49, -28+8+20 would give an answer 0 and +49-
49 will also be zero, so the answer is 0.  

Examples: 

a.   Evaluate:  

29-7+11+7   48-56+17+9 

69-26-11+26-8  47-6-52+29-24+9 

Remarks:  

This task is possible because they now know that reordering terms does not 
change the value of the expression. Precedence rules are not to be empha-
sized. Longer expressions where some properties like cancellation or when 
combined would lead to multiples of 5, 10 are to be used. 

Task 15: Bracketed terms 

In expressions with brackets, like 23-(5+9), there are two terms, +23 and –
(5+9). The first term is a simple term. The second term will be called a brack-
eted term with a negative sign. Some students might call it a negative brack-
eted term. Similarly in expressions like 19+3×(5+4), there are two terms, +19 
and +3×(5+4). The first term is again a simple term but the second term is a 
bracketed product term.  

Solve expressions with bracketed terms. Ask students to evaluate expressions 
with brackets by solving the bracket first.  

Examples: 

a.   Write the terms for the following expressions. Then evaluate. 

13-(3+5)   18-(5+6) 
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 -23+(4+5)  17+(8+4)×3 

  

Task 16: Rules for opening bracket 
Rewriting an equal expression for 24-(5+4) by removing the bracket: 24-5+4, 
24-5-4. Students can verify by computation which of the expressions will be 
equal to the one with brackets. They can subsequently generalize that while 
removing bracket, sign of the terms inside the bracket will change when there 
is a negative bracketed term.  

Similarly demonstration examples have to be taken with a + sign to the left of 
the bracket and – sign to the right of the bracket. In both these cases they will 
reach the conclusion that sign of the terms inside the bracket will not change if 
there is a positive bracketed term.  

Students should focus on the equality relation and the sign attached to the 
bracketed term and the signs of the terms on removing the bracket.   

Examples: 

a.  Write equal expressions by removing the bracket. Identify the terms for the 
given and the obtained expression. 

45-(23+12), (42-12)-23, 34-(23-7), 45+(34+8), -(5+4)+4×3 

b.  Make equal expressions for the given expressions (encourage putting 
brackets and removing brackets for making equal expressions): 

23-(4+5)-9, 45-23-13  

Remarks: 

The rule for opening bracket can also be introduced by using the concept of 
‘inverse’. A negative term is nothing but the additive inverse of the corre-
sponding positive term (combing such terms will give value 0). So the nega-
tive bracketed term is the inverse of the corresponding positive bracketed 
term. The inverse of the expression 5+4 is -5-4. The values of the two expres-
sions are also inverse of each other, that is -9 (=-5-4) is inverse of 9 (=5+4).  

Patterns of the following type are useful: 

If 5+4=9, then -5-4=?  

Or if 4+3-2=5, then _____= -5. 

Integer subtraction is taken care of by ‘inverse’ idea. 

Task 17: Distributive property of multiplication over addition and subtrac-
tion 
Similar to the above task, find expressions which will be equal to 3×(5+4): 
3×5+4 or 3×5+3×4. Students can verify by computation that the value of the 
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expression remains same in the second case. 3 is the common factor which is 
distributed over both the terms inside the bracket.  

Students can observe that in 3×5+3×4, 3 is the common factor in both the 
product terms of the expression and can be rewritten as 3×(5+4). This will also 
pave the way for combining product terms when they have a common factor.  

The common factor can be positive or negative, that is, the bracketed product 
term can be positive or negative, for example, -3×(7+5). Expansion of this 
would involve using both the rules of removing bracket (distribute three over 
each of the terms inside bracket and change the sign of all the terms inside).  

Examples: 

a.   Write equal expressions by removing the bracket. Identify the terms for the 
given and the obtained expression. 

4×(2+3), (12-5)×3, (2×3)+5, -3×(4+5), -2×(6-3) 

b.  Make equal expressions for the given expressions (encourage putting 
brackets and removing brackets for making equal expressions): 

9×(3+5)-13, 18-24+12, 7×13-8+7×15 

Remarks: 

Distributing common factor over the terms inside the bracket is same as taking 
‘multiple’ of each term inside the bracket. Hence 4×(2+3) is four times the ex-
pression 2+3. Adding four times 2 (4×2 or 8) and four times 3 (4×3 or 12) is 
same as four times 2+3 (4×(2+3)). The value of the expression 4×(2+3) is four 
times that of 2+3, that is 20 is four times 5. 

In case there is any doubt prefer to calculate and ascertain equality of values 
than reinforcing the rule. Also, one can capitalize on the meaning of the ex-
pressions. 

Patterns as discussed in the previous task is useful. 

If 2+3=5, then 4+6=? 

Or if 4+5-2=7, then 8+10-4=?, 

Or________=14 

Task 18: Comparing expressions without computation 

Compare two termed simple related expressions using the signs <, =, >. Stu-
dents will use various strategies to figure out which expression is bigger, 
smaller or equal and explain their reasoning for the answers. For example, in 
16+19 __ 17+18, the two expressions are equal. Students might say that ‘+17 
is 1 more than +16 and +18 is 1 less than +19’, where students have compared 
one of the expressions with the other by parsing the expressions as terms. 
They might also say that ‘+16 is 1 less than +17 and +18 is 1 less than +19’, in 
which case they compared terms across the expressions.  
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Examples: 

a. Compare the following expressions: 

29+15 __ 30+15   46-18 __ 46-19 

42+59 __ 43+58   39-12 __ 38+10 

63+57 __ 65+56   74-26 __ 75-29 

b.   Whenever expressions are unequal, make the above expressions equal.  

Remarks: 

Examples need to be carefully chosen involving all kinds of order relations 
between them. Choose numbers which are not easy to calculate. Students 
should not be forced to reason in a particular way. Let them come out with as 
many strategies as they can. One would see more errors in expressions with 
negative sign. Gradually, drive the class towards symbolic reasoning by con-
verting their verbal explanations to symbolic statements. Asking them to find 
out the magnitude of the difference between the two expressions might be 
helpful in the symbolization process. More complex expressions force students 
to use symbols to keep track of the changes in the terms.  

Task 19:  Find the value of the following expressions given the value of the 
related expression (without computation) 
If 326+598=924, find 324+598. 

This task is simple for students and they easily do it. This uses a similar rea-
soning as the earlier task.  

Examples: 

a.   If 431+127=558, find  

430+126    431+128 

431+126   431+129 

You can similarly make tasks with the negative operation.   

Remarks: 

This task can also be extended to algebraic expression as m+34=72, find 
m+35.  

In this task also students should be encouraged to provide verbal or symbolic 
reasoning for their solutions. 

Task 20: Fill in the blanks so that the expressions are equal (without com-
putation) 
This exercise is meant to reinforce the understanding of the relational meaning 
of ‘=’ symbol. Students will use their knowledge of comparing expressions 
developed in the previous tasks to fill in the blank by a term. Using the bal-
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ance metaphor is useful, that is, add to the side which is less or subtract to the 
side which is more. E.g. 35+29=35+27__. Here students have to think that 
35+27 is smaller than 35+29 by 2. So add 2 to 35+27 to make them equal.   

Examples: 

a.   Fill in the blanks. 

27+36 = 25 __   573-378 = 575 __ 

34-16 __ = 35-15   76-58 = 78-59__ 

Remarks: 

The observations made in task 21 hold true here also. The two different kinds 
of examples given use the same underlying notion of ‘=’ and can be handled 
similarly. Some misconception about the ‘=’ sign can be seen here too. Effort 
should be made to guide the students gradually to symbolic sentences from 
their verbal ones, justifying the solution. 

These symbolic or verbal justifications are creating the ground for reasoning 
with expressions in the context of algebra. 

Task 21: Combining product terms 
Rules for evaluating expressions had been stated in task 10. But once students 
learn distributive property, they can combine product terms if they have com-
mon factor. This can be also applied in the context of algebraic expressions 
with common letter factor. For example, 3×x+4×x = (3+4)×x.  

Use extracting common factors as an additional strategy and encourage stu-
dents to evaluate/ simplifying expressions using easy ways. Mix arithmetic 
and algebraic expressions in the task. 

Examples: 

a. Evaluate/ simplify: 

3×16+16×12-16×7  14×3+10×8+14×7 

5×5+8×3+3×5   12×9+16×5-17×9 

4×x+3×x    12+3×m+2×m 

2×a+4×a+2×b   24+4×d-12-2×d x+13-5×x+4  

Task 22: Evaluate by substitution 
Ask students to evaluate algebraic expressions by substituting the value of the 
letter. This will reinforce the connection between arithmetic and algebraic 
procedures.   

Examples: 

a.   For m=7, find the values of the following expressions. 

m-9, 3×m+9, 8×3-2×m, 7×m-3×10, 2×m+8-6×m  
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Task 23: Miscellaneous exercise 
Make equal expressions 

Examples: 

Generate as many equal expressions as possible using all the rules and proce-
dures you know. Use transformations so that they keep the value of the ex-
pression equal. 

35-16+48  24-12+8  5×3-4×5+10   

12×y+5-6×y+8  

Remarks:  

Here students are expected to explore and use all the valid transformations, 
like splitting a term as sum, difference, product or quotient, using brackets 
with a negative sign or by extracting a common factor, which will keep the 
value invariant. Discuss some responses in the class to see if they understand 
the generality of these transformations. They should explain their strategies for 
how and why the expressions are equal.  

Task 24: Reasoning with expressions 
In contrast to the above tasks where students reasoned about expressions, 
much of algebra learning is about reasoning with expressions. 

Ask students to represent small situations with algebraic expressions. For ex-
ample: A rod is x cm long and we join another which is 3 cm long, then how 
long is the new rod?  

Examples: 

a.  Write algebraic expressions to represent the following situations. 

Ram is 5 cm taller than Ravi. If Ravi is h cm, how tall is Ram?  

Remarks: 

These also would serve as a useful ground to prepare students to represent 
small situations mathematically. 

They will reinforce the relational ideas that were established in the beginning. 

Task 25: Challenging situations 

Take situations which are challenging as well as involve manipulation of the 
algebraic expressions to arrive at conclusions. Using algebra only for repre-
sentations is not very worthwhile. 

Distance on the letter-number line is one such situation.  

Examples: 

a.   Find the distance between x+3 and x+9, x+5 and x-3, x-5 and x-8 
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Remarks:  

Finding the distance between points on the letter-number-line is difficult not 
because the manipulation involved on the algebraic expression is difficult but 
the representation is difficult. It is difficult for students to appreciate the need 
for the representation when the distance can be easily calculated from the 
number line or by imagining the number line. 

Task 26: Think-of-a-number game 

Think of a number. Multiply it by 2. Add 3. Subtract the original number. Sub-
tract 2. Subtract the original number. What is the answer? Get the students to 
talk about the situation and listen to their arguments for why the whole class 
should get the same answer. Gradually help them to represent the situation 
symbolically. Last step is to manipulate the expression to show the desired 
result. 

Examples: 

a. Ask students to justify the answers they get in think-of-a-number game.  

b.   Ask students to make problems of the think-of-a-number game type, they 
can ask their peers in the class. Explain why everyone who follows the se-
quence should get the same answer. Discussions regarding think-of-a-number 
game are very essential before they represent it symbolically and manipulate it 
to justify their conclusion. They do not get a sense for why they should prove 
something and what should they prove. The idea of justification/ proof is not 
natural for students. 

Task 27: Pattern-generalizing 
Take geometric shapes and patterns which can be generalized.  

Examples:  

a.  Identify as many rules as possible to find the general rule of counting/ pre-
dicting dots/ matchsticks for the nth figure. 

b.  Show that all the rules are equivalent. 

Remarks: 

Discussions with the students regarding these patterns are essential. They will 
need help in writing the general rules using brackets appropriately. They will 
also have to explain verbally first why they think all the different rules should 
give the same result or are equivalent. There can be various arguments, using 
examples or showing the equivalence of expressions by manipulating them.  

Task 28: Calendar patterns 

Identify patterns in the calendar.  

Represent relations between the numbers in the calendar and represent them 
using letter.  
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Similarly, other patterns existing between numbers and operations should be 
explored. For example, in three consecutive numbers, 1st number+3rd num-
ber=2×2nd number  

Examples: 

a. Identify different patterns that exist between the numbers in the calendar. 
See how many of those are always true. Show/ justify.   

Remarks: 

The earlier tasks would prepare the students to handle this task which has 
many requirements -  using letters to write the generalized relationships be-
tween the numbers and then to identify patterns and to prove them.  
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Appendix – VII: Synopsis 

1.0 Introduction 

Algebra as a domain in mathematics occupies a special position as a major 

analytical tool leading to higher mathematics and many other branches of sci-

ence. It provides the symbols and techniques to represent and solve problems, 

and to reason, justify and prove within mathematics and other areas where 

mathematics serves as a tool. Many students fail to succeed in algebra and are 

therefore unable to enroll in advanced mathematics which is a gateway to 

many prestigious professions as well as academic careers. Thus, it is important 

to understand the conceptual changes which the students experience while 

moving to the middle school, especially due to the introduction of algebra, and 

identify ways to address the problems which arise in the course of its introduc-

tion.  

In contrast to arithmetic, algebra poses a challenge to most students due to the 

new symbols it proposes and new ways of acting on those symbols. The nota-

tions and the conventions are both problematic and are not easily learnt by 

students. Further, it takes the students away from operations on numbers to 

computing with abstract symbols. It is no longer possible to process the sym-

bols in an expression as a strict sequence of binary operations, ending in a 

numerical answer (Booth, 1988). The symbols need to be reinterpreted in new 

ways before they can be worked upon. The presence of the letter symbol com-

plicates the situation as students do not understand the meaning of the letter as 

a number and either ignore it or consider it to have some fixed and arbitrary 

value or construe its meanings based on common appearances of the letter in 

many situations outside the domain of mathematics (Kuchemann, 1981; Mac-

Gregor and Stacey, 1997). 
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There are also differences in approaching problems in arithmetic and algebra. 

While in the arithmetic approach students can work from the known condi-

tions and find intermediate numerical solutions to arrive at the solution to the 

problem, it is essential in the algebraic approach to use expressions to repre-

sent the problem situation using a letter for the unknown (Bednarz and Jan-

vier, 1996; Stacey and MacGregor, 1999). Thus, in the context of arithmetic, 

students do not appreciate the purpose of recording operation sequences or 

representing problem situations as well as do not abstract the properties and 

rules of transformation which can be consistently applied while manipulating 

expressions (Booth, 1988). They only implement procedures for finding the 

numerical solution to a problem (posed using symbols or embedded in word 

problems) which may depend on the context or the numbers involved, and 

thus do not engage in general solution methods applicable over a range of 

problems (Ursini et al., 2001). The methods of teaching and learning generally 

used force the students to rigidly follow algorithms without any space for re-

flecting on them and for exploring properties and relations between numbers 

and operations. This is unhelpful to students in understanding the equivalence 

of different procedures, or their generalizability, making it difficult to shift to 

algebra. Students’ poor skills in representing problem situations and weak un-

derstanding of transformation of expressions do not allow the students to 

move to the step of deducing or inferring about the situation, which is the crux 

of algebra (Booth, 1989). 

In India, teaching of algebra generally follows arithmetic in the curriculum, 

which also would be the case with many other countries. Research over the 

last few decades has shown the complexities involved in the transition from 

arithmetic to algebra as described above and the interference in the learning of 

algebra from arithmetic. Some studies have cautioned against emphasizing the 

arithmetic-algebra connection as it leads to many misconceptions and is 

fraught with pedagogical hurdles (e.g. Lee and Wheeler, 1989). Others, in con-
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trast, have pointed out the promises offered by focusing on the connection 

(e.g. Linchevski and Livneh, 1999; Carpenter et al., 2003). Although many 

research studies have explored the arithmetic-algebra connection and have 

identified the cause of many of the troubles in the teaching and learning of al-

gebra, as will be briefly discussed below, there does not appear to exist a well 

elaborated model of teaching and learning symbolic algebra in the beginning 

grades which can help students build the connection between the two domains 

and handle the problems identified in the literature. This study aimed to de-

velop a teaching approach which could bridge the gap between arithmetic and 

algebra and create meaning for symbols through two broad sets of activities: 

working with syntactic transformations and working with contexts that lend 

purpose to algebra. In the process, the study engaged in analyzing students’ 

responses to the various tasks, and identifying the nature of the support that is 

required to make the transition. This fed back into the development of the 

teaching module, thereby evolving and clarifying the approach that facilitates 

students in making the transition.  

1.1 The arithmetic algebra connection 

Students’ earlier experience in primary school arithmetic is largely one of 

computing single binary operations and the first exposure to multiple opera-

tions is in the context of evaluating arithmetic expressions which encode a se-

quence of binary operations. This requires following conventions in the form 

of order of operations so that a unique value is arrived at for each expression, 

even in the absence of brackets. Such tasks form the first connection between 

arithmetic and algebra where algebra encodes general rules and properties of 

operating on these arithmetic expressions, like the commutative, associative 

and distributive properties, which govern the nature of transformations that are 

possible on the expressions. Algebra provides the letter symbols to mathe-

matically represent these properties in general terms and it is these properties 

which determine the rules of transformations for algebraic expressions, and 
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which keep them equivalent. The conventions for operating on the expressions 

are so designed that they encode the structure of the expressions. Very often 

students fail to see this connection between arithmetic and algebra and thus are 

unable to make the required transition to algebra. 

1.2 Hurdles in the transition to algebra 

Students are habituated through arithmetic to obtain a ‘closed’ answer or a 

single number as the result, which leads them to misunderstand notations like 

3+x and 3x as being equivalent. Expressions such as 3+x have multiple mean-

ings in algebra (Wagner and Parker, 1999) and it is necessary to treat them as 

both processes and products/ objects or as flexible ‘procepts’ (e.g. Sfard, 1991; 

Tall et al., 2000). For example, 3+x can both be understood as a process of 

adding any number to 3 or the result of this process, namely, the sum of three 

and any number or three more than any number. Also, the ‘+’ and the ‘–’ signs 

can be thought of as operations of adding on or taking away (the most com-

mon meaning developed in arithmetic), as signs attached to a number used for 

representing change (increase or decrease) or as encoding a relation of more or 

less. Similarly, the ‘=’ sign is to be treated as a sign denoting equality or 

equivalence rather than as an instruction to compute, which is a meaning fa-

miliar from the arithmetic context. Whereas in arithmetic, an expression has a 

fixed meaning and denotation (value), in algebra it is important to separate the 

denotation of the expression from its meaning which describes the relation 

embedded in it; because the algebraic expression can be interpreted in various 

ways depending on the context. One must possess the ability to pay attention 

to these aspects flexibly, emphasizing one over the other depending on the 

context, which is a central point in developing algebraic awareness (Mason, 

1996; Arzarello et al., 2001). 

Many difficulties which students face while manipulating algebraic expres-

sions can be understood by focusing on their understanding of arithmetic ex-

pressions and computations in arithmetic. Researchers (e.g. Chaiklin and Les-
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gold, 1984; Kieran, 1989, 1992; Linchevski and Livneh, 1999) have pointed 

out that the roots of the problem lie in students’ lack of awareness of the struc-

ture of arithmetic expressions. This does not allow the students to understand 

the properties of operations which can be consistently used in arithmetic con-

texts and which can be subsequently generalized to deal with symbolic alge-

bra. Students often fail to judge the equality/ inequality of expressions like 

345-237+489 with 489+345-237 or 237-345+489 without computation 

(Chaiklin and Lesgold, 1984) and are inconsistent while evaluating arithmetic 

expressions. They sometime solve an expression 50-10+10+10 as 50-30 and at 

other time would solve the expression 27-5+3 correctly as 22+3 (Linchevski 

and Livneh, 1999). Further they do not see a way of computing the expression 

217+175-217+175+67 other than solving step-by-step from left to right and 

would even be tempted to cancel the ‘175’s (ibid). These are errors due to 

misperception of structure of the expression and over generalization of rules of 

order of operations and the same are transferred while working on symbolic 

algebra. The rules of transformation are for the first time formally defined in 

algebra but do not make sense to them due to lack of a referent for the letter 

and validation of the rules, making the students feel that the rules of symbol 

manipulation are arbitrary. Thus, the reason for arbitrariness or meaningless-

ness which the students experience during their exposure to algebra is not due 

to applying or emphasizing rules of transformation, but due to the lack of em-

phasis on structure of expressions, making appropriate links with properties of 

operations and explanations for the rules, like distributivity, associativity 

(Kirshner, 2001). This cannot be simply solved by practicing manipulation of 

algebraic expressions but through specialized activities focusing on articulat-

ing and justifying the usage of rules in the classroom (ibid).  

1.3 Approaches to teaching of algebra 

Researchers’ concern with students’ poor understanding of properties of op-

erations and structure of expressions and their resulting failure to deal with 
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algebraic symbolism and its meaning and purpose led to various reconceptu-

alizations of algebra. Many efforts have been made through research studies to 

convey to the students the essence of algebra and make sense of the symbols 

and operations on them. This includes introducing algebra through meaningful 

contexts like pattern generalization, using concrete materials, embedding alge-

bra in problem solving situations, using technology supported approaches like 

spreadsheets, LOGO, CAS. The various approaches to algebra emphasize dif-

ferent aspects of algebra and may have certain limitations. Some of these ap-

proaches focus on creating meaning for the symbols, especially the letter, and 

the purpose of algebra, leaving the syntactic transformations to be handled by 

software. However, it has been realized that some basic understanding of 

symbols and syntax is required to make sense of the rich problem solving con-

texts or even judge if technology assisted solutions are correct or to use tech-

nology profitably in solving problems (Kieran, 2004). Further, it has been ar-

gued that when students work with syntactic transformations, they create 

meaning for the symbols by using them and acting on them. Therefore, sepa-

rating the contexts in which meaning of the symbols are created from the syn-

tactic aspects of algebraic symbols is not very helpful and both the competen-

cies are required, which is the emphasis in this study. 

Studies have also introduced algebra through the route of generalized arithme-

tic, which focuses on the structural aspects of the number system (Wagner and 

Kieran, 1989) and encodes the general rules of operations in arithmetic (Ka-

put, 1995). The “early algebra” studies by Kaput (1998), Carraher et al. (2000, 

2001, 2003), Brizuela et al. (2000) and Carpenter, Franke and Levi (2003) are 

also efforts in the same direction, demonstrating in the process young chil-

dren’s capabilities to understand symbols, to create them, to work with them 

and explain their reasoning and solution process. The generalized arithmetic 

approach is not limited to generalizing regularities in operations and patterns 

which is a major focus in the “early algebra” studies. It also encompasses a 
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deeper understanding of the structure of expressions which is another line of 

work used in the studies with students in middle school. These studies try to 

enhance students’ understanding of symbolic expressions and syntax of alge-

bra, which is also the approach adopted by the present study. These research-

ers have attempted to exploit the arithmetic-algebraic connection, by focusing 

on the similarities in the two domains in different ways: (i) correct parsing fol-

lowed by order of operations and exploration of properties of operations (e.g. 

Thompson and Thompson, 1987), (ii) procedural/ computational similarity 

(e.g. Liebenberg et al., 1998, 1999a, 1999b; Malara and Iaderosa, 1999; Liv-

neh and Linchevski, 2003) or (iii) representational/ notational similarity (e.g. 

Booth, 1984; Malara and Iaderosa, 1999). Except for the study by Thompson 

and Thompson (1987) which actually trained students to perceive the structure 

of expressions and appreciate the constraint of certain transformations but in a 

limited situation, the other studies focused largely on computational features 

and their generalizations to make the transition to algebra. This always did not 

lead to the desired effect on the students and they still failed to see the equiva-

lences in the transformation rules in arithmetic and algebra and continued to 

work on algebraic expressions similar to computational arithmetic without ab-

stracting properties and constraints of operations. The present research study 

builds on these insights from the literature and proposes a way to deal with the 

arithmetic-algebra connection and tackle the errors due to faulty perception of 

structure of expressions which have been found to be hurdles in understanding 

symbolic algebra.  

2.0 Defining the research study 

The research study being reported here is a design experiment on grade 6 stu-

dents from two schools in Mumbai. It tried to systematically investigate the 

arithmetic-algebra connection and explored the introduction of algebra as gen-

eralized arithmetic by enhancing and connecting students’ prior knowledge of 

arithmetic to algebra and exploiting the structure of arithmetic expressions to 
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learn algebra. In the process it aimed to identify precisely the arithmetic con-

cepts and tasks which would help in making the transition to algebra. Its ob-

jectives were to strengthen both procedural knowledge, that is, the calculus of 

algebra – knowledge of rules, conventions and procedures for working on ex-

pressions, and structure sense – ability to think of an expression as having a 

value, to identify the components of an expression (surface structure) and to 

see the relationships of the components in an expression among themselves 

and with the value of the whole expression (systemic structure) (Kieran, 1989; 

Hoch and Dreyfus, 2004). 

The teaching-learning sequence was not restricted to generalizing properties of 

operations from arithmetic by emphasizing the structure of the expressions. It 

was complemented by using tasks which took a more comprehensive view to-

wards generalization – exploring and finding relations among numbers/ quan-

tities, sequence of operations and shapes in patterns, representing and general-

izing them and justifying and proving some of the patterns. These tasks pro-

vided opportunities to translate the informal processes or arithmetic structures 

into formal arithmetic or algebraic sentences, which is essential for an alge-

braic way of thinking. Thus, students learnt the syntax and rules of transform-

ing expressions, with numbers serving as referents for the letter; together with 

the use of expressions as tools for generalizing, proving and justifying in prob-

lem situations. For a complete sense of algebra, one would need to build an 

understanding of both the syntactic (based on structure of expressions/ equa-

tions and rules which define the nature of possible transformations) and the 

semantic (based on meaning of the letter/ expression/ equation as derived from 

symbolic statements and problem situations) aspects of algebra. For example, 

one not only needs to understand the constraints on the possible transforma-

tions of the expression 12+3×5-18 but also appreciate the change in value 

when the expression is slightly changed, say, 3+12×5-18 whose explanation 

will require a semantic understanding. This kind of knowledge would also 
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help while representing a situation using arithmetic or algebraic expression 

(e.g. distinguishing a representation x+3×2-5-x+4-x from (x+3)×2-5-x+4-x).  

Students were first engaged in reasoning based on syntactic transformations of 

expressions like evaluating expressions, identifying correctness of an evalua-

tion procedure for an expression and justifying it, comparing and identifying 

equality of expressions (e.g. 23-14×34+65 and 23-14×65+34) and its implica-

tions for evaluating/ simplifying expressions. These tasks did not require stu-

dents to generate the symbolic expressions but only to reason about equiva-

lence or non-equivalence of symbolic expressions in various computational 

and non-computational situations based on rules of syntactic transformations. 

Hence these tasks are included in the category of reasoning about expressions. 

The purpose of engaging students in activities which required reflection on 

rules of transformations was to begin the separation of the meaning of the ex-

pression from the value of the expression in the context of arithmetic itself, 

where this is not essential but lays the ground for further algebra learning (see 

Arzarello et al., 2001). Disparate looking expressions could have the same 

value with different information/ relation contained in them and similar look-

ing expressions could have different values. Moreover, the familiar arithmetic 

symbol system was used in the teaching approach as a ‘template’10 for the de-

velopment of the new algebraic symbolism. It enabled the numbers to be 

gradually replaced by letters, initially understanding algebraic expressions as 

only computational processes (inventive-semiotic stage of Goldin and Kaput, 

1996); before interpreting them based on the structure of arithmetic expres-

sions (period of structural development of Goldin and Kaput, 1996). It is only 

after this that algebraic expressions and symbols can be considered independ-

ently as objects with certain properties which can represent other entities and 

can be acted upon (autonomous stage of Goldin and Kaput, 1996 and object 

mediated phase of Sfard, 2000). 
                                                 
10 The word ‘template’ is derived from Sfard’s (2000) distinction between ‘template-driven’ 
phase and ‘object-mediated’ phase in the development of new signifiers/ symbols. 
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The tasks based on syntactic transformations exploiting the structure of the 

expressions could only help students to move from the ‘inventive-semiotic’ 

phase to the phase of ‘structural development’ but not to the ‘autonomous’ or 

‘object mediated’ stage. To lead the students to this stage, they were engaged 

in a set of tasks which developed a culture of generalization, justification and 

proving, where algebra was treated as a tool for representing general relation-

ships and concluding through manipulations on them. These tasks required the 

knowledge of rules, conventions and procedures for working on them and 

have been categorized as reasoning with expressions. However, it is important 

to note that the transition to the ‘autonomous’ or ‘object-mediated’ stage 

through reasoning with expressions is not the only way, this being considered 

most appropriate for this study. In fact, reasoning about expressions can itself 

lead to this advanced stage (e.g. complex operations on algebraic expressions, 

thinking of expressions as functions and exploring changes and transforma-

tions in functions).    

The study also intended to observe and characterize the changes in students’ 

understanding of algebra in the context of the teaching sequence which was to 

develop as a result of repeated attempts to make it more coherent. The study 

did not aim to compare the efficacy of the instructional approach being dis-

cussed with other approaches. It aimed instead, at an internal understanding of 

its effectiveness by exploring the changes in students’ understanding and 

thinking processes as they developed new concepts and tools through interac-

tion with the instructional sequence, and the possibilities it gave rise to in 

terms of student responses and the use of various concepts and procedures in 

different tasks. 

3.0 Designing the study 

The study was a design experiment (Cobb et al., 2003; Shavelson et al., 2003), 

the teaching-learning sequence evolving over five trials between 2003 and 

2005. Design experiments are carried out in educational settings based on 
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prior research and theory seeking “to trace the evolution of learning in com-

plex, messy classrooms and schools, test and build theories of teaching and 

learning, and produce instructional tools that survive the challenge of every-

day experience” (Shavelson et al., 2003, pp. 25). The first two trials (PST-I 

and PST-II) were preliminary and more exploratory in nature and the last three 

trials formed the main study (MST-I, MST-II, MST-III) which aimed at mak-

ing the teaching learning sequence coherent. The teaching learning sequence 

co-evolved with the developing understanding of the research team about the 

phenomena under study as well as with the growing understanding of the stu-

dents as evidenced from their performance and reasoning on various tasks. 

3.1 Research questions 

The study aimed to address the following research questions: 

• What kind of arithmetic understanding would help in learning symbolic 

algebra? 

o How should the teaching of arithmetic expressions be restructured to 

prepare for a transformational capability with algebraic expressions? 

o How effective is such a teaching learning sequence in understanding 

beginning syntactic algebra? 

o Which tasks of the ones identified are more effective in making the 

shift possible from arithmetic to symbolic algebra? 

• Does understanding the syntax and symbols of algebra support students in 

understanding the purpose of algebra and in the application of algebra for 

generalizing and justifying? 

• What meanings do students attach to letters, expressions and syntactic 

rules of transformations in this learning approach?  
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• How do procedural understanding and structure sense of expressions mu-

tually support one another? 

3.2 Sample 

The study was conducted in the research institute with grade 6 students (11-12 

year olds) during the vacation period of the school in Summer (April-May) 

before the beginning of the school year and mid year (October-November). 

Each trail lasted for 11-15 days, with each session of approximately one and a 

half hour. Grade 6 is the first level when algebra is introduced to the students. 

The students came from nearby English and vernacular (Marathi) medium 

schools which catered to students from low and middle socio-economic back-

grounds. Five schools were involved in the study at various stages of the pro-

gramme but only two schools participated throughout the study. The choice of 

the schools was based on convenience; the first reason being their proximity to 

the centre and the second, due to a need for long term collaboration and sup-

port from the school to carry out the study. Students from these schools volun-

teered to attend the programme by filling in an application form distributed in 

the schools before the vacations. The final group of students attending the 

programme was randomly selected from the applicants. In the last two trials 

(MST-II and MST-III) the same students who attended MST-I were invited to 

attend the programme. 31 students (15 English medium and 16 Marathi me-

dium students) who participated in all the trials of the main study were chosen 

for the final data analysis. The students had just appeared for their grade 5 

year end exams when they came to attend MST-I and they completed grade 6 

during MST-III. The pre-test performance at the beginning of the first main 

trial showed that the Marathi medium students were better than the English 

medium students in their knowledge of arithmetic. The English medium stu-

dents did not undergo any algebra teaching in their school but the Marathi me-

dium students were exposed to preliminary symbolic algebra in the school. 

The teaching was carried out with multiple groups (two to three) in each trial 
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to see how the different groups responded to the same teaching sequence. The 

English group had between 20-30 students and the Marathi group had between 

30-40 students in each trial. 

3.3 Data collection and analysis 

The data was collected through pre and post tests, interviews with a subset of 

students after the second and the third trial of the main study (MST-II and 

MST-III) which were video recorded and later transcribed, video recording of 

the classroom proceedings, students’ daily work and teacher’s log of the daily 

classroom processes. The post tests were long, containing approximately 25 

questions and took around 2 hours to complete. The interviews (14 students 

after MST-II and 17 after MST-III) were held 8 weeks after the end of MST-II 

and 4 months after the end of MST-III. The tasks used in the interview were 

similar to the post tests and were restricted to only arithmetic expressions after 

MST-II, whereas it included both arithmetic and algebraic expressions and 

context activities after MST-III. 

The data was analyzed both quantitatively and qualitatively with a focus on 

the nature of responses, the type and number of errors and the students’ rea-

soning as inferred from their responses to tasks or from their explanations 

given in the interview. The analysis was carried out to ascertain the extent of 

students’ understanding of concepts, rules and procedures in different tasks: 

• Understanding of procedures – Evaluation/ simplification of arithmetic 

and algebraic expressions 

Students were asked to evaluate arithmetic expressions which were of two 

kinds: simple expressions like 3+4×5 and 13-6+4 or complex expressions 

like -28+49+8+20-49 or 7×18-6×11+4×18 finding easy ways of evalua-

tion. These exercises laid down the rules for operating on expressions and 

understanding the constraints on operations and dealt with the application 
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of certain procedures on expressions, both arithmetic and algebraic to lead 

to numerical answers or simpler expressions.  

• Rules for transforming expressions with brackets 

Brackets were an important concept and were understood both as a prece-

dence operation as well as connected to equality of expressions using 

bracket opening rules, for example, 23-(9+5)=23-9-5. This flexible under-

standing of brackets is important for algebra as the first meaning as prece-

dence operation is used for purposes of representation and the second 

meaning associated with equality is needed to simplify algebraic expres-

sions. 

• Understanding of structure – tasks based on ‘=’ sign (comparing sim-

ple expressions and filling the blank), identifying expressions equal to 

a given expression from a list without computation, generating equal 

expressions 

A task that was used to develop the understanding of ‘=’ sign was filling 

in the blank by computation so that the expressions are equal, e.g. 

23+5=__-2. Many of these tasks deemphasized computations and instead 

focused students’ attention on the structure of expressions, identifying  re-

lations among expressions and within an expression (e.g. 

234+345=233__) in the process using students’ intuitive understanding of 

operations and simple transformations like increasing and decreasing 

number/ terms, changing numbers and signs. Another set of tasks dealt 

with identifying and generating expressions equal to a given expression. 

For example, given the expression 23+34×15+42, which of these are 

equal: 34+23×15+42 or 15×34+42+23. Later these tasks also were ex-

tended to include algebraic expressions. 
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• Context based tasks – letter number line, calendar patterns, think-of-a-

number game, pattern generalization 

The tasks used in this section dealt with observing and expressing gener-

alities using algebraic expressions and subsequently with justifying/ prov-

ing them which required manipulating the expressions. The letter-number 

line was a generalized representation of the number line with the use of a 

letter, which was further used to carry out two tasks: journey on the letter-

number line and distance between two points on the letter-number line. 

Calendar patterns required the students to represent the simple patterns be-

tween the numbers in a calendar using the letter and then explore various 

patterns in the arrangement of the numbers and justify them. Think-of-a-

number game required the students to follow a set of instructions on a 

number and explain and justify the pattern in the answer with respect to 

the starting number. Pattern generalization involved the students in repre-

senting a general rule for the growing pattern in a sequence of shapes. 

Through an analysis of these tasks, students’ understanding of ‘=’ sign, order 

of operations, transforming expressions, meaning of letter and expression, 

their ideas about representing a situation using the letter and manipulating the 

expression to arrive at a conclusion were explored. The effort was to examine 

students’ use of the concepts and rules that they had learnt during the program 

and the extent to which their learning facilitated performance on various tasks. 

The analysis gave a sense of the nature of the concepts required to make the 

transition from arithmetic to algebra and allowed one to gauge the effective-

ness of the teaching approach in enabling students to make the transition from 

arithmetic to algebra and in understanding the purpose of algebra. 

4.0 The teaching learning sequence 

The study intended to explore the arithmetic-algebra connection building on 

the structure sense of expressions but the exact nature of the tasks, procedures 
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and concepts, which would enable the transition from arithmetic to algebra, 

were to evolve through the teaching. The teaching sequence evolved over five 

trials between 2003 and 2005 with multiple groups of students. In the para-

graphs below, is described the gist of the understanding arrived through the 

engagement with the process. 

4.1 The framework 

The following general principles guided the development of the instructional 

approach. 

• Using students’ understanding and intuitions/ anticipations in the con-

text of arithmetic to guide their learning of algebra 

• Developing students’ understanding of algebra by using and extending 

their experiences with symbols in arithmetic in specific ways 

• Reasoning as a basis for learning 

Students’ knowledge of arithmetic was used as a foundation on which alge-

braic formalisms could be built. In this study, students’ understanding of syn-

tactic rules and conventions was developed and consolidated using their an-

ticipations with respect to operations on numbers, thus tackling the pedagogi-

cal problem of teaching the syntax of algebra. By the end of primary school, 

students have had sufficient experience with numbers and basic operations, 

and are likely to have attained a level of familiarity and concreteness, which 

can be fruitfully employed to learn formal symbols and actions on them. Some 

of their expectations/ anticipations are correct (like, addition of two numbers 

can be done in any order) and some are wrong (like, subtraction of two num-

bers can be done in any order) which need to be brought to their notice and 

which they may be unable to correct by themselves. It was important for this 

teaching-learning approach to be aware of students’ expectations and identify 

the situations which invoke these expectations, so that they can be gainfully 
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employed to understand the meaning of operations, properties of operations 

and constrains on transformations. It is in this context that students were en-

gaged first in comparing simple expressions (e.g. 234+436 and 235+437 or 

428-129 and 429-128) which required them to make explicit their expectations 

regarding the operations of ‘+’ and ‘–’; and then identifying equality of ex-

pressions, like 34+13×25+49 with 13+34×25+49 or 25×13+49+34 without 

computation. Discussions about possibilities and constraints of transforma-

tions (that is, about commutativity, distributivity and associativity) are critical 

in these situations. 

The approach not only attributed meaning to the symbols by working on vari-

ous tasks but also used them in communicating understanding. New ways of 

interpreting the familiar symbols were created in the context of arithmetic ex-

pressions that could subsequently be transferred to algebraic expressions. The 

students were made to focus away from computations and instead asked to at-

tend to the information or description of relation that is contained in the ex-

pressions (e.g. 4+3 is not just 7 but also a relation ‘three more than 4’ or ‘sum 

of 4 and 3’). Further, the numbers were attached with the signs preceding it to 

denote a signed number (like -2, +3), which could also represent a change (in-

crease and decrease) in a state. This enabled students to move from an inter-

pretation of expression as encoding a sequence of binary operations to focus-

ing on the units in the expression as contributing to the value of the expression 

by increasing or decreasing it by certain amounts. This proved to be a very 

important concept while judging equality of expressions from a list to a given 

expression as stated in the previous paragraph. Students’ expectations and un-

derstanding of symbols were tied together by engaging the students to discuss 

and reason about and with them.  

The connection between arithmetic and algebra was established by building 

the content which had the following characteristics: 
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• Exploiting structure sense of expressions 

• Use of structural concepts (Terms and ‘=’) 

• Explicating connections between arithmetic and algebra 

The arithmetic algebra divide was bridged by exploiting the structure inherent 

in arithmetic expressions to connect arithmetic with algebra using the familiar 

symbols, thereby giving the letter a referent of number, and also by explicitly 

giving visual and conceptual support to the students to perceive the structure 

of an expression correctly. The visual cues allow the perception of the surface 

structure which is important to analyze the components/ units of the expres-

sion or equation. Understanding of systemic structure is required to act on the 

interpretation of the surface structure. In particular, understanding the ‘=’ sign, 

equality of expressions and properties of operations are important aspects of 

structure sense. The reason for emphasizing the structure of expressions in the 

teaching approach was to link procedures with a sense of structure, so that in-

stead of being two separate skills one following the other, they complement 

each other to form an integrated knowledge structure. Knowledge of structure 

of expressions provides scope for flexibly exploring procedures and strategies 

for computing expressions rather than applying the conventional rules for 

evaluation, which are rigid. This is an important characteristic of the approach 

taken in the study and which distinguishes it from earlier efforts (e.g. Livneh 

and Linchevski, 2003; Liebenberg et al., 1999a) of using arithmetic for teach-

ing algebra.  

The above was made possible by providing the students with a set of concepts, 

namely ‘term’ (e.g. terms in 12-5×3 are +12 and -5×3) and ‘equality’, which 

allowed them to correctly identify the units of the expressions and further un-

derstand the contribution of each part of the expression to the value of the 

whole expression. This approach is described as the ‘terms approach’. The 

terms could be simple term (e.g. +12) or complex term (e.g. product term: -
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5×3 or bracket term: -(4+6)) Also, these concepts helped in reformulating the 

rules for order of operations and bracket opening in structural terms, thus inte-

grating the procedures more closely with structure of the expression. The 

precedence rules of evaluating expressions were replaced by the structural 

counterpart of flexibly combining terms. One could combine only simple 

terms and the product term had to be converted to a simple term before com-

bining with the simple term: 4+5×2 =                   =                  =          . Else, 

two product terms could be combined if they had a common factor using the 

distributive property. It can be easily appreciated from the above that the value 

of the expression 5×2+4 will be the same as 4+5×2 but the value of the ex-

pression 5+4×2 will be different. Reordering the terms kept the value of the 

expressions invariant and thus terms could be combined in any order. In this 

way, the familiar processes of addition, subtraction and multiplication were 

converted into ‘objects’ (operations on signed numbers), not necessarily re-

quiring computation at each step and could be combined flexibly by attending 

to the relationships between the terms in an expression. Thus, students were 

moved from ‘computing with numbers’ to ‘computing with expressions’ using 

properties of operations. Bracket was another important concept which was 

given a dual treatment: as precedence operation and a dynamic use connected 

with bracket opening rules and equality of expressions. 

The terms approach not only created meaning for the operations but also af-

forded a more direct approach to tackling the structural errors (like, computing 

sequentially from left to right in the presence of a multiplication sign as in the 

above example ‘LR’ or detaching the negative sign, 24-6+4=24-10) and other 

inconsistencies in evaluating expressions which have been widely cited in the 

literature (Chaiklin and Lesgold, 1984; Linchevski and Herscovics, 1996; 

Linchevski and Livneh, 1999; Kieran, 1989). Further, this paved the way for 

learning manipulation of algebraic expressions which requires the flexibility in 

perceiving the information and interpreting the relationships embedded in an 

+4 +5×2 +4 +10 +14 
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expression, so as to be able to operate on them. Essentially, the manipulation 

of algebraic expression follows the same rules of transformation as in arithme-

tic. All these reconceptualizations with respect to arithmetic allowed students 

to reason about expressions by engaging in discussions with respect to syntac-

tic transformations and ideas of equality and invariance of value, without 

computation. Thus, on the one hand arithmetic operations were being reified, 

and on the other, understanding of algebraic manipulation was being devel-

oped on this understanding of arithmetic. 

Contexts for algebra: The students were later introduced to the use of expres-

sions in the contexts of generalizing, explaining and justifying (reasoning with 

expressions). The main ideas that students needed to grasp in this part are (i) 

the importance of representing situations for general cases, (ii) knowing that 

justification/ proof needs a general argument/ explanation (verbal or symbolic) 

not specific to particular cases, (iii) appreciating the purpose of transforming 

an expression, (iv) transforming the representation using valid rules and (v) 

interpreting the result. Students, in this study, were first engaged in simple 

representation tasks similar to the CSMS (Kuchemann, 1981) test items so that 

they could learn that representations could be made when all quantities were 

not given, with the letter/s denoting one or more of the unknown quantities in 

the situation. Continuing with the spirit of a generalized arithmetic approach 

that was adopted, students worked on tasks, like the letter-number line, think-

of-a-number game, calendar patterns and generalization of growing patterns 

among shapes. 

4.2 The development process 

As the study evolved, some of the initial assumptions were modified to en-

hance the effectiveness of the sequence. The thesis discusses these modifica-

tions and the rationale for them. For example, the teaching-learning approach 

began with the assumption that to teach algebra one only needs to worry about 

building the structure sense for expressions. The first trial itself (PST-I) led to 
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the modification of this assumption and more efforts were directed at consoli-

dating the procedures of evaluating and transforming expressions and bracket 

opening rules in the second trial. In the first trial ‘term’ and ‘equality’ were 

found to be two concepts which had the potential to connect arithmetic and 

algebra. The second trial (PST-II) involved a two group experimental design 

to explore the extent of effect of arithmetic knowledge (procedure and struc-

ture) on algebra learning. The concepts of term and equality were used in this 

trial only for structure tasks, again separating procedure and structure of ex-

pressions resulting in a separation of arithmetic and algebra and a limited un-

derstanding of algebra. Discussion of the two pilot trials and a preliminary 

discussion of the results of these two trials can be found in Subramaniam and 

Banerjee (2004). In an effort to make the arithmetic algebra connection 

stronger in the third trial (MST-I), the concept of terms was used for both pro-

cedure and structure tasks. Terms were given visual salience by putting them 

in the boxes (e.g. the terms of 19 – 7 + 4 are                           ). The rules for 

manipulating expressions in arithmetic and algebra were formulated differ-

ently, and on hindsight, these rules were not flexible enough and did not ex-

ploit the potential of the concept of terms fully. In the context of arithmetic 

expressions, ‘terms’ were used only to analyze the expressions before deciding 

the rule to be applied to evaluate it. In the context of algebraic expressions, 

‘terms’ were used to identify like terms before adding or subtracting them by 

imagining them to be sum or difference of ‘singletons’ (3×x+4×x = 

x+x+x+x+x+x+x, Linchevski and Herscovics, 1996). The complementarity of 

procedure and structure could not be established and the connection between 

arithmetic and algebra did not get abstracted by the students. Simultaneously, 

contexts (like letter-number line, area and perimeter) were created to give 

meaning to the letters, using it to represent general relations so that students 

accept the non-closure of algebraic expressions. Students’ poor knowledge of 

transforming algebraic expressions was a hindrance in using that knowledge in 

+19 –7 +4
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these tasks and they could not make sense of the use and purpose of algebra in 

the contexts. 

The fourth trial (MST-II) was devoted to making the teaching-learning se-

quence coherent and radicalizing the structural treatment by making terms and 

equality as the key concepts which bound the whole sequence. The rules were 

made flexible and uniform across the domains and were structurally reformu-

lated. Integer operations were also subsumed in the ‘terms approach’. This 

was the first time that the precedence rules were completely done away with 

and was replaced by the idea of combining terms (which is nothing but adding 

integers) which has been briefly described in the previous section. New tasks 

like evaluating expressions using easy ways which required students to flexi-

bly combine terms to minimize the steps for computing (e.g. -28+49+8+20-49 

or 7×18-6×11+4×18), and generating equal expressions for a given expression 

(e.g. 25-3×5+18) were created which utilized the complementary nature of 

procedure and structure sense. The connections between procedure and struc-

ture sense and between algebra and arithmetic were established more securely. 

Efforts were also made to enable students to make sense of these algebraic 

symbols in contexts (like letter-number line and calendar patterns) and use 

them as a tool for solving problems. The last fifth trial (MST-III) was used for 

consolidating the teaching-learning process. It emphasized verbalization and 

articulation of various procedures and rules of evaluating/ simplifying expres-

sions, rules of opening brackets and use of the concepts and rules learnt up till 

now in different tasks requiring reasoning. Students were also encouraged to 

explain and articulate their understanding of patterns in numbers and figures 

and generalize them verbally in the contexts created to embed algebra before 

moving to symbolic representations. This led to the opening of another dimen-

sion of the arithmetic algebra connection and needs further work. 
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5. Findings and conclusion 

The study evolved from the indications made in various studies about the im-

portance of building structure sense for arithmetic and algebraic expressions 

and the need to move away from computations to be able to connect the two 

domains. The analysis of the data revealed that the radicalized structural 

treatment of arithmetic (as is seen by the end of MST-II) with a deeper under-

standing of expressions and constraints and possibilities of transforming them 

enabled the transition to algebra by allowing flexibility in computing expres-

sions. Identifying relationships between and within expressions and finding 

conditions for keeping the value of an expression invariant were the key ideas 

here. The effects of this approach are further elaborated below.  

5.1 Procedural tasks  

The students improved their overall performance in the procedural and struc-

tural tasks and understanding of rules. The students gained in flexibility while 

evaluating simple expressions (e.g. 3+4×5 or 13-5+7) and the more complex 

expressions (e.g. -28+49+8+20-49) finding easy ways of computing them, in-

dicating their appreciation of the structure of the expressions and the ability to 

take advantage of it. There was a reduction in structural errors (due to faulty 

parsing, like ‘LR’ and detachment) but they did resurface in more complex 

situations, suggesting the lack of automaticity among students in the simpler 

contexts. Integer operation was another weak point resulting in low perform-

ance of the students in some items. The interviews and classroom discussions 

indicate that the students could avoid structural errors in the simple situations 

and were aware of uniqueness of the value of the expression even though one 

could use multiple ways of evaluating them. These achievements of the stu-

dents were significant in the light of the results reported in the literature (cf. 

Liebenberg et al., 1999a; Malara at al., 1999). The flexibility in manipulating 

arithmetic expressions together with correct perception of structure of expres-

sions paved the way for the manipulation of algebraic expressions.  
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By the last trial, most students were comfortable with simplifying algebraic 

expressions (e.g. 3×x+4+4×x-5), applying the same rules as in arithmetic. In-

terviews with the students with respect to algebraic expressions after MST-III 

revealed their awareness of equivalence of all the steps in the process of sim-

plification. For example, the expressions 3×x+4+4×x-5 and 7×x-1 are equiva-

lent and so are the steps in between. Although most students were able to 

evaluate algebraic expressions for a given value of the letter even when they 

made sign and calculation errors; a few students, however, failed to substitute 

the letter by a number till the last trial. The students interviewed did not show 

any such difficulty.  

The appreciation of the similarity between manipulating arithmetic and alge-

braic expressions was a difficult task and developed only in subsequent trials 

when attempts were made to focus away from computation in the context of 

arithmetic. Consistency in perceiving the structure of expressions and under-

standing the properties of operations that can be used in the context of arith-

metic is an important step to move to algebra. The coherence in the teaching-

learning sequence which was developed by MST-II (discussed in section 4.2) 

could be a factor influencing the change as is seen by the end of the last trial. 

The students successfully generalized their understanding of rules of simplifi-

cation from the context of evaluation of arithmetic expressions to simplifica-

tion of algebraic expressions, displaying the connection between the two do-

mains in their understanding.  

5.2 Rules of transformation of expressions with brackets 

In the course of the program, more students learnt to use bracket opening rules 

to evaluate expressions but for some students, this was accompanied by a lack 

of appreciation of the meaning of the bracket as enclosing parts which have to 

be given precedence in operation. Both the written test and interviews revealed 

that the two notions of bracket were absorbed by some of the students as pro-

cedures and not as ‘procepts’ which did not allow them to anticipate the effect 
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of removing and putting the brackets. They failed to simultaneously under-

stand that the bracketed (sub-)expression could be substituted by either a 

number or another equal expression, which is an indication of an evolved 

‘proceptual’ understanding, which is useful for generating representations for 

problem solving. Students made more errors when the bracket was preceded 

by a negative sign rather than multiplication sign. Additional suggestions 

about ways of dealing with the brackets which emerged as the structural ap-

proach evolved are described in the thesis. 

5.3 Structural tasks 

These tasks revealed students’ deeper understanding of expressions. Students’ 

responses revealed a fair degree of understanding of constraints and possibili-

ties of transformations, properties of operations and anticipation of the result 

of those operations. They understood that terms can be rearranged to keep the 

value same or they can be changed in ways that the net result does not change, 

rearranging the signs or numbers changes the value, a positive term increases 

the value of the expression and a negative term decreases it. Research litera-

ture quoted earlier, both exploratory and classroom interventions, indicate the 

difficulty students in general have in understanding these ideas. 

Students’ understanding of the ‘=’ sign, that it signifies the equality in value of 

the expressions on both sides of the ‘=’ sign, which is an important structural 

notion connecting arithmetic and algebra was elaborated through many tasks. 

Although students at times made errors in equalizing expressions by filling the 

blank (e.g. 23+4=__-3), they could judge both arithmetic and algebraic ex-

pressions for their equality/ inequality with respect to a given expression with-

out computation and also generate expressions equal to a given one, focusing 

on the relationships between the terms and the transformations that were ap-

plied to it. In particular, classroom discussions of how a given expression 

could be transformed while keeping its value invariant led to significant reve-

lations about students’ understanding. Further, these tasks served as better di-
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agnostic and learning tools with respect to the understanding of equality than 

the more traditional task of filling in the blank. 

Interviews also revealed students’ ability to identify equal expressions from a 

list of complex expressions and to compare them with the original given ex-

pression identifying the greater/ smaller expression in a pair. This was accom-

plished through a meaningful, rather than a mechanical, short-cut procedure, 

use of the concept of ‘terms’. Comparison of such complex expressions was 

unfamiliar to them and their flexible use of terms in the task was an important 

finding in the interview11. They performed well in the written test in both 

arithmetic and algebraic expressions, although there was a decrease in their 

performance in arithmetic expressions with product terms, where a few of 

them consistently failed to use the correct parsing/ unitization to identify the 

equal expression in the post test. A few students also faced difficulty in judg-

ing equality of expressions when it involved brackets, a problem which was 

noticed in the evaluation tasks as well. However, the interviews and the class-

room discussions showed that they had strategies in place to deal with these 

tasks and to rectify their errors and they were clear about equality in value as 

an essential criterion for two expressions to be equal. The students further 

pointed out that two equivalent algebraic expressions (e.g. 3×x+4+4×x-5 and -

5+4×x+4+3×x) will have equal value for all numerical values of the letter. 

Two ways of justifying it were seen: by replacing the letter by the number in 

both the expressions to arrive at two arithmetic expressions which they knew 

would have equal values or directly inferring that particular cases would hold 

true since the general case is true.    

                                                 
11 Students had been exposed to tasks which involved comparing simple two termed expres-
sions like 68-29 and 67-28, results of which are discussed in  Naik, Banerjee and Subrama-
niam (2005). 
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5.4 Context tasks 

Although the tasks discussed earlier had created in the students a predisposi-

tion for symbolic representations and thinking with an expression, fewer stu-

dents could use these resources adequately for the tasks of reasoning with ex-

pressions or use this to appreciate the ‘purpose of algebra’. The issue is not 

simply one of transferring the abilities from the syntactic world to the context 

situations where algebra is to be used as a tool or of giving meaning to the let-

ter by embedding them in contexts. Two elements that play an important part 

in these tasks are (i) the culture of generalizing, proving and verifying, with 

which the students had very little experience and (ii) students’ belief about the 

effectiveness of using algebra in these tasks.  

In the initial trials, students either did not understand the goal of the task and 

therefore randomly manipulated the representation they had created, or knew 

the goal, wrote the correct answer in the end but could not manipulate the ex-

pression correctly to arrive at that answer. In the last trial, however with a 

change in the approach to deal with this issue which encouraged verbalization, 

some students engaged in algebraic thinking and used narrative arguments, 

often displaying a quasi-variable approach (Fujii, 2003), to convince others 

about the generality of a result or to draw conclusions. One must note how-

ever, that this did not necessarily require algebraic representation. A few also 

successfully used algebraic representations, could anticipate the goal and ac-

cordingly manipulate it to prove the result. Still, a few continued to repeatedly 

verify the conjecture/ proposition for specific instances, not realizing the limi-

tation of the approach. This pattern of responses led to the understanding that 

students’ abilities to manipulate algebraic expressions and their knowledge of 

transformation rules is put into use only after they understand the purpose of 

the task, the need for algebraic representation and can anticipate the goal. Oth-

erwise, the manipulation of algebraic expressions in the contexts is random or 

the use of algebra is completely ignored. Possessing the syntactic knowledge 
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of algebraic expressions predisposes students to think in terms of expressions 

within the contexts but does not guarantee success. Thus, besides the ‘push’ 

from arithmetic which lays the ground for initial understanding of algebraic 

symbols and expressions and reasoning about expressions (phase of structural 

development), one needs the ‘pull’ from a culture of generalization and the 

need for general justifications, not restricted to specific instances, to move to 

the autonomous stage.   

5.5 Meaning of the letter and the expression 

The emphasis in the teaching approach was on seeing an expression in flexible 

ways: as a statement expressing relationship and a value. One of the major 

hurdles in making sense of algebraic symbolism is understanding the meaning 

of the letter and the duality of the various symbols (see Wagner et al., 1999). 

From the analysis of the tasks in this study, it was found that, excepting a few, 

most students seemed to understand the meaning of the letter as a number and 

the dual meaning of the expression as something to be evaluated as well as 

expressing a relationship. Students could verbalize the meaning of simple ex-

pressions like 5+4 or x-3 (four more than five or three less than x) as well as 

see a statement like x-3+5=x+2 (in the context of a task on the letter-number 

line) as expressing a relation between x-3 and x+2 (x-3 is five less than x+2) 

and the fact that subtracting three and adding five to x leads to x+2. Instances 

of perceiving expressions in this dual manner were also seen in the tasks de-

scribed above, especially in the structure tasks. 

5.6 Procedure-structure connection 

Students’ responses in the tasks on reasoning about expressions in the context 

of syntactic transformations revealed the inter-linkages between procedure and 

structure of expressions. Their scores in procedural tasks and structural tasks 

are highly positively correlated. There is some indication to the fact that one 

needs a minimum competence in procedures to internalize and abstract those 
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properties for perceiving structure and answer questions consistently related to 

them. A preliminary analysis of the data over three trials (PST-II, MST-I and 

MST-II) had revealed that the structural understanding of expressions devel-

oped as a result of consistent application of the rules and procedures over 

many situations sharing the structural features and that structure oriented ap-

proach to teaching helped in strengthening both procedural and structural un-

derstanding (Banerjee and Subramaniam, 2005). But, it is the qualitative data 

analysis, as discussed in the previous sections, which show the complementary 

use of these two senses and which allows students to work efficiently in both, 

predominantly procedural and predominantly structural tasks.  

6. Conclusions 

The study pointed out the purpose, strengths and the limitations of the various 

tasks used at different points of the study. It thereby elaborated on the specific 

supports, in the form of vocabulary, concepts, rules and procedures required 

for making the transition from arithmetic to algebra, without which it is diffi-

cult for students to see the connection between arithmetic and algebra. Further, 

a teaching guideline is proposed on the basis of this study for making a 

smoother transition from arithmetic to algebra. 

The approach which was adopted and evolved during the study has the poten-

tial to substantially bridge the gap between arithmetic and algebra. The spe-

cific features of the approach which facilitate this connection are: 

(xi) building on students’ understanding of arithmetic operations and 

intuitions 

(xii) moving away from computation and emphasizing structure of the 

expressions 

(xiii) fostering an understanding of expressions in terms of information it 

contains, relationship embedded in it and the value it stands for 
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(xiv) identifying concepts of terms and equality, which are structural and 

can help in consistently understanding rules of transformation of 

expressions 

(xv) reformulating the procedures of manipulating expressions in struc-

tural terms and using the same rules, terminology, notations and 

conventions in solving tasks in arithmetic and algebra 

(xvi) deepening the understanding of structure of expressions by focus-

ing on invariance of value of expressions, thereby elaborating the 

understanding of equality and equivalence of expressions 

(xvii) choosing tasks so that procedures get connected with structure 

sense 

(xviii) explicit attention to the number as a referent for the letter 

(xix) emphasizing the process-product duality or flexible ‘proceptual’ 

understanding through tasks 

(xx) developing the ability to communicate and reason with symbols  

These are important aspects of the arithmetic-algebra transition and have been 

points of concern in many of the exploratory studies quoted in the introduction 

of this synopsis and elaborated in the thesis.  

The approach succeeded in many ways in dealing with the syntactic and the 

semantic aspects of arithmetic and algebraic expressions. Although students’ 

understanding of rules of transformations and operation sense was visible in 

the context of syntactic transformations and reasoning about expressions, it 

was not fully used while reasoning with expressions. Students could display 

algebraic thinking by the end of the last trial and convincingly explain their 

solutions but the transfer to the symbolic mode was not easy, even when they 
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could understand the process of the representation and manipulation to draw 

conclusions. The unsatisfactory development of the teaching approach with 

regard to this aspect of algebra, largely guided by the assumption that knowl-

edge of algebraic symbols and manipulation would directly lead to their use in 

contexts, was probably responsible for many of the effects seen in students’ 

responses. Symbolic proofs/ justifications need to be preceded by developing 

understanding of the need for algebra and engaging students in verbalizing the 

process of solution, a point which was realized only in the last trial. It is hy-

pothesized that reasoning about expressions may help in reasoning with ex-

pressions by enabling the students to think in terms of expressions.  

The study tried to explore and show the potential of the approach in making 

the teaching and learning of the two domains, arithmetic and algebra, more 

coherent and connected. It was not designed to experimentally establish the 

efficacy of this approach with respect to the traditional or any other approach. 

One direction in which the study can be extended is to include problem solv-

ing by framing and solving equations with in the scope of the approach and 

also include rational numbers in the arithmetic expressions and as referents for 

the letter. Another challenge is to evolve the approach to incorporate non-

linear algebraic expressions, multiple variables in expressions and operations 

on linear and non-linear expressions. 


