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Abstract

The  central  concern  of  this  study  is  ways  of  mitigating  the  marginalising  effects  of  mathematics 

especially for those students who are already marginalised due to their socio-economic and educational 

backgrounds and “recentering the margins”.  Literature highlights the marginalising effects of  ‘school 

mathematics tradition’ with its focus on one right answer, and the stylised language of mathematics with a 

prevalence  of  symbols.  Moving  away  from  these  I  sought  to  design  and  implement  mathematical  

explorations that enable a rich mathematical experience even in marginalised or low resource contexts. I  

started with flexibility and accessibility as key design principles guiding task design and identified task  

features that enable flexibility and accessibility. Following a first-person-classroom-based approach to  

research, I facilitated and observed students in a low resource context as they engaged with mathematical  

explorations.  I  observed  students  engaging  in  practices  that  literature  identifies  as  elements  of 

mathematical thinking. I noted the prevalence of oral communication in informal language and the near  

absence of symbolisation and formalisation as distinctive features that mark their engagement with such 

tasks.  Moving away from the deficit  perspectives  that  fail  to  acknowledge the mathematical  in  such 

conversations,  I  sought  to  define  more  accommodating  acceptability  criteria  for  what  constitutes  

mathematical discourse. Additionally, I look at what it implies for the teacher to enable flexibility without  

compromising on core disciplinary constraints and suggest teacher support in the form of guidemaps for  

explorations.
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1 Introduction

1.1 Explaining a pattern

In the course of the many “mathematical inquiry sessions” that I used to do with students, I was once 

presenting a series of examples to students of Grade 7 and 8 that would let them see the following pattern:  

the sum of k consecutive numbers is divisible by k if k is odd and not divisible by k if k is even. After a 

few examples of sum of two consecutive numbers where nothing striking was observed, I wrote a number  

of examples like

5 + 6 + 7 = 18

9 + 10 + 11 = 30

17 + 18 + 19 = 54

and also recorded a few similar student suggested sums on the board. On the basis of these, the group of  

students concluded that, if we add three “linewaala numbers”, that is, numbers that come in a line, the 

answer will be in the table of three. I quizzed them further to understand what they meant by linewaala 

numbers - whether 2, 4, 6,... or 5, 10, 15, … are linewaala numbers as well, and if all of them meant the 

same thing when they used the term. Further I also wanted to find out if they thought that this would be 

true of any three consecutive numbers or only of those written on the board. They thought that this would 

always be true. Saying that I was not convinced of this, I pushed them for a proof. In the examples on the  

board I could see the numbers and could calculate their sum and verify that it is in the table of three. But 

how could they make a statement about some three numbers, which may be very large? How would they  

check if the sum was indeed in the table of three? A student explained that if they give one from the  

largest number to the smallest number, all the three will become equal and the sum becomes three times 

the middle number. So it is in the table of three.

1.2 Motivation

The kernel of this dissertation started with instances like the one described above. The activity described 

was among the first that marked my shift away from regular school teaching, to cover the syllabus and to 

help students pass exams. I have taught in schools for 5 years. The different schools I worked in catered 

to students from varied socio-economic backgrounds and I have taught a range of classes from Class 6 -  

Class 12. The activities as the one described above were aimed at providing opportunities for students to 

explore  and  find  things  out  for  themselves  and  to  engage  in  practices  of  mathematics  such  as 

conjecturing,  proving,  generalising,  abstracting,  and  defining.  Such exploratory activities  presented  a 
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milieu different from my regular classes and triggered a number of thoughts and questions in me. One 

striking feature of the above description is the rich mathematics that students come up with and the way it  

is expressed. 

In this instance, students refer to consecutive numbers as linewaala numbers, meaning numbers that come 

in a line.  In a school context,  I  would have instinctively corrected them, given the term  consecutive 

numbers, and moved on. Their reference to multiples of three as “numbers that come in the table of three” 

would have evoked a similar response. But then, how important is it to know these terms? What if I let 

them work with their own terms? What is it that we (the students and I as the teacher) are losing out on if  

they work with such terms and what is it that we are gaining? Is there anything that I should be wary of 

when students do mathematics using such language?

The redistribution that they did, by “giving one from the largest number to the smallest”, making them all  

equal to the middle number was an insightful move, and it establishes conclusively that the sum of three 

consecutive numbers is divisible by 3. But I as a teacher expected something like: 

Let the three numbers be n, n + 1 and n + 2

The sum of these numbers = n + n + 1 + n + 2 = 3n + 3 = 3 (n + 1) 

A number of the form 3 (n + 1) is divisible by 3.

I suggested this approach to the group of students I was interacting with in the instance described above. 

Rather than manipulate the variables and bring about an expression that is clearly a multiple of 3, they  

went back to their initial approach of “giving 1 from n + 2 to n to make all three of them as n + 1”. Why 

did I want them to go through the symbol manipulation, when they were unwilling to engage with it? 

As noted earlier my goal for the session went beyond observing and justifying that the sum of three 

consecutive  numbers  is  divisible  by  3.  I  hoped  that  they  would  ask  what  if  we  add  4  consecutive 

numbers? Or 5? Or more? Is there a pattern to be seen in the sums? Their term “linewaala numbers'' 

suggested another possibility - what if we interpret linewaala numbers to include possibilities like 2, 4, 

6… or 5, 10, 15…? What patterns emerge when we add a certain number of terms from this sequence of 

numbers? What if  we follow other rules to form the number sequence? While the approach that  the  

students took to show divisibility by 3 allows them to answer some of these questions, it soon becomes 

inadequate. 

I could see that their “redistribution move”, when modified and applied pairwise as shown in Figure 1.1, a  

sum of an odd number (say k ) of consecutive numbers can be shown to be k times the middle number. 

14



Figure 1.1: Redistribution to find sum of odd number of 

consecutive numbers

But with an even number of consecutive numbers it does not work so easily. For a sum of an even number 

of consecutive numbers like 3 + 4 + 5 + 6 and staying within the domain of whole numbers, there is no 

way that one can “give a whole number  x from one number to another and make them equal”. It  is 

possible to consider specific sums of 4 or 6 or 8 even numbers and verify that it is not divisible by 4, 6 or  

8 respectively. But to establish, when p is any even number, that the sum of p consecutive numbers is not 

divisible by p, is not straightforward by this approach. A complete argument is difficult without algebra.

The generalisation happens as a matter of course with formalisation and is an important part of doing 

mathematics. Very often a generalisation needs to be expressed as a closed-form expression to enable 

working with it further. When the goal for the class involves more than solving individual problems, and 

includes students becoming aware of a general approach to a class of problems or building further on 

solutions, formalisation becomes critical. Also, perhaps, being steeped in textbook mathematics, I tended 

to privilege the formal. Students on the other hand did not have a readily available symbolisation scheme 

for this problem and they had to design one themselves. Rather than coming up with a formalisation of  

the problem and working with symbols, they drew on reasoning and inference to convince me of their  

point.  While appreciating and accepting the limited generalisability of their  approach I  wanted to go  

beyond, considering both the immediate needs of the problem and the role of formalisation in higher 

mathematics education. One of the key things this thesis is interested in is the role of formal language in  

the  teaching-learning  of  mathematics  and  the  ways  and  means  students  adopt  to  communicate 

mathematics when they do not have sufficient access to the formal language. 

While formalisation definitely has its merits,  as a teacher I am also familiar with the difficulties that  

students face while reasoning with symbols in this manner. In response to such situations, I have seen  

students mechanically follow rules like “plus becomes a minus on the other side of the equal sign” or “3  
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in the numerator on the left hand side goes to the denominator on the right” or disengage completely. The  

transition from arithmetic to algebra and the symbol manipulation that it involves has been recognised to 

be one of the problem areas in school mathematics.  Even as students have difficulty in making this  

transition, the above instances highlight that they still generalise, conjecture, and have ways of convincing 

others, all drawing on informal means. Another concern that this thesis strives to address is how does one  

strike a balance between being accepting of students’ mathematics while keeping formalisation in sight?

In contrast to a 45-minute period where students barely do more than frame and solve 3-4 equations,  

problem situations like the one outlined here lead to a wealth of patterns. There was experimentation,  

observing and stating patterns, arguing and justifying that the patterns would “always be so” - all valued  

practices in mathematics. A key difference that I noted between my usual classes and these is the hum of  

activity and engagement seen in these classes. Many more students have something to contribute perhaps 

because these activities allow the freedom to respond in their own ways, rather than those defined by the 

textbook. If I had to choose between sense-making and engagement in informal means and mechanical  

rule-following and eventual disengagement, what would I choose? Are there occasions when I need to  

insist on the formal?

The increased engagement that exploratory activities generated even from students who did not think of  

themselves as “good at maths” and the rich mathematics that ensued, made me wonder what was it about 

these  activities  that  led  to  this  difference.  What  role  could  they  play  in  reducing  anxiety  about 

mathematics performance and nurturing students’ confidence that they could do maths as well? What 

features should these activities have to this end? I looked at mathematics education literature around such 

exploratory activities and found a number of starting points for such tasks. I also found teacher reports of  

how the activity progressed in class in the publications of the Association of Teachers of Mathematics  

(ATM) and a few other scholars who had discussed such tasks. These accounts of classroom teaching 

were also aligned to the vision for mathematics education articulated in an important policy document of 

the Indian National Curriculum Framework (2005): the Position paper on Teaching Mathematics. The 

Position  paper  proposes  a  shift  in  focus  “from  mathematical  content  to  mathematical  learning 

environments,  where  a  whole  range  of  processes  take  precedence:  formal  problem  solving,  use  of  

heuristics,  estimation  and  approximation,  optimisation,  use  of  patterns,  visualisation,  representation, 

reasoning and proof, making connections, mathematical communication.…Such learning environments 

invite participation, engage children, and offer a sense of success” (NCERT, 2006, pp. v–vi). I wanted to 

investigate what it entails to bring alive this vision and delve deeper into questions like what kind of  

activities could launch an exploration, what it means to explore, what challenges and benefits do these 

open up for students and what is the role of the teacher in enabling an exploration.
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1.3 Shifting focus to the margins

With these broad goals and questions in mind, I started out designing and implementing tasks in three  

schools. Given the concern for equity in opportunities for education, shared across the research  group 

consisting of my advisors and me, one of the three schools selected was a school catering to students from 

socio-economically disadvantaged backgrounds. My prior experience doing a program evaluation of an 

intervention being implemented in the government schools in India sensitised me to the inequalities that  

exist  between  such  schools  and  the  schools  that  cater  to  the  middle-classes  not  just  in  terms  of  

opportunities, but also in terms of pedagogy. Based on my belief that everyone can do mathematics, the  

possibility of producing counterstories that demonstrate the feasibility of explorations in marginalised  

contexts motivated me.

Due to the difficulty in accessing and scheduling activities in two of the schools which largely catered to  

middle-class students, most of my teaching sessions happened in the school catering to students at the  

margins. I also started trying out some of the explorations in yet another school that was similar to this  

school in catering to students from disadvantaged backgrounds. This sharpened the focus of the study to  

students studying in schools at the margins. The triumphs and struggles of these students opened up more  

challenges, dilemmas, and fresh questions. 

While the flashes of insight as seen in the instances discussed above were very much there, the way they 

were expressed was further removed from what I was used to. (Many examples are described in the  

thesis.) The differences arose from multiple reasons - their limited proficiency with English, the language 

of instruction, the non-familiarity with technical terms in their own first language Tamil, the differences  

between the language used in school contexts and in casual conversations at home, and the difference  

between my language and their language stemming from differences in such social markers as class and 

caste. On the one hand, it took much more effort and getting used to on my part to listen, hear,  and 

understand the mathematics that unfolded in these classes, and on the other, I was impressed by how these 

students  still  managed  to  communicate  their  mathematics  despite  all  the  differences  noted  above.  

Contrary  to  the  prevailing  beliefs  that  engaging  with  explorations  demands  a  certain  mathematical 

maturity and exposure and that this may not be expected of students at the margins, I observed these  

students enthusiastically participating and finding things out for themselves. 

Not being able to make sense of the “alien” textbook language, these students struggled to make sense of 

problems and would tell  me “Tell us what this means and we will  solve it.” When the problem was 

presented to them in an engaging and accessible fashion, they could figure things out for themselves, and  

doing so gave them a sense of joy and ownership. Recording their findings on their board and labelling 

17



them with their names, to be referred to later as “Muthu’s Theorem”, “Kanika’s solution” etc., was a 

usual practice. Explorations presented themselves as a potential means to enable otherwise marginalised  

students to engage with mathematics and more importantly offer them an opportunity to bring forth the 

mathematics that they know. My study of literature pointed to very few studies in this direction. 

The study goal  became more focused on investigating  the potential  of  mathematical  explorations  to 

support mathematical thinking at the margins. The scarceness of existing contexts where I could observe  

and study this necessitated that I create such a context as well, and praxis became an important part of the 

study design. As I engaged with students, I became more sensitive to the ways they used language and 

other means of communication like gestures and diagrams to get across their ideas and language became a  

concern of the study. What is the role of formal language in doing mathematics? What are ways that one 

can  use  informal  language  to  do  and  communicate  mathematics?  What  makes  communication 

mathematical? This thesis is an attempt to shed some light on some of these questions. In the next section, 

I give a brief overview of the thesis. 

1.4 Organisation of the thesis

This thesis is organised into 7 chapters. 

In  Chapter  2,  I  discuss  mathematics  education  literature  in  relation  to  the  study goals.  Noting  how 

mathematics serves to further marginalise those who are already marginalised due to such factors as their  

class, caste, language, etc., I ask if explorations offer at least some ways of mitigating the marginalising 

effects specific to mathematics. I also bring up the schooling and school mathematics contexts in India, 

highlighting the broad pedagogic orientation seen and the frequently observed tendency to have lower  

expectations of students from marginalised backgrounds. I find the academic motivation for the study in 

these deficit views and the absence of sufficient counter-narratives in the Indian context. 

In an attempt to discuss the literature around the theoretical constructs relevant to the study, I look at  

constructs  such  as Mathematical  Discourse,  Mathematical  Thinking,  Mathematical 

Investigations/Explorations and reflect on my stand vis-a-vis these discussions. The formal language of  

mathematics being a major factor that restricts access to mathematics and therefore a concern area of this 

study,  I discuss the literature around the role of language in teaching-learning mathematics in depth, 

including the different perspectives on language and the associated dilemmas and tensions, the role of 

informal language both in school mathematics and the work of research mathematicians. I look at means  

suggested by scholars to overcome the difficulties posed by the formal language and building on students’ 

language.  This  raises  questions  on  how  far  one  can  be  accepting  of  students’  language  without  

compromising on disciplinary constraints and their own future prospects and I have tried to address this in 
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Chapter 5 of the thesis. 

In  Chapter  3,  I  formulate  my  research  questions  in  the  light  of  the  literature,  and  spell  out  my 

methodological stance, details of data collected, and the analytical lens. I adopt the stance of a researcher-

teacher and approach my research questions from a first-person perspective. The audio recordings and the 

teacher diary maintained during the two-year teaching stint constitute the major chunk of my data. In  

addition,  discussions  within  the  research  team,  comprising  of  a  mathematician  and  an  educational 

researcher besides me, constituted an in-situ analysis in addition to serving as data for later reflective  

cycles.  The analysis consisted of repeated cycles of listening to audio recordings and going over the 

teacher  diary,  preparation  of  further  notes,  and  discussions  where  multiple  perspectives  and 

interpretations were considered until there was consensus among the three members of the research team.  

These  reflective  cycles  and  in-situ  analyses  contributed  to  an  understanding  of  the  demands  that  

explorations place on a teacher. In this chapter, I also describe the study context and give an overview of 

the explorations that I facilitated for this study. 

I discuss the findings from the study in Chapters 4, 5, and 6. In Chapter 4, I discuss task features that  

support mathematical thinking and make tasks accessible, especially in a marginalised context. I analysed 

frameworks that  characterise openness  of tasks  from literature  and based on my observations during  

facilitating explorations at the margins, identified the relevant dimensions of openness in such contexts. 

Flexibility and accessibility emerged as key design principles and I sought to operationalise these through 

specific features that could be incorporated in tasks. 

In  Chapter  5,  I  describe  what  mathematical  thinking  in  the  context  of  explorations  looks  like  in  a 

marginalised context. I draw attention to the nature of thinking seen, the processes that students engage 

in, and view these in the light of characterisations of mathematical thinking drawn from the literature. I  

also describe the language and other resources students use to communicate their mathematical thinking 

and note some distinguishing features. Further, I discuss how these support or hinder communication. In 

this  chapter,  I  also  propose  an  acceptability  criterion  for  mathematical  discourse  that  is  more  

accommodating than those spelled out  in the literature.  I  argue that  such a criterion enables  a  more 

encompassing  view  of  mathematical  discourse  leading  to  acceptability  of  what  might  otherwise  be 

considered “inadequate”. 

In Chapter 6, I discuss what it entails for the teacher to facilitate an exploration, and the demands that it 

places on her, especially in a marginalised context. I identify additional challenges that explorations bring 

- in terms of the content knowledge required, in terms of implementing a pedagogy that is responsive to  

students'  contributions  and  in  listening  and  understanding  students’  mathematics  across  distances  in 
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mathematical background, language, and perspectives on what counts as mathematics and mathematical 

language. I offer some teacher support in the form of guidemaps for explorations and identify desirable  

features  of  such  guidemaps  and also  suggest  some  ways  in  which  the  teacher  could  disrupt  deficit  

discourses. 

In the concluding Chapter 7, I discuss the limitations of the study, some implications of this study, and 

pointers to future work.
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2 Literature review

A striking observation from my initial experiences of facilitating explorations in marginalised contexts 

was that the very students who eagerly put forward ideas in these sessions struggled to make sense of and 

solve  problems  in  their  textbooks.  Perhaps  impeded  by  the  textbook  language,  or  the  language  of 

mathematics, or textbook mathematics itself, their exam scores did not seem to reflect the mathematics  

they were capable of doing. The exam performance would limit the further opportunities available to  

them for higher education and jobs. Thus mathematics served to further marginalise them. In this chapter  

I examine literature to understand how mathematics marginalises, paying special attention to language,  

and  also  look at  ways  scholars  have  suggested  to  mitigate  the  marginalising  effect  of  mathematics. 

Although  much  of  the  relevant  literature  was  consulted  at  the  beginning  of  the  study,  reading  and 

reflecting on the literature continued throughout the study. This helped sharpen my analytical lenses and 

guided  what  I  focussed  on.  Among the  many ways  in  which  mathematics  marginalises,  the  narrow 

conceptualisation of school mathematics and the formalised language of mathematics are two key factors 

that stood out in this literature and were prominent in this study as well.

In Section 2.1, I look at the marginalising effects of mathematics and organise these into three broad  

dimensions  -  performative,  disciplinary,  and  language.  In  Section  2.2,  I  look at  some related  ideas,  

namely deficit discourses, deficit noticing, and framing. Considering the role of mathematical language in  

alienating learners,  I  devote  Section 2.3 to  examining the role  of  language in  teaching and learning 

mathematics.  In  this  section,  I  discuss  the different  perspectives  on the role  of  language in  learning 

mathematics, on mathematical discourse, and the tensions and dilemmas involved in teaching-learning 

mathematics  in  marginalised  and  language-diverse  contexts.  I  also  discuss  literature  on  the  role  of 

informal language in learning mathematics. In Section 2.4, I look at some ways scholars have suggested  

to address the marginalising effects of mathematics. In the two subsequent sections, I examine some of  

these  suggestions  further.  I  discuss  explorations  or  open  tasks  as  alternate  ways  of  engaging  with  

mathematics, that enable a broader conceptualisation of what it means to do mathematics by focussing on 

thinking mathematically.

2.1 Mathematics and marginalisation

In this section, I look at the marginalising effects of mathematics. The tendency in the prevailing culture 

to accord undue importance to mathematics scores and the resultant performance pressure, the focus of  

school mathematics on repeating procedures to arrive at expected answers, and the symbolic language of 

mathematics stand out as major alienating factors. I organise the literature on the marginalising effects of 

mathematics around these factors. 
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2.1.1 Marginalisation

The concept of marginalisation permeates current educational research literature, but it eludes a unitary  

definition. Marginalisation takes many forms, not all of which are readily apparent to the observer or even  

the  individual  concerned.  It  occurs  at  different  levels  (individual,  groups,  communities)  and may be 

situated within time and place or internalised to become part of the lived experience of the individual 

(Messiou, 2006; Mowat, 2015). Marginalisation manifests as disenfranchisement stemming from multiple 

factors such as: poverty, locale, race, ethnicity, culture, gender, language, disability or ill-health, religion,  

and other personal circumstances (Chen & Horn, 2022). In the Indian context, the additional factor of  

caste operates to order social space, marginalising some sections of the population and privileging others. 

Mowat  (2015)  draws  attention  to  the  feelings  that  encompass  the  state  of  being  marginalised.  The 

concerned individual or group has a sense of not-belonging; she may be inhibited in accessing the range  

of opportunities open to others, and in feeling a valued-member of the community by making valuable  

contributions within that community. 

While education is supposed to be a route out of marginalisation, schools themselves can act as agents of 

marginalisation. A curriculum that does not take into account individual student strengths and needs, rigid 

systems and structures, and standards-driven programmes which create winners and losers, all tend to 

marginalise some learners.  Petrou et al.  (2009) distinguish between groups which have been formally 

identified as marginalised according to government policy (relevant order or schedule in the constitution) 

and those who are marginalised because they fail to conform to the cultural norms and expectations which  

prevail  within  schools. Esmonde  and  Langer-Osuna  (2013) take  a  similar  stand,  arguing  that 

marginalisation  is  not  assigned  or  assumed  based  on  identity  markers,  but  reproduced  through 

interactions. Thus marginalisation is not merely a preexisting condition of some students’ existences due 

to some socio-cultural structures, but is produced and perpetuated as individuals and structures interact.  

Given the interconnectedness of structures and individual lives in reproducing, sustaining and contesting 

marginalisation,  Chen and Horn  (2022) suggest  the construct  of  critical  bifocality that  attends to the 

interrelationships across structure and agency as an analytic lens to view marginalisation.

2.1.2 Mathematics as marginalising

It is widely acknowledged that mathematics itself can marginalise students (Ewing, 2002; Gates & Noyes, 

2020;  Warren  &  Miller,  2016).  Several  studies  indicate  large  differences  between  mathematical 

performance of the dominant groups and the marginalised groups (Akmal & Pritchett, 2021; Goswami, 

2022;  Graven,  2014;  Singh,  2013;  Subramanian,  2017;  Taylor,  2006),  with  different  countries  and 

educational  systems  having  different  criteria  for  defining  the  dominant/marginalised  groups.  These 
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include  race  and  ethnicity  in  the  US,  immigrants  and  other-language  learners  in  several  European 

countries like Spain and Cyprus, rurality in China and many Latin American countries, social-class lens in 

the UK,  and caste-class  lens  in  India  (Xenofontos  & Alkan,  2022).  Mathematics  has  been variously 

referred  to  as  “critical  filter”  as  it  functions  as  a  gatekeeper  to  higher  education  and  economically  

rewarding jobs  (Sells, 1978, 1981); “social filter” as access to mathematics is mediated by class- and 

culture-based language use  (Zevenbergen, 2002), and as a “fractional distillation device” that is class 

reproductive (Ernest, 2020). School mathematics, as part of the wider education system, acts to confirm 

and/or create the marginalised status of those in society (Jorgensen et al., 2014; Noyes, 2007; Skovsmose, 

2019). 

Skovsmose (2011) refers to the simultaneous empowering and disempowering capacity of mathematics.  

On the one hand, given the spectacular applications of mathematics in technology and everyday routines,  

mathematics education can empower people by providing them with qualifications to participate in a 

variety of practices and to obtain a good position in the labour market. On the other hand, failure in  

mathematics, the debilitating anxiety and shame that this induces can be personally disempowering.

Focussing on marginalisation in mathematics classrooms, Chen and Horn (2022) question the assumption 

that students who are marginalised in society will necessarily be marginalised in mathematics classrooms.  

While  there  is  truth  in  this  assumption,  it  also  carries  the  implication  that  the  route  to  tackle 

marginalisation in the mathematics classroom is to tackle societal structures that are marginalising. The  

authors suggest that narratives about who is good (or not) at mathematics are constructed based on the  

cultures, ideologies, and practices of mathematics and mathematics education rather than filtering into the 

classroom from broader  societal  narratives.  Elaborating on the lens  of  critical  bifocality,  the authors  

suggest that, in addition to factoring in how individual students, teachers and policy makers participate in 

the co-creation and reproduction of the societal- structural patterns and their agency in countering them, 

one also needs to understand the specifics of marginalisation that happens in the maths classroom, the  

structures  specific  to  the  discipline  of  mathematics  that  enable  such  marginalisation  and  ways  of 

countering them. This study is aligned to the latter goals.

2.1.3 Dimensions of mathematical margins

I now look at some dimensions of marginalisation that are specific to mathematics and how these interact 

with and are exacerbated by other marginalising factors especially the socio-economic status (SES). I  

propose that three such dimensions of marginalisation may be identified, that aid in organising research  

on marginalisation due to mathematics.  These are rooted in public perception of mathematics, in the 

disciplinary  canons  themselves,  including  the  specialised  language  of  the  discipline  and  how  they 
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translate to school mathematics:

1) The performative dimension - stemming from the importance accorded to mathematics in the 

society,  leading  to  undue  importance  being  accorded  to  mathematics  performance  and 

stigmatisation of non-performance,

2) The  disciplinary  dimension  -  stemming  from  what  is  generally  accepted  as  ways  of  doing 

mathematics, especially in the school context,

3) The  language  dimension  -  stemming  from  what  are  considered  accepted  ways  of  talking 

mathematics.

While there are considerable overlaps between the last two dimensions I wish to keep the distinction  

because talk (as against writing) happened to be the primary means to do and communicate mathematics 

in the contexts where I worked, and hence the language dimension is of particular interest to me. 

2.1.3.1 The performative dimension

The performative dimension of marginalisation manifests in mathematics functioning as the gatekeeper to 

higher education and opportunities thereof, its anxiety-inducing nature that results in negative attitudes to 

the subject, alienation of learners and their dropping out of maths and sometimes even school, disparities  

in  achievement  levels  between  dominant  and  marginalised  groups,  leading  to  a  vicious  cycle  that  

maintains the status quo. 

Mathematics  serves  as  a  “critical  filter”  (Ernest,  2020;  Schoenfeld,  2002;  Sells,  1978,  1981) with 

certification in mathematics being a prerequisite for entry to courses in higher education and professions 

and jobs. Questions on mathematics find a place in the admission tests for courses and jobs, even when  

the knowledge of mathematics demanded by the course/profession is not aligned to that asked for in the 

screening test, as mathematics score is taken as a proxy for “intelligence”(D’Souza, 2021). In India, at 

post post-secondary level, among the many options available to choose from, the combinations including 

mathematics  are  coveted  by  students  as  these  are  seen  as  a  gateway  to  economically  rewarding 

occupations and upward socio-economic mobility. Students are assigned these courses based in part on 

their  mathematics scores at secondary level.  Mathematics scores thus present  a serious barrier to job  

opportunities for students. Noyes (2009a) calls the separating line between those who have the mandated 

grade C for a pass in the GCSE mathematics to those who do not have, a “magic threshold” to future 

educational and employment opportunities.The high-stakes nature and the implicit judgement ascribed to  

maths performance makes it  anxiety-inducing for many students.  Being good at  mathematics implies 

speed and being competitive with it, and failure to be so leads to feelings of inadequacy and shame in 
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many (Buerk, 1982). In addition, it also instils a sense of low self-esteem in non-achievers. Seen as an  

obstacle  to  educational  and career  advancement,  mathematics  is  feared and avoided by a  section  of  

students when there is an option to do so. Ewing (2002) suggests that issues of pacing, speed of content 

delivery, the linear discipline of mathematics, and the classroom ethos as reasons for students opting out  

of school mathematics and ultimately school in the Australian context. 

Disparities in performance and participation (termed “achievement gap”) of different subgroups of the  

population and underachievement of marginalised groups have been much discussed in literature (Akmal 

& Pritchett, 2021; Bharadwaj et al., 2012; Borooah, 2012; Darling-Hammond, 1995; Flores, 2007; Noyes,  

2009b; Secada, 1992). Studies have shown that one’s social and cultural backgrounds deeply influence 

mathematics performance (Brown et al., 2011) and that such findings have remained relatively consistent 

over the last 3-4 decades and have been replicated across diverse countries  (Zevenbergen, 2002). Low 

expectations and negative perceptions of students based on class/ethnicity/language contribute to lower  

achievement (Anyon, 1980; Horn, 2007; Namrata, 2011). Research also points out how these perceptions 

lead to a differential treatment that further restricts opportunities. For example, perceptions that some 

groups are ill-equipped to receive anything other than didactic instruction leads to their being subjected to  

a “directive, controlling and debilitating pedagogy” and “substandard instruction that does not adequately 

prepare them to function in society” (Solomon, 2008; Strutchens, 2000, p. 7). A study of literature on the 

achievement gap underlines the entangled nature of these factors, rather than any factor being the primary 

cause of low achievement.

The role of mathematics as a “social filter” has also been discussed by scholars ((Ewing, 2002; Jorgensen,  

2018;  Noyes,  2007,  2009b;  Skovsmose,  2023).  Noyes  (2009b)  points  to  the  socially  differentiated 

patterns of participation in advanced level mathematics courses in the UK, which one can expect to be  

replicated in STEM professions. Through two case-studies, Jorgenson et al. (2014) highlight “the subtle  

and coercive ways in which the practices of the field of mathematics education allow greater or lesser 

access to the hegemonic knowledge known as school mathematics depending on the cultural backgrounds 

and dispositions of learners.” (p 221). They point out that a vicious cycle is developed when low SES 

students, who are often also classified as “underachieving”, find themselves with a similar cohort. This  

results  in slower progression and continued underachievement in assessments,  thus widening the gap 

between these students and the higher SES groups. Noyes (2007) points to how in spite of an all-ability 

grouping and common curriculum intended to overcome social differences, the mathematics classroom 

reinforces the social differences between members of different social groups. This illustrates the socially 

reproductive  tendencies  of  mathematics  classrooms  and  how  it  acts  to  confirm  and  or  create  the 

marginalised status of those in the society. 
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2.1.3.2 Disciplinary dimension - School mathematics paradigm and textbook culture

Skovsmose  and  Penteado  (2015)  identify  four  characteristics  of  what  might  be  called  mainstream 

mathematics education - as an enacted curriculum defined by the textbook, practice problems that have  

one correct answer and all and only the necessary information to solve them, focus on error elimination,  

and  evaluation  of  performance  through  end  of  the  year  examinations.  The  focus  of  the  “exercise 

paradigm”  or  “school  maths  tradition”  on  following  a  set  procedure  and  repetitive  practice  to  gain 

mastery  discourages  alternate  ways  of  thinking  and  multiple  approaches.  The  approach  to  teaching 

mathematics  described  above  finds  parallels  in  the  larger  teaching  culture  in  the  Indian  context  

(Sarangapani, 2020; Subramanian et al., 2015). 

Solomon (2008) posits that “traditional mathematics teaching and curricula have the effect of denying 

many  learners  access  to  high-status  mathematics  knowledge.  In  particular,  it  denies  them access  to 

meaning-making  in  mathematics,  perpetuating  narrow epistemologies,  marginalised  identities,  and  a 

corresponding lack of ownership” (p137). Adiredja and Louie (2020) suggest that views of mathematics 

as  objective  lead  to  mathematical  activity  in  schools  being  framed  as  rote  practice,  involving 

memorization of established procedures and repetitive computation. This framing does not allow much  

space  for  students  to  demonstrate  their  mathematical  competence  as  competence  itself  is  narrowly 

defined. With a narrow definition of competence, the set of people who are considered mathematically  

competent  also  narrows  down leading to  marginalisation.  In  addition,  it  also leads  to  ignoring  such  

aspects  as  sense-making,  experimentation,  communication,  and  creativity  that  are  important  to  the 

practice of mathematics and leads to students distancing themselves from mathematics.

School mathematics is perceived to be different from the mathematics encountered in everyday activities  

and that practised by different cultures and the latter is considered to be outside the purview of “real”  

mathematics. Conceptions of mathematics as universal, and objective leads to the expectation that all  

students  across  the world would learn the same set  of  mathematical  skills  and facts  using the same 

curriculum. Hunter (2022) argues that privileging the White middle-class ways of knowing and being in 

the mathematics classroom leads to devaluing the “funds of knowledge” of some communities and denies 

the  learners  from  these  communities  the  opportunity  to  draw on  what  they  know  from  their  lived 

experience, leading to alienation. She also argues that positioning mathematics as value-free and culture-

free leads to narrow views of mathematics as contained only within school settings. 

Being able to successfully engage with day-to-day activities that draw on applications of mathematics in 

ways that are different from the “one right way” of school mathematics or bringing in the approaches 

learned from everyday activities to solve a problem of school mathematics is not generally considered 
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acceptable.  Borba  and  Skovsmose  (1997)  drive  this  point  through  a  typical  proportional  reasoning 

question. “What is the price of the food needed to follow a given recipe (for four persons) when nine  

persons are expected for the party? All and only the necessary information to solve the question being 

given the student is expected to produce the unique correct answer. However a response along the lines of 

“I know a slightly different recipe, and if we use some extra carrots, we do not need so much of this, I  

think it might even taste better…” is appropriate to handle the real-life situation and mathematical as well,  

but is not acceptable to handle the make-believe real life problem of school mathematics. Cooper (2002) 

identifies such pseudo-realistic problems as a factor that relatively disadvantages students from lower  

socio-economic sections. These students are more likely to read such questions too literally and they 

generate sensible but mathematically unacceptable solutions (Solomon, 2008). 

We thus see that narrow definitions of what counts as mathematics also tend to marginalise learners with 

diverse backgrounds. Conceptions of mathematics as being composed of sequential building blocks to be 

mastered in a specific order excludes some sections of students by creating hierarchies of “fast learners”  

and “slow learners” denying opportunities to the so-called “slow learners”. We now look at how the 

language of mathematics marginalises. 

2.1.3.3 Language Dimension

The role of language in teaching and learning mathematics and linguistic structures that are specific to the 

language of mathematics has been the focus of research since the 1980s (O’Halloran, 1998, 2015; Pimm, 

1987;  Schleppegrell,  2007).  The  symbolic  and  stylised  language  of  mathematics  and  the  inherent 

formalism have been identified as an entry-barrier to mathematics. A related issue I would like to flag,  

though not limited to the subject of mathematics, is the difference between Language of Learning and  

Teaching (LoLT) and the home language of the student. In the current times, multilingual classrooms 

have become more the norm rather than the exception.  This may be attributed to multiple reasons -  

political, economic, social, etc. A student may have a LoLT different from his/her home language for  

multiple  reasons.  The  language  may  be  imposed  for  reasons  of  national  pride,  or  political  and 

administrative reasons. English has the status of an international language and the language of scientific 

communication and tends to be the preferred language, especially in former British colonies. The political  

nature of language and the societal tendencies to prefer some languages over others adds an additional 

layer to the complexities and leads to marginalisation irrespective of mathematics. 

Mathematical language is marked by a liberal use of symbols and equations and an impersonal tone,  

befitting the universal truths that it is supposed to convey. Scheppegrell (2007) identifies multi-semiotic 

formations,  dense  noun  phrases  that  participate  in  relational  processes,  the  precise  meanings  of  
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conjunctions, and implicit logical relationships that link elements in mathematics discourse as features  

that  add  to  the  difficulty  of  mathematical  language.  The  specialised  vocabulary  with  a  number  of  

polysemous  terms  which  overlap  with  everyday usage,  the  conciseness  obtained  through  the  use  of  

symbols  and  discursive  rules  that  are  often  not  made  explicit  (Sfard,  2007) makes  mathematics 

inaccessible to those who are not conversant with this language. 

In low-resource contexts, few students attain autonomy in access to mathematical language. They use 

everyday language intermingled with mathematical terms to get their ideas across. Many concepts of  

mathematics require more than everyday language for a clear disambiguation, for example, the difference 

between concepts  of  difference and  proportional  comparison.  Discussing  the  challenges  involved in 

adapting everyday language to express mathematical ideas,  McGregor  (2002) points to the difficulties 

that  even  elementary  concepts  such  as  expressions  of  number  comparisons  generate.  Expressing  a  

difference of 4 between two numbers, say 1 and 5, as “there are four numbers in between” or “three digits 

missing” or “four numbers higher” do not lend themselves to a connection with the operation “add 4” or 

the  idea  of  “4  more  than”.  These  informal  expressions  are  more  likely  to  be  encountered  in  talk, 

especially when the ideas being discussed are “in the making” and not yet consolidated. In contexts where 

fluency in the LoLT or familiarity with academic language is limited, students are more likely to draw on 

informal versions of their first  language or move across languages to communicate ideas. Given that  

spoken language is perhaps the only recourse to sense-making in such contexts, it becomes an important 

part of the classroom discourse, integral to making mathematics accessible. However, this language does 

not figure in the textbook, nor does the teacher have any guidelines as to what is acceptable, or how to  

manage the transition towards textbook-like discourse.

2.1.3.4  Class - mediated language

Zevenbergen  (2000)  points  out  that  class-  and  culture-based  language  use  also  mediates  access  to 

mathematics  via  displays  of  linguistic  and  cultural  capital,  which  mark  out  an  ascribed  status  of  a  

competent  learner.  Zevenbergen  (2002) differentiates  between  the  problem  arising  from  lack  of 

familiarity with the LoLT and the lack of familiarity with the language conventions, forms, and styles 

within the formal school context. She points out that students who are marginalised by their social class,  

may be native speakers of the LoLT, but the English (or any other language depending on the part of the 

world in focus) used to teach mathematics and the form of English used in mathematics itself is a very  

particularised  form,  that  is  very  different  from  the  English  used  by  students  from  working  class 

backgrounds. The language used and valued in a formal school context is that of the middle classes.  

Middle-class discourse patterns are marked by “elaborated codes” that involve syntactical complexity, 
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lexical  diversity  whereas  the  working-class  discourses  are  marked by “restricted codes”  and simpler  

syntactic structures (Bernstein, 1990). 

The  notion  of  elaborated  code  involves  “embellished  language”  used  in  middle-class  families.  For 

example, when parents ask their children to locate items, they are likely to use rich positional language -  

“the red jumper on the top left-hand shelf” - whereas the restricted code of the working class is more  

likely to be devoid of such contextual clues.  The interaction in working-class homes is  restrictive in 

content  and  prose,  and  so  children  encounter  a  very  different  experience  when  they  enter  school.  

Depending on the alignment of home and school codes, some students are placed more favourably than  

others (Zevenbergen, 2002).

Where students are able to speak, use and understand the language of the school, they are more likely to  

unpack the messages and content being conveyed by the teacher than students who are less familiar with 

the language and hence unable to ‘crack the code’ of school English. (p42)

Similarly, some practices are seen as more legitimate than others and students who are able to display or 

assimilate those practices are positioned more favourably. For example, students who display street talk 

and skills in street selling may be positioned as marginal within the field of education. The discourse style 

valued  in  academic  settings  encourages  elaborated  speech,  using  questioning,  hypothesising,  and 

argumentation.  Students  who experience  this  style  at  home are  at  an  advantage  and others  are  at  a  

disadvantage. Therefore,  underachievement by some groups of students could be seen as a mismatch 

between the language of the student and the language of the school rather than as a deficit or lack of 

ability in the student and ways sought to find ways of addressing this language difference.

I highlight the complexity of the language dimension, marked by multiple dichotomies - that between the 

first/home language and the LoLT; the class-mediated school language and street/home language; the  

academic language marked by specific vocabulary and registers and everyday language; and the formal 

and informal language used in mathematics. All of these dichotomies present challenges to marginalised 

students. These are central to our study, given that one of our goals is to investigate means of addressing 

the language dimension of the margins. I revisit the literature on the role of language in mathematics  

education in Section 2.3 of this chapter focusing on these issues in greater detail. 

2.2 Deficit Discourses, framing and noticing

Closely related to the construct of margins is that of deficit discourses. If marginalisation is the exclusion 

of those who do not conform to the “norms” of the dominant group, deficit discourses imply a value 

judgement on these differences. Deficit discourses are marked by the tendency to view these differences  
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as  dysfunctionalities,  as  deficits,  or  shortcomings,  that  need  to  be  “normalised”  by  appropriate 

interventions.  Such  discourses  also  tend  to  take  a  “blame  the  victim”  orientation,  holding  the 

individual/community responsible for their shortcomings (Davis & Museus, 2019b; Valencia, 1997). Peck 

(2021) defines  deficit  perspective  in  educational  contexts  as  “a  propensity  to  locate  the  source  of 

academic problems in deficiencies within students, their families, their communities, or membership in  

social  categories such as race and gender”.  Deficit  discourses are “systems of meaning that  circulate  

across society, exercising a pernicious influence even on teachers who consciously wish to counter them” 

(Adiredja  &  Louie,  2020).  Such  discourses  are  prevalent  in  mathematics  education  at  every  level, 

including instruction from preschool to university as well as research and scholarship, and cause harm to  

students (Adiredja & Louie, 2020; Davis & Museus, 2019a; Peck, 2021). Deficit discourses do not stand 

on their own but are reinforced by other narratives, some of them apparently neutral and others which are 

clearly  problematic.  In  the  context  of  mathematics  education,  these  include  narratives  about  the 

universality, objectivity, and sequential nature of mathematics and those about the ability, motivation, and 

needs of students from marginalised groups. They are located not only in the minds of biased individuals  

but  also  in  systems,  institutions,  and  society  at  large  and  are  socially,  culturally,  and  historically 

constructed. These narratives permeate society and are culturally so dominant and naturalised that they 

are interpreted as common sense. Adiredja and Louie (2020) suggest that deficit discourses at the societal  

level  percolate  to  the  local  communities  of  practice  and  further  down  to  individual  teachers  and  

researchers  and  hence  argue  that  one  needs  to  examine  the  systemic  nature  of  such  discourses  to  

understand why they persist. 

Adiredja and Louie (2020) suggest that prevailing perceptions of mathematics as universal, objective and 

sequential  contribute  to  deficit  discourses,  despite  appearing  neutral.  This  view that  mathematics  is  

universal  expects all  students  to  learn the same set  of  mathematical  facts and skills,  using the same 

mathematics curriculum independent of contexts. There is no room to take into account student choices,  

perspectives,  and  interests.  Also,  particular  language,  symbols,  algorithms,  and  conventions  are 

considered standard, and other ways of thinking and knowing as inferior. The view that mathematics is  

objective leads to seemingly objective standards of mathematical thinking marked by an over-privileging 

of formal knowledge such as standard definitions and procedures and a formal mathematical language to 

encode  such  knowledge.  These  standards  lead  to  de-valuing  of  students’  informal  mathematical  

knowledge and language. The perception that mathematics is sequential, composed of building blocks 

that must be mastered in order from basic to advanced also leads to deficit  discourses by producing  

hierarchical categories of students - those who are ahead, on track, or behind, and those who are strong or  

weak.  Such  classifications  lead  to  the  “weak”  students  and  the  ones  “left  behind”  being  denied 

opportunities  to  engage in  rich mathematics  under the pretext  that  they are  “not  ready” for  it.  Thus  
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Adiredja and Louie point out multiple ways in which seemingly neutral perceptions about mathematics 

lead to deficit discourses. 

Gorski (2011) discusses the layers of socialisation that condition educators ( and education researchers),  

like everybody else, to buy into certain myths and stereotypes. Thus, it is not a purposefully regressive  

teacher acting in purposefully oppressive ways that says “It is great if these children pass” but one who  

has  been socialised  by the  deficit  hegemony to buy into  the myth that  children  from disadvantaged 

backgrounds are not educable. Once the blame is pinned on the family circumstances of the student, there  

is nothing that the teacher (or system) can do to help the student and thus, the teacher’s commitment and 

willingness to extend herself to provide the support that the student needs to succeed in the exams is  

diminished.

Peck  (2021) identifies  some  ways  in  which  deficit  perspective  harms  students;  it  limits  access  to 

educational opportunities, results in lowered expectations for students, limits the role the instructor can  

play in students’ education and more importantly, blinds one to the harm being caused by preventing 

critical introspection and perpetuates oppression and privilege. It also results in “ability-based” streaming,  

arguments  about  the educability  of  certain groups of  students  that  are  based on so-called genetic  or  

cultural deficits, and the defence of the deep unquestioned assumptions of the society (Valencia, 2010). 

Deficit  discourse may lead to  deficit  noticing -  where teachers attend to  errors and shortcomings of  

marginalised students and ascribe these to deficiencies in students, their families or their cultures, ignore 

their strengths and disregard schooling practices and social structures that limit students’ opportunities to  

learn and thrive. 

Teacher noticing refers to the capacity to attend, interpret and respond to classroom events. Attending  

involves recognising notable aspects of students’ work, interpreting involves assigning meaning to the  

work that has been attended to and adopting a specific point of view about students’ understanding, and  

responding involves proposing teaching strategies based on the observed thinking (Jacobs et al., 2010).  

What teachers notice depends largely on what they value, and is “tied to their orientations, including  

beliefs,  and  resources,  including  knowledge”  (Schoenfeld,  2011).  Noticing  is  influenced  by  social, 

cultural and political processes and in turn influences these processes (Scheiner, 2023). The Attending-

Interpreting-Responding (AIR) framework fails to acknowledge the influence of culture and power on 

what a teacher notices. Acknowledging the influence of how teachers frame their object of attention on  

what they notice, Russ and Luna (2013) suggest that changes in noticing are linked to this framing. Louie  

et al. (2021) theorise noticing from a sociopolitical perspective and draw attention to social, cultural and  

political aspects of noticing by including the element of “framing” to the AIR framework of noticing.
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Frames provide interpretive contexts that support participants in a given situation to understand what kind 

of task they are engaged in, what sort of behaviour they are expected to engage in and what kinds of  

knowledge are valuable. Frames generally refer to the “hidden” layer that shapes what a teacher notices 

and how she  responds.  Framing is  the  interactive  process  of  co-constructing  a  particular  frame and 

coordinating activities around it (Louie et al., 2021). Framing affects perception by making some aspects 

of the situation seem more relevant than they would otherwise. Thus what we see and how we interpret a 

situation is constrained by how we frame the situation. Framings are shaped by cultural attitudes towards 

nature of mathematics and its teaching and learning, beliefs about the capabilities of different groups of 

students, the need to address deficiencies in their thinking, and can be seen as socially and culturally  

defined. Framings orient participants towards what to pay attention to. 

Deficit  based  framing  views  student  thinking  as  shortcomings  or  failures,  and  reinforces  social  and 

educational  inequalities.  This  hinders the development  of  a positive self-  perception of mathematical  

ability among students. Louie et al. (2021) identify three culturally dominant frames which appear neutral  

but contribute to exclusion 1) Framing mathematics learning as absorption of a universal, objective, fixed 

body  of  knowledge;  2)  framing  students  primarily  as  receivers  of  mathematics;  and  3)  framing 

interactions  between  students  as  relatively  inconsequential  for  learning  and  secondary  to  individual 

behaviour and achievement. 

Elaborating on how these frames lead to deficit noticing, Louie et al. (2021) suggest that from a frame of  

mathematics learning as absorption of universal and fixed body of knowledge, teachers may choose to  

evaluate how well students’ thinking meets the standards, affirm correct answers and remediate errors.  

Divergent approaches may neither be noticed nor valued. Framing students as receivers of mathematical 

knowledge erases students' personal and cultural resources and leads to teachers not attending to students  

beyond their  mathematical  performances and ranking,  labelling and grouping students based on their 

performance.  The  frame  of  school  learning  as  an  individual  accomplishment  leads  to  teachers 

discouraging student talk and tolerating it as long as it is “on task”. 

Having noted the marginalising effects of mathematics and the ensuing deficit discourses, scholars have  

suggested various measures to counter deficit discourses, like using students’ language as resource, anti-

deficit noticing and framing, and having a more encompassing conceptualisation of what it means to do 

mathematics.  Language  is  acknowledged  to  be  a  stumbling  block  for  access  to  mathematics  in  the 

marginalised contexts (Robertson & Graven, 2020; Sibanda, 2017; Subramanian & Visawanathan, 2023), 

and this was corroborated by my initial experiences as well. Therefore in the following section, I take a 

closer look at literature around mathematics and language. 
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2.3 Language in mathematics learning

The role of language in mathematics education has been conceptualised in different ways. Some scholars 

consider mathematics itself as language while others consider mathematics as a mode of thinking that is 

removed from the ambiguities of human languages  (Barwell, 2008a). However it is widely recognised 

that mathematics involves a distinctive form of language use (Halliday, 1978; Pimm, 1987), and that this 

specialised language makes it difficult to access for learners, more so for the marginalised  (Kaplan & 

Kaplan, 2014; Schleppegrell, 2007; Zevenbergen, 2000). In this section, I look at some key ideas and 

issues pertaining to the role of language in teaching and learning of mathematics. 

2.3.1 Perspectives on role of language in mathematics learning

Moschkovich (2002) identifies three theoretical stances reflected in research into the relationship between 

language and mathematics learning:  learning mathematical  language entails  acquisition of specialised 

vocabulary,  learning mathematical  language involves construction of multiple meanings, and learning 

mathematics implies participating in mathematical discourse practices. 

2.3.1.1 Learning mathematical language entails acquisition of specialised vocabulary

From the perspective that learning mathematics entails acquisition of specialised vocabulary, the technical  

nature of mathematical terms and vocabulary and the difficulties posed by these are identified as hurdles 

to learning mathematics (Pimm, 1987; Riccomini et al., 2015; Schleppegrell, 2007). The metaphorical 

extension of everyday words to mathematical use (for example, ‘product as outcome’ in the everyday 

sense becoming ‘product as outcome of multiplication’ in mathematics) resulting in an overlap between 

everyday and mathematical language, and vocabulary that is specific to mathematics (Least Common 

Multiple, tetrahedron) are some problem points. Also, structures of language underlying the vocabulary  

used in mathematics  have been the focus of  attention of  scholars.  The following features  have been 

identified as presenting challenges:

●  multiple  semiotic  systems  (symbols  and  equations;  graphs,  diagrams  and  other  visual 

representations; language), 

● dense noun phrases (volume of rectangular prism with sides a,b,c), 

● a grammatical  patterning where a series of  processes being presented through nouns or noun 

phrases as if they were things ( The expression a2
 + (a + 2)

2 
= 340, or the sum of squares of two 

consecutive even numbers is 340 can be unpacked into a series of processes - squaring an even 

number a, squaring the consecutive even number (a + 2) and adding these together and equating 
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this thing to 340.) 

● being and having verbs (X has parallel sides versus X is a parallelogram) , 

● conjunctions with technical meanings (or usually is interpreted as exclusive or in everyday usage, 

but as inclusive or unless specified otherwise, in mathematical use), 

● implicit logical relationships (O’Halloran, 1998, 2015; Schleppegrell, 2007). 

The view that learning mathematics entails acquisition of vocabulary implicitly presents a simplified view 

of language as a  lexicon, prioritising knowing terms and their meanings over how and when to use a 

particular  term.  Focusing on students'  failure  to  use a particular  technical  term,  hides how a student  

constructs meaning for mathematical terms drawing on such resources as gestures, objects and everyday 

experiences.

2.3.1.2 Learning mathematical language entails using the mathematics register

The second perspective that learning mathematics involves constructing multiple meanings emphasises 

word  meanings,  understanding  multiple  meanings  and using  language  in  situations.  This  perspective 

draws on the notion of the mathematics register. Halliday (1978) defined register as follows. 

A register is a set of meanings that is appropriate to a particular function of language, together with the 

words and structures which express these meanings. We can refer to the “mathematics register,” in the  

sense  of  the  meanings  that  belong  to  the  language  of  mathematics  (the  mathematical  use  of  natural  

language,  that  is:  not  mathematics  itself),  and  that  a  language  must  express  if  it  is  being  used  for  

mathematical purposes. (p. 195)

The  development  of  the  mathematics  register  includes  more  than  adding  new words.  Pimm  (1987) 

suggests that speaking mathematically does not just involve the use of technical terms, but also modes of  

reasoning and arguing that are characteristic of the discipline. Within this perspective the main language  

related difficulty encountered by students is the difference between everyday and mathematical registers  

and ensuing obstacles to communication. For example, the word prime which carries different meanings 

in prime number, prime time and prime rib. Learning mathematics involves in part a shift from everyday 

to more precise meanings reflecting more conceptual knowledge. This can be understood as movement  

towards the mathematical register. 

Positing  the  everyday  register  and  the  mathematical  register  as  binaries  and  presenting  learning  as  

movement from one to the other may lead to an emphasis on the obstacles in moving from one to another  

and this can easily turn into a deficiency perspective. Such a perspective also obscures the benefits that  
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can be derived from interweaving both the registers (Forman, 1996). Everyday meanings and metaphors 

can  also  function  as  resources  for  understanding  mathematical  concepts.  Rather  than  emphasise  the 

limitations of the everyday register, it is important to understand the different purposes these registers 

serve. 

2.3.1.3 Learning mathematics implies participating in mathematical discourse practices

From the third perspective, learning mathematics is viewed as a discursive activity and as participating in  

a  community  of  practice  (Lave  & Wenger,  1991;  Lemke,  1990),  which  includes  developing  socio-

mathematical norms (Yackel & Cobb, 1996) and using multiple material, linguistic and social resources. 

This perspective assumes that learning is inherently social and cultural and participants bring multiple  

views to a situation, that representations have multiple meanings for participants and these are negotiated 

through conversations. This perspective emphasises the situated and socio-cultural nature of language and 

mathematics learning. Situated and socio-cultural theories of learning have focussed greater attention of  

mathematics education researchers on the social environment in which learning takes place and the role of  

language and communication that happens within that environment  (Lerman, 2000).  Policy documents 

that  highlight  the  role  of  communicating  mathematically  like,  The  Position  paper  on  Teaching 

Mathematics, (NCERT, 2006);  Principles and Standards of School Mathematics,  National  Council  of 

Teachers of Mathematics, (NCTM, 2000); US Common Core State Standards Initiative, (CCSS, 2010); 

UK Department for Education (DfE, 2013), and developments in classroom practice also bring to the fore 

the need for language-rich activities in the classroom and consequently the need for research attention on  

the relation between language and mathematics.  The increasing multilingual  nature of  these learning 

environments  and the questions  around which  and whose  language will  be privileged have come to 

prominence following the “social” and “socio-political” turns in mathematics education (Lerman, 2000; 

Valero, 2004). Also the widening of conceptualisation of language of mathematics from considerations of 

words and symbols to  participating in the practices of mathematics have led many scholars to analyse 

these  practices  through  the  lens  of  Discourses  (Gee,  1996).  Moschkovich  argues  that  a  situated-

sociocultural  perspective  expands  what  counts  as  competence  in  communicating  mathematically  and 

provides an alternative to the deficiency models of students who are not adequately conversant with the  

academic language in the LoLT by being open to the use of the variety of resources that students use to  

communicate mathematically and helping teachers to build on these resources. 

Defining  mathematical  language  as  consisting  predominantly  of  specialised  vocabulary  or  use  of  a 

register ((Halliday, 1978), tends to draw attention to incorrect language use by students and may lead to 

deficit views. Given the aim of this study to come up with broader conceptualisations of mathematical  
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language that are more accommodating of students’ languages, I take the stand that learning mathematics  

implies participating in mathematical discourses. In the following section, I look at characterisations of 

mathematical discourse in literature. 

2.3.2 What constitutes Mathematical Discourse

In this section, I discuss three perspectives on what constitutes mathematical discourse - Commognitive  

theory (Sfard, 2008), Academic Literacy Framework (Moschkovich, 2015a) and a Dialogic Perspective 

on discourse ((Bakhtin, 1981; Barwell, 2016).

2.3.2.1 Commognitive theory

Commognitive theory (Sfard, 2008) envisages mathematics as a historically established discourse, and 

learning mathematics means becoming a participant in this special form of communication. According to 

Sfard, a discourse counts as mathematical if it deals with mathematical objects such as quantities and  

shapes. Sfard differentiates between colloquial and literate mathematical discourses and suggests that  

literate  or  scholarly mathematical  discourses  should be the object  of  school learning.  The distinctive 

features that she marks for mathematical discourses include 1) uses of words that count as mathematical  

2) the use of uniquely mathematical visual mediators in the form of symbolic artefacts that have been 

created specifically for the purpose of communicating about quantities 3) special discursive routines with 

which  the  participants  implement  well-defined  tasks  and  4)  endorsed  narratives  such  as  definitions, 

postulates and theorems. Literate mathematical discourses are marked by the precision and rigour of their  

routines.

1) Word use: The objects of mathematical discourse are discursively created and are not perceptually 

accessible. Word use in a mathematical discourse is predominantly structural and impersonal, whereas in  

a  colloquial  discourse  it  is  mainly  personal  and  operational.  An  operational  utterance  presents  the 

operations as somebody's action. Since actions must have a performer, operational utterances are largely 

personalised. In a structural presentation, there is no need for a performing subject. The utterance “7 and 

8 make 15” is an immutable fact about the numbers which is independent of a person performing the 

addition, whereas the utterance “I put the 8 down below the 7 and added” is more likely to be about the  

numerals 7 and 8 and not the corresponding numbers. The second utterance is personal, operational and  

not objectified.

2)  Visual  mediators:  Colloquial  discourses,  including colloquial  mathematical  discourses,  are  usually 

mediated by images of concrete objects, whether actually seen or imagined and these are referred to by  

nouns and pronouns and exist independently of the discourse. Literate discourses on the other hand are 
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mediated by symbolic artefacts invented for the sake of mathematical communication. Concrete or iconic 

mediators  facilitate  production  of  narratives,  but  mathematicians  regard  symbolic  realisations  as  

necessary for the endorsement of narratives.

3) Routines: Routines are a set of meta-rules that specify when and how repetitive discursive action is 

employed. Mathematical routines aim to produce narratives about mathematical objects, whereas practical  

routines  produce  changes  in  discourse-independent  objects.  Sfard  identifies  three  different  kinds  of  

routines  1)  exploration,  whose  implementation  leads  to  an  endorsable  narrative  or  substantiates  a  

narrative.  2) deeds, which are routines that involve practical  action resulting in a physical  change in  

objects or the environment and 3) rituals, which are sequences of discursive actions that aim to create and  

sustain a bond with other people. Sfard suggests that deeds and rituals are stages in the development of  

exploratory routines.

4) In colloquial mathematical discourses narratives are endorsed on the basis of empirical evidence, that  

is we endorse 2 + 2 = 4 because whenever we put two pairs of objects and count, the counting ends with 

the word four. In scholarly mathematical discourse on the other hand, a narrative becomes endorsable if it 

can be derived according to generally accepted rules from other endorsed narratives.

2.3.2.2 Academic Literacy for Mathematics (ALM) framework

Widening  the  notion  of  “mathematical  discourse”  from  the  “literate  mathematical  discourse” 

characterised  by  Sfard,  Moschkovich  (2015a) suggests  that  academic  mathematical  discourse  is  not 

principally  about  formal  or  technical  vocabulary,  nor  should  it  be  confused  with  the  “formal”  or  

“textbook”. She takes a more complex view of mathematical proficiency as participation in discipline  

based practices  that  involve conceptual  understanding and mathematical  discourse.  She suggests  that 

separating language from mathematical thinking and practices can have negative consequences for the 

marginalised  groups,  making  them  seem  deficient,  since  they  may  not  be  able  to  express  their  

mathematical ideas through language, but may still be engaged in mathematical thinking and participate  

in mathematical practices that are less language intensive. Drawing on a sociolinguistic perspective and  

expanding the  meaning of  “literacy”  beyond use  of  words  and language  to  include  broader  literacy  

practices, Moschkovich adds two extra dimensions to academic literacy: a) that it includes the vernacular  

even when engaging in academic literacy practices b) it draws on a full communicative repertoire that  

includes multiple modalities.  She defines Academic Literacy in Mathematics (ALM), which includes 

three components namely mathematical proficiency, mathematical practices and mathematical discourse.

Drawing on Kilpatrick et al.  (2001), Moschkovich defines mathematical proficiency as comprising five 
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intertwined  strands:  conceptual  understanding,  procedural  fluency,  strategic  competence,  adaptive 

reasoning and productive disposition. These five strands provide a cognitive account of mathematical 

activity, focussed on knowledge, metacognition and beliefs. Mathematical practices include the “taken-

as-shared  ways  of  reasoning,  arguing  and  symbolising  established  while  discussing  particular 

mathematical ideas” (Cobb et al., 2001, p. 126). These practices can be considered to be using language 

and other  symbol  systems to think,  talk and participate  in  practices  that  are  the objective of  school 

learning.  They  include  problem  solving,  sense-making,  reasoning,  modelling,  looking  for  patterns,  

structure or regularity, etc. The focus on practices shifts from a purely cognitive account of mathematical  

activity  to  ones  that  assume socio-cultural  dimensions  as  well.  This  has  implications  for  connecting 

practices  to  discourse,  as  discourse  is  central  to  participation  in  practices.  Moschkovich  defines 

mathematical  discourse  as  “communicative  competence  necessary  and  sufficient  for  competent 

participation  in  mathematical  practices”  (p  47).  Mathematical  discourse  is  more  than  language  and 

involves  other  symbolic  systems,  artefacts.  Meanings  develop  through  participation  in  mathematical  

practices. Some general characteristics of academic mathematical discourse that Moschkovich  (2015a) 

marks are: particular modes of argument, precision, brevity, logical coherence, abstraction, generalisation,  

searching  for  certainty,  etc.  She  also  suggests  that  everyday  and  academic  registers  should  not  be 

construed as opposites and that  literacy in mathematics goes beyond competence with words.  “What 

makes  a  discussion  mathematical  is  not  the  use  of  formal  mathematical  words,  but  mathematical  

concepts,  which  can  sometimes  be  expressed  using  informal  words  and  phrases,  and  mathematical 

practices, such as justifying a claim, which are not at the word level” (Moschkovich, 2015a, p. 56).

Moschkovich also highlights the need for tasks that will provide opportunities for students to participate  

in the full spectrum of academic literacy as defined here and organising classroom instruction so that 

students actively use mathematical concepts and show their conceptual understanding through explaining 

and justifying.  Moschkovich  (2000) suggests  that  use  of  everyday  language  and  discourse  practices 

should not be seen only as obstacles to learning mathematics but as resources to be used to communicate 

mathematically.  Several  scholars  have  drawn  attention  to  the  interweaving  of  the  everyday  and 

mathematical  discourses  is  seen  in  the  classroom  discussions  (Barwell,  2016;  Forman  et  al.,  1997; 

Moschkovich, 2003). There are many authentic mathematical discourse practices and such practices may 

vary  across  different  communities  (for  example  elementary  and  secondary  teachers,  or  research  

mathematicians and statisticians), across time, cultural contexts and depending on the intended purpose 

(Richards, 1991). Hence whether or not student talk sounds mathematical depends on how we understand 

and view the  distinctions  between these  different  genres.  There  is  a  need  to  clarify  the  differences 

between mathematical ways of talking and formal ways of talking mathematically (Moschkovich, 2003).
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2.3.2.3 Dialogic perspective on discourse

Aligned to the view that mathematical  does not necessarily mean  formal,  Barwell  (2016) critiques the 

tendency to view progress  as movement  from the first  language to the LoLT, from informal talk to 

academic talk, and from everyday to mathematics register. Adopting a Bakhtinian  dialogic perspective 

(1981),  he suggests that the notions of formal and informal are not absolutes and emerge in relation to  

each other and to the other aspects of the context in which they are embedded. Barwell argues that a rigid  

distinction  between them is  not  necessarily  productive  and that  the  tension  between the  formal  and  

informal  languages  is  but  an  instance  of  the  continual  tension  between  a  unitary  language  and 

heteroglossia (Barwell, 2005, 2016).

The  notion  of  heteroglossia  captures  the  nature  of  classroom interaction,  especially  in  a  context  of  

language diversity. The classroom interactions include a number of social languages of each student’s 

background  (of  class,  caste,  gender,  race  and  so  on),  social  languages  of  school  (the  language  of  

mathematics, of curriculum, of textbooks, etc) and the languages of the teacher. Heteroglossia (Bakhtin,  

1981)  manifests  as  the  stratification  of  language  into  linguistic  dialects  based  on  formal  linguistic  

markers;  into  languages  of  social  groups;  “professional”  and  “generic”  languages;  languages  of 

generations, etc. Bakhtin calls stratification and heteroglossia the centrifugal forces of language that exist 

alongside the centripetal forces of verbal-ideological centralisation and unification. Just as self-expression 

would be impossible without diversity, language would be meaningless without a degree of uniformity. 

Along with the multiple languages present in a class, there is also the unifying force of the LoLT and the  

need to communicate a fixed version of mathematics in a recognisable way (Barwell, 2012). The tension 

between centripetal force of unitary language and the centrifugal force of heteroglossia is present in and 

shapes  each  utterance.  This  tension  is  inherent  in  language  and  the  tension  between  the  unified  

standardised  forms  of  mathematical  expression  and  more  diverse  idiosyncratic  expressions  of 

mathematical meaning is but an instance of this tension. Other manifestations of this tension, especially in 

a situation of  language diversity,  include that  between the language of  instruction in school and the 

languages used by students outside of school and the tension arising from the differential status accorded 

to languages by the society (Barwell et al., 2016). These tensions present themselves as “dilemmas” or 

situations  with  competing  priorities,  each  with  its  own  advantages  and  disadvantages,  and  therefore  

suggest opposing courses of action, each of which may involve some compromises (Adler, 2002b). In the 

following section, I discuss these dilemmas and further delve into work relevant to the formal-informal  

continuum in mathematics. 

Barwell (2016) suggests that rather than expect students to follow a linear path from informal to formal  
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mathematical  discourse, working with the teacher to expand the repertoire of possible ways to make  

meaning in mathematics should be considered progress.  This flexibility,  which allows for the use of  

varying degrees of mathematical formality and makes rich interactions possible, allows for ambiguity in  

the mathematics classroom. Barwell (2005) suggests that “ambiguity can be seen as a resource for doing 

mathematics and for learning the language of mathematics” (p 118).

Even as I accept the need to accept students’ informal language, the question arises whether this amounts  

to acceptance of incoherence and inconsistency, and if yes, how much of it  can be tolerated without  

entirely diverging away from the core epistemic values of mathematics. Further, students need to build on  

their mathematical talk over time even if they do not rely on formalism that is supplied by the textbook. 

With these considerations in mind, one of the questions addressed in this thesis is that of acceptability  

criteria for mathematical discourse. (see Section 5.5)

The progressive broadening of what counts as mathematical discourse across these perspectives presents 

researchers, teachers and learners and policy makers with “tensions” (Barwell et al., 2016) or situations in 

which competing influences suggest different or even opposing courses of action. I now take a closer look 

at the discussions in literature on the different tensions and dilemmas that arise in a language-diverse and  

marginalised context, especially when one works with students' languages. 

2.3.3 Dilemmas and tensions in teaching and learning mathematics in marginalised and language 

diverse contexts

Barwell et al. (2016) point to three dominant tensions in language-diverse and marginalised contexts. 

Tension between the language of instruction in school and the languages used by students outside of  

school: In a globalised world with increasing mobility of population for political, economic and social  

reasons, language diversity is the rule rather than exception. In a country like India where a multiplicity of 

languages are spoken and some of them are recognised as official and the sanctioned medium for public 

instruction,  a  conflict  between learners’  home language  and the  LoLT at  school  is  inevitable.  With 

English gaining currency as an international language and the language of scientific and technological  

communications, it is privileged as the medium of instruction and is in tension with the home languages 

of  large sections  of  non-English speaking learners.  Many studies  from across  the world have drawn 

attention to this tension (Bose & Choudhury, 2010; Clarkson, 2007; Farrugia, 2009; Halai, 2009; Setati & 

Planas, 2012) Code-switching and translanguaging have been advocated as possible workarounds (Poo & 

Venkat, 2021; Setati et al., 2002). 

Code-switching  involves  alternating  between  two  languages,  substituting  a  word  or  phrase  in  one 
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language with word or phrase in another. Translanguaging involves purposeful alternation of languages in  

spoken and written forms. Code-switching is considered to be a ‘responsive practice’ used to respond  

constructively in the moment to students’ responses, whereas translanguaging is viewed as a planned 

teaching strategy.  This  involves  intentional  attention to  working with multiple  representations  across 

language  and  mathematics  based  on  the  mathematical  topic  being  discussed.  In  the  context  of 

mathematics, translanguaging involves use of multiple modes to make meaning and a “systematic use of  

language and registers that go beyond simple substitution of one representation with another”  (Poo & 

Venkat, 2021, p. 45).

Tension arising from differential status accorded to languages by the society:  In former colonies and 

places like India and South Africa, English holds a privileged place. It is seen as a symbol of power and a 

gateway to success and achievement in life. Consequently, teachers and learners prefer English as the  

LoLT, driven by concerns of access to social goods and positioned by the social and economic power of  

English. This comes at the cost of restricted epistemological access to mathematics (Setati, 2008) . Also 

the preference for high-status languages over the languages that students use at home thwarts the use of 

mitigative measures like code-switching. 

Tension between informal language and mathematical language:  Use of informal language aids sense-

making whereas competence to communicate with the larger community of mathematics calls for formal  

language. This opens up a decision point for teachers - whether they should pay explicit  attention to 

mathematical  language  or  leave  it  implicit  and  transparent  so  as  not  to  disrupt  the  mathematical  

discussion. This tension between the formal and informal has been observed in several studies in different  

parts of the world (Adler, 2002a; Barwell, 2016; Farrugia, 2013; Khisty, 1995; McGinn & Booth, 2018; 

Moschkovich,  2008; Nygård Larsson & Jakobsson,  2020). There is  no neat  resolution to the tension 

between informal and mathematical language. Insisting on the formalised mathematical language will  

exclude and disenfranchise many learners who find the formal language of mathematics forbidding. On  

the other hand, not providing them with the opportunity to learn more formal ways of communicating 

mathematics, will also in the long run disenfranchise them even if they have a good understanding of  

mathematics.  The  teacher’s  response  to  the  dilemma  may  in  turn  have  an  influence  on  students’  

participation in mathematics, leading to a vicious circle. Adler (2002b) also points to this tension when 

she discusses the dilemmas of mediation and transparency. 

Adler (2002c) discusses how these tensions present themselves in the classroom, as situations where the 

teachers  perceive  a  choice  of  actions,  each  with  its  own costs.  She  discusses  three  dilemmas:  code 

switching; mediation; and transparency, all of which have to do with both language use in classrooms and 
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the fact that it is mathematics that is being taught.

● Code-switching: Developing English versus developing meaning. The underlying concerns here 

are whether or not and when to switch languages in class, how to grant or assist in gaining access  

to the particular  resources of particular  languages,  issues that  arise when teachers and pupils  

value and use more than one language in class, switching between the language of instruction and 

pupils’ main/spoken languages.

● Mediation:  Developing  mathematical  communicative  competence  (subject-specific-discourse) 

versus negotiating or developing meaning. In contexts of shifting pedagogy, where teachers place 

more emphasis on learners’ meaning making and exploring mathematical ideas, some learners 

need  help  to  express  their  thinking  in  English  and in  mathematical  ways.  Recognition  that 

specific language help was needed and offering help with ways of speaking mathematically opens 

up the dilemma of balancing listening to learners’ exploratory talk and assisting the negotiation 

and development of meaning without blocking their meaning by prematurely working on how 

these are expressed.

● Transparency: Implicit vs explicit practices, whether or not to be explicit about mathematical 

language. Learner-centred curriculum initiatives require the teacher to play a subdued role, letting 

the situation evolve. Such pedagogies rely on the communicative competence of students which if 

not sufficiently developed will require mediation and explicit teaching by the teacher. Teachers 

may need to work explicitly on mathematical language, in the interest of clarity and access to  

mathematical discourse.The dilemma here is when to focus on mathematical language (making it  

visible) vs. when to background language and focus on mathematical meaning making (render 

language invisible). 

These dilemmas are not specific to but are exacerbated in multilingual or marginalised contexts. 

Tension between the spoken and written modes of communication: In addition to the three tensions that 

Barwell has pointed out, another tension that I have encountered in the course of this study is the dilemma  

in choosing between written and spoken modes of communication. The current assessment practices insist  

on  some form of  writing.  Alternatives  to  the  traditional  examination  like  portfolio  or  project  based 

assessment require some amount of writing too, perhaps without the supporting cue from a question. Also  

writing is an important part of doing mathematics. Research has looked at the challenges involved in 

investigatory  writing  that  is  a  part  of  the  GCSE classwork  and  identified  such  challenges  faced  by 

students (Morgan,  1998). Students  who  were  part  of  this  study  were  reluctant  to  write  except  on 
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impermanent surfaces like the classroom floor, desks or the blackboard and erased it as soon as their  

purpose was served. This created a tension between insisting on writing, perhaps at the cost of student  

engagement and going with the spoken word, perhaps a compromise from an assessment perspective.

Writing itself could be used as means to support thought processes and to communicate these with oneself  

or others or as a record to be scrutinised and evaluated by others. Students may have been sensitive to the  

tension between these different purposes for which writing could be used and chose to stick with the  

former, frequently writing on erasable surfaces. Writing that is not meant to be evaluated tends to be  

loosely structured, subject to multiple edits, to be erased once the purpose is served. In the context of this  

study, well-structured writing was not the students’ preferred means to present their thoughts and ideas 

and alternatives like oral expression supported by minimal writing or diagrams were resorted to. Talk is  

flexible and allows for more linguistic repertoires and does not have the rigid boundaries of writing and 

may ease communication. This is not to ignore the importance of writing in education - so a fine line  

needs to be drawn - questions like when and how much of spoken mode is acceptable, what kind of 

speech is acceptable, etc., need to be investigated.

Since our key concern in this study is the tension between the formal and informal, I delve deeper into the  

literature around the roles of and relation between and the formal and informal mathematical languages. 

2.3.4 Informal language in teaching-learning and doing mathematics

A number  of  studies  have  examined  the  relationship  between  mathematical  language  and  everyday 

language  or  informal  language  or  colloquial  language.  Radford  and  Barwell  (2016) in  a  review  of 

language-oriented  papers  presented  at  PME conferences  2005-  2014  identify  informal  and  everyday 

language as one of the frequently identified theoretical orientations. These papers examine the influence,  

support  and interference of  informal  language on students'  mathematical  conceptualisations.  Scholars 

have  also  documented  the  linguistic  functions  that  students  and  teachers  resort  to  while  expressing 

mathematical ideas in informal language. In addition to these I also look at available research on how 

mathematicians use informal languages in their discussions in this section.

2.3.4.1 The influence of the informal language on mathematical understanding

Kim et al. (2012) studied how the colloquial terms in use influence the discourse and understanding of a 

mathematical concept. In English the word “infinity” is used in colloquial language and denotes a formal 

mathematical concept as well. In Korean the mathematical word for infinity is not a formalised version of  

the colloquial word. Consequently, the authors observed that  Korean speaking students’ discourse on 

infinity was more structured and closer to the formal mathematical discourse whereas that of English 
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speaking students  was predominantly processual  and informal.  Cornu  (1991) points  out  the different 

meanings the word “limit” can have to different individuals at different times. Most often it is considered 

as an ‘impassable limit’ but it can also mean an impassable limit which is reachable; a point which one  

approaches, without reaching it; a maximum or a minimum; the end; the finish etc. Students’ use of the 

mathematical term “limit” is conditioned by these everyday meanings. In a study involving negation of a  

statement with the universal quantifier “all” that called for recognition of diagrams which implied “Not 

all A is B” Bardelle (2013) concludes that the interpretation of verbal statements in a mathematical setting 

may  happen  based  on  everyday  context  and  some  sentences  involving  logical  connectives  evoke 

meanings that contradict the mathematical interpretation.

2.3.4.2 Informal language as source of interference 

One possible source of interference identified by scholars has to do with the overlap that mathematical  

terminology has with everyday words. Since mathematics itself is not a language, it is taught in a natural  

language like English or Tamil. Setati (2001) points out that in a multilingual context like South Africa, 

communicating  mathematically  means  managing  the  interaction  between  ordinary  English  and 

mathematical English, formal and informal mathematical language, procedural and conceptual discourses 

and  learners’  main  language  and  the  LoLT.  She  describes  mathematical  English  as  the  English  

mathematics register. She identifies one of the difficulties in learning to use mathematical English stems 

from the fact  that it  is  used in speech and writing blended with ordinary English and the distinction 

between the two languages is  often blurred.  There are  words and phrases which occur  in both with  

different meanings. For example, logical constructions such as “and”, “or” , “if…then”, “some” , “many” 

appear to belong to ordinary English, but their use in mathematics may have a different connotation. “Or” 

in natural language is generally used in the exclusive sense – the expression “rain or sunshine” implies  

that there is rain or sunshine but not both. The use of “or” in mathematics on the other hand does not  

preclude both occurring together. It needs to be specified as “XOR” or the exclusive or to bring in that  

sense. Pimm (1987) uses another example to highlight how the word “any” from everyday language has 

been repurposed for mathematical use. Consider the following questions:

Is there any even number which is prime?

Is any even number prime?

The response to question a) is a clear yes, 2 is an even number and it is prime too. Question b) on the  

other hand can be interpreted in two different ways - Is any (i.e., one specific) even number prime ? and Is  

any (i.e., every) even number prime? In mathematics “any”is generally used in the sense of “every” and it  
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is in conflict with the ordinary English usage.

Pimm (1987) identifies three groups of terms in mathematics vocabulary: 1) terms that have the same  

meaning in everyday and mathematical contexts 2) terms whose meanings changes from one context to 

the other and 3) terms which are seen only in mathematical context. Terms in category (1) may not be 

problematic for students and those in (3) may need to be defined as they are not part of the students  

vocabulary. However those terms in category 2 pose problems for students, more so because of the co-

occurence of mathematics and everyday language in the classroom and in textbook definitions as well.  

There may also be terms used in mathematics and in other disciplines in similar but non-identical ways.

2.3.4.3 Informal language as source of support

Students and teachers frequently use everyday language to understand mathematical concepts. Scholars 

have investigated the affordances enabled by formal and informal languages and the nature and purpose  

for which teachers and students draw on different modes. Barwell  (2012) observes that in classrooms 

where multiple languages are used, the formal mathematical terms are presented in the official language 

or LoLT. Observing classrooms in Pakistan, Barwell finds that words like ‘algebra’, ‘divide’ or ‘axis’ 

were used in English even in a discussion in Urdu or Burushaski. This phenomenon has been attested to  

by other  scholars  as well  (Bose & Choudhury,  2010; Setati,  2005).  Moreover Barwell  observed that 

English used in mathematics lessons in Pakistan quoted the textbook, either through reading it aloud or  

through repetition of the textbook content. Students' informal discussion of mathematical ideas were in 

the regional language. Setati (2005) goes further to state that in primary school mathematics in South 

Africa mathematics in English tended to be more procedural in nature, while discussions of students'  

thinking or mathematical ideas were more likely to be in their home languages. We see here the tension 

between the systemic need for students to develop the “accepted” ways of communicating mathematics 

and the teacher’s desire to see her students discuss rich mathematics. In the process she makes a trade-off 

in allowing a certain degree of flexibility to express themselves informally while also gently pushing  

toward more formal discourses (Barwell, 2012). These examples indicate that the flexibility afforded by 

the informal and home languages compared to the formal and school languages is an enabling factor to 

mathematical thinking. While the unified language of mathematics enables communication of ideas, this 

unified language can be marginalising.

2.3.4.4 Linguistic means used to speak mathematically in informal language

I  now  look  at  some  ways  in  which  students  and  teachers  use  informal  language  to  communicate 

mathematical ideas. Rowland  (2000) draws attention to the deictic use of “it” to refer to and point to 
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mathematical concepts and generalisations which have not or for various reasons cannot be named in the 

discourse. Deictic terms are linguistic units referring to objects in the universe of discourse by virtue of 

the situation where the dialogue is carried out. The context of the dialogue determines their referent. For 

example, in the course of the Magic triangle exploration, when the student says, “If I put a 3 here it will  

not come”, the  it refers to a particular value of the side-sum (see Section 5.5.4).  Rowland (2000) also 

points  out  the  use  of  the  second  person  pronoun  “you”  as  an  effective  indicator  of  generalities  in  

mathematical discourse. 

Radford (2000) identifies three ways that students use to express generality in natural language: talking 

about  the  general  through  the  particular,  the  deictic  function  and  the  generative  action  function  of 

language. A deictic expression is a word or phrase (such as this, that, there, etc.) that specifies or points to 

the location the speaker is referring to. In the student utterance “OK. Alright, look. You . . . one has to add 

(pointing to a figure on the paper) . . . you always add 1 to the bottom, right? Then you always add 1 to  

the top” from Radford (2000), students use the deictic words "top” and "bottom,” to refer to key parts of a 

perceptual  term  in  order  to  imagine  non-perceptual  objects  and  their  mathematical  properties.  The 

“generative action function” refers to the linguistic mechanisms expressing an action which is repeatedly  

undertaken  in  thought.  In  the  utterance  above,  the  adverb  “always”  provides  the  generative  action  

function and generality is implied through the potential for reiteration. Thus, here “always” plays a role  

similar to the universal quantifier “for all” in more formal language.

2.3.4.5 The informal in mathematician’s work/talk 

 The role of the informal language in the process of mathematical discovery is well acknowledged in 

literature (Byers, 2010; Hadamard, 1945; Sriraman, 2004; Thom, 1973). To quote Thom, 

“In practice a mathematician's thought is never a formalised one. One accedes to absolute rigour only by 

eliminating meaning; absolute rigour is only possible in, and by, such destitution of meaning. But if one 

must choose between rigour and meaning, I shall unhesitatingly choose the later” (p 203)

During the process of discovery and in discussions mathematicians resort to ill-defined terms, pictures 

and half- formed ideas. The informal discourse allows greater room for false starts, loose statements and  

working in a semi-confused state, which is necessary when the solution is unclear or when it may not  

exist at all. Hadamard (1945) highlights the role of intuition in the process of discovery that happens after 

long and unconscious prior work. The expression of the result in writing and formal language comes later.  

Tweney (2012) observed that expert mathematicians tend to use mathematical expressions sparingly and 

meaningfully, and to use mathematics as a representation rather than as a possible path to an algorithmic 

solution. Mueller-Hill (2013) suggests that mathematicians may have internalised the rules and principles 
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of formal proving and work in agreement with these rules without explicitly and consciously employing  

them. Based on interviews with research mathematicians she suggests formalisability as an epistemic 

feature of discursive proving actions and interprets it  as a meta-discursive rule  (Sfard, 2008) guiding 

mathematical discourse. 

Barwell  (2008b) examines how mathematicians talk about mathematics.  He analyses excerpts from a 

radio broadcast and draws attention to some of the discursive resources that mathematicians draw on in 

their thinking, and suggests that the discourse used is a hybrid discourse incorporating the mathematical 

and everyday discourses.  Among other  features  like  a  narrative form and the  agentic  nature  of  talk 

involving doers of mathematics, Barwell also draws attention to the inclusion of everyday discourse in the  

form of expressions, analogies and references to popular cultures. Barwell points to the interweaving of  

the everyday and mathematical vocabulary through multiple examples, one of them being the use of terms  

bagel, torus and hyper-bagel. Bagel is an everyday term and torus a mathematical one and hyper-bagel a 

conjugation of  hyper from academic mathematical discourse and  bagel  from everyday discourse. The 

usage of the term hyper-bagel subsumes the everyday term and makes it mathematical. Barwell (2008b) 

suggests  that  this  kind  of  hybridity  is  widespread  in  the  world  of  professional  mathematics.  For  a 

mathematician, talking about a bagel can be as mathematical as talking about a torus. Barwell suggests  

that “any word can be mathematical if used in a mathematical way. Hence, mathematical language is not 

a lexicon, but a way of using language.” 

Drawing implications from this research for classroom practice, he further suggests that it is valuable to  

develop  a  better  understanding  of  the  discursive  practices  of  mathematicians  and  that  it  may  be  

worthwhile to introduce some of these practices into the mathematics classrooms and to expand the range 

of genres of spoken mathematics available to a student. Highlighting the complex relationship between 

everyday  and  mathematical  discourse,  Barwell  suggests  that  the  everyday  does  not  disappear  in  

mathematics, but used in new and more mathematical ways. He also suggests that the use of everyday in  

mathematics is not necessarily an indication of an underdeveloped understanding. 

2.4 Recentring Margins 

In the preceding sections, we saw that mathematics marginalises along multiple dimensions. 

On the disciplinary dimension, we saw that the school mathematics tradition with its right-answer focus 

does  not  give  sufficient  space  for  students  to  demonstrate  their  mathematical  competence.  On  the 

language dimension, we saw that narrow conceptualisations of mathematical language as predominantly 

specialised vocabulary or register  leads to deficit  views and aligned ourselves with the socio-cultural  
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perspectives of learning that  view learning mathematics as participation in discourse practices.  I also  

discussed different characterisations of mathematical discourse, the multiple discourses and languages 

present in the mathematics classroom, the tensions between them and the need to accommodate students’ 

languages, including informal ways of communication to move away from deficit perspectives.

What  I  termed performative dimension stems from larger  societal  beliefs  and needs to  be addressed  

through systemic measures. Our concern in this project is on ways of addressing the deficit discourses 

along the disciplinary and language dimensions of the margins as they manifest in the classroom. I do  

acknowledge that these cannot be isolated, but choose to limit the scope of this study to the pedagogical  

shifts the teacher can make to address the problem. I now look at some specific steps that are discussed in 

literature in this direction.

2.4.1 Landscapes of investigation 

In Section 2.1.3,  we noted that  narrow conceptualisations of mathematics as  requiring a single  right 

answer,  pre-determined  by  an  authority  figure  such  as  the  teacher  or  textbook  and  to  be  found  by 

following the given procedure are marginalising. Addressing the marginalisation calls for a significant  

rethinking of how mathematics is taught in school – how teachers and students interact, how students are  

assessed and how content is introduced. 

Skovsmose (2001) proposes landscapes of investigation as a learning environment different  from the  

school  maths  tradition  and the  exercise  paradigm.  The  creation  of  landscapes  of  investigation  is  an 

attempt to organise educational processes in such a way that they allow students and teachers to get  

involved in exploratory processes guided by dialogic interactions (Godoy Penteado & Skovsmose, 2022). 

Landscapes  of  investigations  do  not  specify sequences  of  problems to  be solved,  or  exercises  to  be 

answered, On the other hand, they invite students to engage with inquiry processes – to ask questions, to 

formulate hypotheses, to try out arguments and to listen to other arguments and ideas. In addition, they 

facilitate  collaboration  and  shared  engagement.  Investigations  invite  students  to  frame  questions  of  

interest to follow, or reformulate a question to make visible a solution approach, or  come up with a  

simplified version of the problem. These are highly relevant practices in mathematics. Also any group of 

students can engage with exploration of landscapes of investigation (Skovsmose, 2022). The conversation 

around an investigation is open-ended and does not follow any chartered paths. Several scholars have 

referred  to  investigations  by  different  names  and  discussed  their  use  teaching-learning  mathematics 

(Banwell et al., 1972; Becker & Shimada, 1997; Polya, 1945; Yeo, 2017). I discuss related literature in 

Section 2.5. 
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2.4.2 Language as resource perspective

Several scholars have suggested that the use of more than one language in multilingual classrooms is a  

productive move and a means to challenge the deficit perspectives that portray multilingual learners as  

less capable of learning mathematics. (Adler, 2002c; Moschkovich, 2000, 2021; Planas, 2018; Planas & 

Civil,  2013;  Planas  &  Setati-Phakeng,  2014;  Setati  et  al.,  2008).  This  view  counters  the  view  that 

students’ home languages are inferior to dominant languages and less suitable for doing mathematics 

evident in the tensions discussed in Section 2.3.3, and based on the notion of “language as resource”.

Drawing on Ruiz (1984), Planas and Setati-Phakeng (2014) suggest the “language as resource perspective  

as an ideal to work towards for flexible use of student languages. They see language as resource as an  

“organising principle for classroom practices with the aim of achieving learning opportunities through 

integration of foci on mathematics and language” and as “the combined strategies, norms, and processes 

that seek to bring about a balanced integration of these two foci” (Planas & Setati-Phakeng, 2014, p. 887). 

Research oriented to this perspective puts opportunities arising from the flexible use of language practices  

at the forefront rather than difficulties and obstacles that arise due to multilingualism in a classroom. 

While  these  recommendations  were  made  mainly  in  the  context  of  multilingual  classrooms and the 

tensions between the learners first language and the LoLT, Adler (2002c) applies the resource perspective 

to address the tension between the students’ informal languages and the formal language of mathematics 

as well.

Extending  Lave  and  Wenger’s  (1991)  idea  that  access  to  a  practice  requires  its  resources  to  be 

transparent, Adler (1999) proposes the idea of language as a transparent resource in gaining access to 

mathematical practice. Transparency involves the dual aspects of visibility and invisibility – a resource  

should be visible so that it can be noticed and used, and invisible so that attention is focussed on the 

subject matter and not on the tool.  The ways of using language in a mathematical discussion should  

enable learning and therefore be invisible. Simultaneously, learners need to understand the significance of 

mathematical talk and hence the specificity of mathematical discourse needs to be made visible (Setati et  

al., 2008).

Further, Moschkovich (2000) talks of the need to consider as a resource the multiple means that students  

use to communicate mathematically – be it gestures, concrete objects, invented terminology, metaphors or  

flexible movement across languages. She cautions against taking a deficit perspective that views these as 

stand-ins for the formal language or obstacles that students face in using formal language, advocating that 

they be seen as pointers to ways of supporting students to communicate mathematics better. 
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Scholars  have  also  looked  at  ways  of  supporting  teachers  to  design  learning  material  that  enhance 

language for mathematics learning and in being receptive and responsive to student languages. Crespo et 

al.  (2021)  suggest  that  helping  teachers  to  see  language  diversity  as  a  resource  and paying  explicit  

attention to discourse moves that highlight students’ language diversity as an asset helps them take up 

more inclusive and strengths-based approaches. Several scholars have suggested such discursive moves 

((Erath et al., 2021; Martinez, 2018; Moschkovich, 2015b; Planas, 2014). These include such principles 

as engaging students in rich discourse practices, establishing various mathematics language routines ,  

connecting multimodal representations and including students’ multilingual resources (Erath et al., 2021). 

2.4.3 Anti-deficit noticing and framing

Anti-deficit  noticing is noticing that focuses on students’ resources and strengths. Louie et al.  (2021)  

conceptualise anti-deficit noticing as 

“noticing  that  deliberately  challenges  deficit  discourses,  intentionally  attending  to  and  elevating  the 

humanity, intelligence, and mathematical abilities of marginalised people, not in speeches or statements but 

in routine instructional interactions. Anti-deficit noticing thus goes beyond a blanket commitment to seeing 

the assets that all students bring to learning” (p 100) 

They suggest that anti-deficit noticing is rooted in framings such as : 1) Students are full human beings  

with  many resources  2)  Mathematics  learning  is  a  creative  exploration  of  ideas  3)  Interactions  and 

interpersonal relationships are integral to learning. 

Scheiner (2023) suggests the alternative of strength-based framing which considers students thinking as a 

resource instead of a deficit.  This approach highlights the positive contributions students make to the 

classroom, without acknowledging the difficulties they may have when learning mathematics. Scheiner  

reports on a teacher education module designed to encourage prospective teachers to examine how they 

frame and what they notice about students’ mathematical thinking. The module aimed to bring about a  

shift from a deficit-based to a strength-based approach when noticing students’ thinking. Framings like 

“students’ mathematical thinking is a capability to be fostered”, “is valuable in its own right and to be  

cultivated”, and a resource to build upon are some strength-based frames that Scheiner identifies. Louie et 

al.  (2021) suggest that more research is needed to create and sustain systems that enable anti-deficit  

noticing and strength based framing. 

Continually  expanding  what  counts  as  mathematical  competence  through  a  more  multidimensional  

framing  of  mathematical  activity  to  include  such  practices  as  sense-making,  connection  seeking,  

experimentation,  collaboration  and  argumentation,  seeking  out  and  highlighting  the  resources  and 
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strengths of marginalised communities, telling “counterstories” - which challenge the dominant narratives 

about the inferiority of marginalised groups and the normative superiority of the dominant groups, and an  

ongoing effort at anti-deficit reframing to counter the pernicious influence of deficit discourses are some 

steps that Louie et al. (2021) suggest to disrupt deficit discourses. Tasks which have been referred to as 

Landscapes of Investigation, Explorations or Open-ended tasks in the literature have been suggested as a 

means to develop a more expanded view of mathematical competence. One of the goals of this study is to  

investigate  the  potential  of  such  tasks  to  engage  students  in  mathematical  practices  in  marginalised 

contexts. In the following section I discuss literature around such tasks focussing on how they have been  

characterised by scholars. 

2.5 Explorations or Open Tasks

There is a general consensus among educators on the importance of students engaging with tasks other  

than those that are intended to give them practice in procedural skills taught earlier. Such problems have 

been referred to by multiple names, but share the objective of fostering in students a belief that they made 

mathematics their own through exploration. In the 1980s, bodies such as the Association of Teachers of  

Mathematics (ATM) and the National Council for Teachers of Mathematics (NCTM) promoted the view 

that  problem solving  should  be the focus  of  school  mathematics  and that  a  problem perceived  as  a  

situation to explore is a more valuable mathematical task than one involving a reproduction of a ready-

packaged method applied to recognisable problem set (Orton & Frobisher, 1996). 

Open tasks that differ from those commonly encountered in textbooks have been referred to by different  

terms  in  literature:  Open  problems  (Pehkonen,  1997a),  open-ended  problems  (Boaler,  1998),  

mathematical investigations (Ernest, 1984; Jaworski, 1994; Mason, 1978), ill-structured problems (Shuk-

kwan, 1997). Yeo (2007) notes that different people use the same term to mean different constructs or use 

different terms to refer to the same construct. Some scholars use open and open-ended interchangeably, 

while others distinguish between them. Some scholars use the synonymous term “exploratory problems” 

to avoid confusion with the unsolved problems of mathematics. The term has been used to refer to pure  

maths based investigative tasks and to authentic-real life tasks. The latter have also been referred to as  

real-life  landscapes  of  investigation  (Skovsmose,  2001)  and  as  environmental  problems  (Orton  & 

Frobisher, 1996). 

The concept “open problem” has been the subject of many scholarly discussions and there have been 

many attempts at clarifying both the words, “open” and “problem”, that constitute this term. 
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2.5.1 What is a “problem”?

Schoenfeld (1985) defines a “problem” as a situation that does not have a ready answer, it is more than  

merely doing exercises which can be completed using known procedures. Echoing this Pehkonen defines 

a problem as a “ situation where individuals are compelled to connect known information in (for them) 

new ways, in order to accomplish a task. If they can immediately recognise the actions needed to do the  

task, then it will be a standard (routine) task “ (Pehkonen, 1997b, p. 75). Whether a situation is a problem 

as per these definitions depends on the individual trying to solve it and not some features inherent to the  

situation. Schoenfeld clarifies, 

The difficulty in defining the term problem is that problem solving is relative. The same tasks that call for  

significant efforts from some students may well be routine exercises for others and answering them may 

just be a matter of recall for a given mathematician. Thus being a “problem” is not a property inherent in a  

mathematical task. Rather it is a particular relationship between the individual and the task that makes the 

task a problem for that person. The word problem is used here in this relative sense, as a task that is  

difficult  for  the individual who is trying to solve it.  Moreover  that  difficulty  should be an intellectual 

impasse rather than a computational one. (Schoenfeld, 1985, p. 74)

There is also the alternate view that a mathematical problem is characterised by its nature and purpose.  

Scholars  have suggested  classifications  of  tasks  based on  these  aspects.  Orton and Frobisher  (1996)  

distinguish “problems” and “investigations” based on the presence of a specific and recognisable goal.  

They call tasks that do not have a prescribed goal and readily known or recallable mathematics procedure  

to make immediate progress as “investigations”. Shuk-kwan (1997) distinguishes between well-structured 

and ill-structured  problems based  on  the  “givens”  (objects  and  operators)  and  the  “goal  state”  of  a 

problem. A well-structured problem is one where both the “givens” and the “goal-state” are well-defined. 

Ill-structured problems open up opportunities  for  problem posing,  with the problem poser  having to  

define the givens, the goal state or both. Yeo (2007) points to distinctions along multiple dimensions -  

problems v/s exercises, problems v/s investigative tasks, Investigations v/s guided discovery learning, 

academic, semi-real or real-life tasks. Skovsmose (2001) offers six learning milieus based on whether the 

tasks  refer  to  pure  mathematics,  semi-reality  or  real-life  or  and  whether  they  fall  into  an  exercise  

paradigm or investigatory paradigm. Pehkonen (1997b) defines a category of tasks called “problem field”  

as  a  sequence  of  problems  that  are  connected  to  each  other.  A  problem field  is  generated  through 

changing the  conditions  given  in  the  task  and given  to  students  gradually,  continuing  based  on  the  

approaches they take and the solutions they come up with. Two key characteristics of problem fields that 

Pehkonen marks are a) generativity of further problems b) problems across a range of difficulty levels,  

with a problem field being suitable across classes and abilities. 
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Yeo (2017) distinguishes between the following four types of tasks based on their purpose:

a) Standard textbook type task or routine procedural task, exemplified by the task

Solve the quadratic equation: x2 + 2x -3 = 0 (Task 1, Quadratic) (Yeo, 2017, p. 177)

The main purpose of such a task is routine practice of procedural skills for students who have already  

learnt the quadratic formula. This may be a problem to students who have not encountered the procedure  

to solve a quadratic equation, or having encountered the procedure, are yet to acquire sufficient fluency to 

apply the procedure appropriately. But with enough practice, this task can become a routine exercise for  

all students.

b) Problem-solving task, exemplified by the task

At a workshop, each of the 100 participants shakes hand once with each of the other participants. 

Find the total number of handshakes. (Task 2, Handshakes)(Yeo, 2017, p. 177)

The purpose of such tasks is to make use of some problem-solving heuristics, such as looking for patterns 

to solve it. Unlike the first problem which only requires the application of a procedure to solve it, this task  

requires some creative effort and higher-level-thinking to solve. Hence such problems are classified as 

problem  solving  tasks,  though  they  may  not  actually  be  problems  for  students  who  have  already  

encountered such tasks. Another notable feature is that it  has a clear goal - namely to find the total  

number of handshakes. This is the key difference that Yeo marks between problem-solving tasks and 

investigative tasks

c) Investigative Task, exemplified by 

Powers of 3 are 31, 32, 33, 34, …Investigate. (Task 3, Powers of 3) (Yeo, 2017, p. 178)

The  purpose  of  such  tasks  is  for  students  to  investigate  and  discover  the  underlying  patterns  or  

mathematical  structures.  The  distinguishing  feature  is  that  they  do  not  specify  a  goal  in  their  task 

statements and therefore few mathematics educators would classify investigations as problems (Orton & 

Frobisher, 1996). 

d) Real-Life Task exemplified by

Design a playground for the school. (Task 4, Playground) (Yeo, 2017, p. 178)

The purpose of this kind of task is to learn and apply mathematics in real-life situations. Such tasks create 

opportunities for students to learn and utilise mathematics such as measurement, geometry, costing and 
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spatial visualisation. Engaging with such tasks implies that in addition to thinking through the problem, 

students will need to find out the relevant information such as dimensions of a swing or slide, cost of  

building these etc.

Yeo (2007) proposes that different types of tasks have different pedagogical uses and a clarification of the  

features and uses of these tasks will enable teachers to choose tasks appropriate for their students and 

their needs. It also helps researchers to define more clearly the tasks they are investigating and delimit  

their research accordingly. However some educators do not distinguish between these tasks. Pehkonen 

(1997a) suggests that the concept “open problem” be used as an “umbrella” class for problems which  

contains all such classes as: investigations, problem-posing, real-life situations, projects, problem fields or  

problem sequences, problems without question, and problem variations or “what-if” method.

2.5.2 What makes a problem open?

Pehkonen (1997a) explains the concept of what he calls “open problem” in these words.

“We will begin with its opposite and say that a problem is closed, if its starting situation and goal situation 

are closed, i.e. exactly explained. If the starting situation and/or the goal situation are open, i.e. they are not 

closed, we have an open problem. (Pehkonen, 1997a, p. 8)

Cifarelli and Cai (2005) define open-ended problem situations as those where some aspect of the task is  

unspecified and requires that the solver re-formulate the problem statement in order to develop solution 

activity.  This  is  similar  to  Shuk-kwan’s  (1997)  notion  of  an  ill-structured  problem  and  Orton  and 

Frobisher’s (1996) definition as a problem that leaves the goal unspecified, as an open decision yet to be 

made. Becker and Shimada (1997) define open-ended problems as “problems that are formulated to have 

multiple correct answers” (p 1). Absence of complete specification and multiplicity of possible answers  

that this gives rise to are the key features that stand out in these definitions. Yeo (2017) suggests that  

these are not the only two factors that make a task open. He proposes a framework to characterise the  

openness  of  mathematical  tasks.  This  framework has  five dimensions  namely answer,  goal,  method,  

complexity, and extension.

Open Answer: Tasks which have only one (or a fixed number of ) correct answer are termed closed in its  

answer. Tasks 1 and 2 above have only one correct answer, whereas tasks 3 and 4 admit of multiple  

answers. Task 3, the Powers of 3 task, is open in answer because any pattern in powers of 3, be it in their  

units digits, or some of digits or their frequency in a given interval, all would qualify as correct answers.  

Also it would not be possible for anyone to claim that they have found out all the correct answers and in  

this sense the answer is “indeterminate” according to Yeo (2017). Similarly, the Playground task also 
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admits of multiple answers in that there are more than one way of designing a playground. In this case, in 

addition to the answer being indeterminate, the correctness of the answer is subjective as well. Yeo terms 

this  as  an  “ill-defined  answer”.  Thus  Yeo  defines  a  task  to  have  a  closed  answer  if  the  answer  is  

determinate, that is it is possible to determine all the correct answers. Otherwise the task has an open 

answer, which could be either well-defined and objective or ill-defined and subjective. 

Open Goal: Tasks which do not clearly specify a goal in the task statement are said to be open in terms of 

goal. Tasks 1, 2 and 4 above have well-specified goals. Investigative tasks like Task 3 typically do not  

have a goal in their task statement. The goal of an investigative task is supposed to be a “general goal” 

which is to investigate. Students can choose any specific goal to investigate - for example finding whether 

there is a pattern in the last digits in the powers of 3. If the goal is open, one would expect the answer to 

be open and indeterminate as well; however it is possible to have a task that has a closed goal but is open 

with respect to the answer. The playground task discussed above is an example. 

Yeo (2008) points to the difficulties that a task with ill-defined goals pose to students who have not 

encountered such tasks before and raises the question whether the ill-defined goal of an investigative task 

can be clarified sufficiently to help students understand the task requirement and yet keep the goal open. 

Open Method: Yeo describes a task as having an open method if there are multiple methods of solution 

involving problem solving heuristics rather than mere application of known procedures and closed if  

otherwise. Since the method is in the “middle” of the goal and answer, such tasks have also been referred 

to  as  “open-middle” tasks.  While  a  task may be open with respect  to  the method in-principle,  most  

students using one method or teachers teaching only one method may make it effectively closed. This can 

be addressed by reframing the task in such a way that openness with respect to the method becomes a  

task-inherent feature and does not depend on students and teachers. For example, the Handshakes task 

discussed above could be reframed as,

At a workshop, each of the 100 participants shakes hands once with each of the other participants.  

Find the total number of handshakes using as many methods as possible. Discuss which methods 

are ‘better’ and in what ways they are ‘better’ (Yeo, 2017, p. 183)

Task Complexity: Yeo terms a task open along the complexity dimension if it is too complex for the 

students it is addressed to, and there is not enough scaffolding in the task statement to allow them to get 

started. A task that is simple enough for students is closed in this dimension. 

Extension: A task is open along this dimension if it can be extended , that is extending the task would lead 

to discovery of more underlying structures. A task that cannot be extended or leads to unrelated tasks if  

55



extended is closed in this dimension. Extensibility of a task can also be subject dependent as in the case of  

the Handshakes task, or task-inherent as in the case of Powers of 3 task. The Handshakes task is in-

principle extendable, in that the number 100 in the problem can be varied and the problem generalised in  

this dimension. However the way the task is framed students may not think of generalising it, nor would 

teachers expect it. With the Powers of 3 task on the other hand, it is more likely that students investigate  

if a pattern they found is true of powers of other numbers as well, or they are expected to do so. Therefore 

Yeo terms the extensibility of this task task-inherent. 

In this study, I use the term  Mathematical Explorations to refer to an open-ended and loosely-defined 

mathematical problem situation, that involves students asking their own questions, choosing the ones that 

interest them, following different paths to find answers and asking further questions. We preferred games 

and puzzles which invite student engagement over real-life problems that often have a hidden ‘curriculum 

agenda’ where the shadow of assessment and non-performance dominate student perception. I drew on 

Yeo’s framework in the design of modules and my attempt was to design tasks that were open along the  

dimensions of method,  goal  and answer but not along the complexity dimension.  I reinterpreted task 

extensibility as generative of more questions, albeit not directly related as Yeo suggests (see Section 4.2).  

I discuss in detail the task features in Chapter 4. 

2.6 Mathematical Thinking

Explorations shift the focus from the one right answer to the ways of thinking and reasoning adopted by 

students  and  practices  such  as  sense-making,  experimentation,  argumentation,  etc.  Focussing  on 

mathematical  thinking  allows  for  a  broader  conceptualisation  of  what  it  means  to  do  mathematics. 

Mathematical  thinking  gives  attention  to  process  rather  than  content  though  both  are  important  for  

learning mathematics and are represented in school mathematics curricula (Goos & Kaya, 2020). There 

are many different definitions and interpretations of the term mathematical thinking. In this section I 

review literature on mathematical practices and mathematical thinking. 

2.6.1 What is mathematical thinking?

Schoenfeld  (1992) describes  mathematical  thinking  as  a  point  of  view  that  values  the  process  of 

mathematisation and abstraction, and competence with and using the “tools of the trade” to understand 

mathematical structure. Schoenfeld (1985) offers an explanatory framework for examining “what people 

know, and what people do, as they work on problems with substantial mathematical content” (p 11), that  

includes the four elements - the resources of mathematical knowledge and skills that students bring to the 

task;  the  heuristic  strategies  that  the  students  use;  the  control  that  the  student  exerts  in  guiding  the 
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problem solving process in productive directions; and the beliefs that students hold about mathematics. 

Kilpatrick et al. (2001) introduced the notion of “mathematical proficiency” consisting of five intertwined 

strands  as  a  comprehensive  framework  for  what  is  necessary  for  anyone  to  learn  mathematics  

successfully, namely

● conceptual understanding—comprehension of mathematical concepts, operations, and relations

● procedural  fluency—skill  in  carrying  out  procedures  flexibly,  accurately,  efficiently,  and 

appropriately

● strategic competence—ability to formulate, represent, and solve mathematical problems

● adaptive reasoning—capacity for logical thought, reflection, explanation, and justification

●  productive  disposition—habitual  inclination  to  see  mathematics  as  sensible,  useful,  and 

worthwhile, coupled with a belief in diligence and one’s own efficacy (Kilpatrick et al., 2001, p.  

116)

Mason et al. (1982) identify four fundamental processes, in two pairs - specialising and generalising,  

conjecturing and convincing, and show how thinking mathematically proceeds by alternating between 

them. Mason et al. (2010) add to these core elements of mathematical thinking four additional process  

pairs: imagining and expressing; stressing and ignoring; extending and restricting and classifying and 

characterising. They claim that mathematical thinking is about learning to use these processes or “natural  

powers”, which every child has, in mathematical ways and in the exploration of mathematical problems.  

In  addition they  also  suggest  themes of  doing  and undoing;  invariance in  the midst  of  change;  and 

freedom and constraint, as markers of mathematical thinking. 

Many educators and mathematicians agree that the mathematical practices and thinking to be encouraged 

in  learners  of  mathematics  should  mirror  the  practices  of  professional  mathematicians  (Bass,  2005; 

Moschkovich, 2015b; Ramanujam, 2010; Schoenfeld, 1983). 

Bass suggests that

“the  school  curriculum provide  opportunities  for  learners  to  have  some authentic  experience  of  doing 

mathematics,  opportunities to experience and develop the practices,  dispositions,  sensibilities,  habits of 

mind characteristic of the generation of new mathematical knowledge and understanding – questioning, 

exploring,  representing,  conjecturing,  consulting  the  literature,  making  connections,  seeking  proofs, 

proving, making aesthetic judgments, etc.” (Bass, 2011, p. 3)
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Ramanujam  (2010)  identifies  processes  such  as  selecting  between  or  devising  new  representations,  

looking for invariances, observing extreme cases and typical ones to come up with conjectures, looking 

actively  for  counterexamples,  estimating  quantities,  approximating  terms,  simplifying  or  generalising 

problems to make them easier to address, building on answers to generate new questions for exploration, 

etc., as vital to mathematicians' practice but missing in school mathematics. Other scholars have drawn 

attention to such practices as empirical exploration, logical deduction, seeking relationships, verification,  

reification,  formalisation,  locating  isomorphisms,  comparing  arguments  for  accuracy,  insight  and 

efficiency, abstraction, symbolisation, modelling, etc. (Bell, 1976; Cuoco et al., 1996; Watson, 2008). 

Drawing on Krutetski’s study, Watson and Barton (2011) mark these tendencies as distinctive of acting  

mathematically: grasp formal structure; think logically in spatial, numerical and symbolic relationships; 

generalise rapidly and broadly; curtail mental processes; be flexible with mental processes; appreciate  

clarity  and  rationality;  switch  from direct  to  reverse  trains  of  thought;  and  memorise  mathematical  

objects. They also highlight the quality of “sustained niggling” or persistently working on a problem, 

trying out multiple approaches. 

2.6.2 Burton’s framework for mathematical thinking

Building on Mason et al’s, (1982) process-pairs, Burton (1984) proposes a framework for mathematical 

thinking that  includes  operations  and dynamics  in  addition to  processes.  Drawing a  clear  distinction 

between  mathematical  thinking  and  the  body  of  knowledge  (content  and  techniques)  described  as 

mathematics,  Burton  (1984)  suggests  that  teaching  mathematics  content  like  algebra  or  geometry  or 

trigonometry compulsorily and over years does not necessarily provide the conditions through which 

students develop their mathematical thinking. She argues that mathematical thinking is not thinking about 

the subject matter of mathematics, but “a style of thinking that is a function of particular operations, 

processes and dynamics, recognisably mathematical.” (p 35). Starting from the “axiom” that “Thinking is  

the  means  used  by  humans  to  improve  their  understanding  of  and  exert  some  control  over  their 

environment” (Burton, 1984, p. 36), she claims that mathematical thinking uses particular means, arising 

from or pertaining to the study of mathematics, and describes these in terms of operations, processes and 

dynamics of mathematical thinking. 

a) Operations of mathematical thinking: Burton terms any event that can provide a stimulus to begin 

thinking as an element. Thinking requires that the elements be acted on in some way. In mathematical  

thinking the methods or operations used to act on elements are recognisably mathematical. Enumeration,  

repetition, iteration, study of relationships, ordering, making correspondences, substituting, transforming, 

adding, subtracting are some mathematical operations that have wider relevance as well. When a child 
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encounters  a  collection of  objects,  and asks  “how many?” the child  is  considering the mathematical 

operation of enumeration. 

b)  Processes  of  mathematical  thinking:  Burton  identifies  four  processes,  namely  specialising, 

generalising, conjecturing and convincing, as central to mathematical activity. 

● Specialising means considering a simpler case or a special case in order to observe what one is 

doing when examining a particular instance or case in order to recognise relationships that might  

generalise  to  all  other  cases.  The  purpose  of  specialising  is  to  become  aware  of  structural 

relationships  that  are  generalisable.  Specialising  can  be  done  randomly  to  get  a  feel  of  the  

questions;  systematically  to  prepare  the  ground  for  generalising  or  artfully  to  test  the  

generalisation (Mason et al., 2010). 

● Conjecturing about a relationship that connects a number of specialised examples observed is the 

first  step of an inductive approach to learning. Conjecturing is the outcome of exploration of 

patterns, their expression and substantiation. 

● Generalising implies moving from the consideration of a given set  of  objects to a larger set,  

containing the given one. Mason et al. (2010) describe it as the “process of seeing through the  

particular,  by  not  dwelling  in  the  particularities  but  rather  stressing  relationships”  (p  232). 

Recognition of pattern or regularity provokes a statement of generalisation. Burton refers to such 

statements  as  building  blocks  used  by  learners  to  create  order  and  meaning  out  of  an 

overwhelming quantity of data.

● Convincing  is  the  means  by  which  a  generalisation  is  validated.  This  involves  the  thinker 

convincing themselves of the truth of the generalisation and then a friend and a sceptic. Proofs are 

attempts at constructing convincing arguments. 

c)  Dynamics of mathematical  thinking : The dynamics of mathematical thinking consists of repeated  

cyclic movements through the stages of manipulating an object or idea, getting a sense of pattern and  

articulating that pattern symbolically, each cycle building on the awareness and understandings achieved 

from previous cycles. Burton describes this process as follows: 

The process is initiated by encountering an element with enough surprise or curiosity to impel exploration 

of it by manipulating. The element may be a physical object, a diagram, an idea, or a symbol, but it must be 

encountered at a level that is concrete, confidence inspiring and amenable to interpretation. A perceived  

gap between what is expected from the manipulation and what actually happens provokes tension that  

provides a force to keep the process going until some sense of pattern or connectedness releases the tension  
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into achievement, wonder, pleasure, or further surprise or curiosity that drives the process on. Although the  

sense of what is happening remains vague, further manipulating is required until the sense can be expressed 

in articulation (Burton, 1984, p. 40).

An achieved articulation crystallises the sense of pattern achieved through manipulations and becomes  

available for further manipulation and more complex thinking. The complexity may be due to increasing  

generality, refinement or abstraction. 

Burton illustrates the various elements of her framework through the annotated response of a person to a  

problem drawn from Mason et al. (1982), which I summarise here. The problem is the following:

At a warehouse, I was informed that I would obtain a 20% discount on my purchase but would 

have to pay 15% sales tax. Which would be better for me to have calculated first, discount or tax? 

The person’s initial response was to guess that it would be better to calculate the discount first, as that 

would lead to the tax being calculated on a smaller amount. He specialises and calculates the amount he  

would have to pay both ways for an item priced £100 and finds that he gets the same amount. The fact 

that the order of calculation did not make a difference came as a surprise leading to the question if it  

would be the same for another amount, say £65. The second instance of specialising confirmed earlier  

observation. This led to the conjecture that it would be so for any price. Having convinced himself that  

the order is indeed immaterial with a price of £X, the next step was to subject this confirmed conjecture to  

further manipulation. The person wondered if the order would still be immaterial if the rates of discount 

and tax were different and further for any rates. 

This example displays all the four processes and cycles of manipulation, getting sense and articulation.  

the person specialised by manipulating particular numbers (100, 65) to get a sense of what was going on  

and  to  generate  an  articulation  of  generalisation.  He  then  convinced  himself  of  the  truth  of  the 

generalisation and subjected this to further manipulation. 

Burton  points  out  that  a  “model”  or  formalised  answer  would  have  suppressed  all  evidence  of 

mathematical thinking and removed examples of negotiation of meaning through specialising and the 

recognition of constraining factors. She goes on to say, 

“The mathematics is presented as a closed manipulation of techniques, whereas the mathematical thinking 

demonstrates  open  inquiry.  An  over-conscientious  concentration  on  content  of  mathematics  would 

therefore be expected to obstruct the development of the kind of awareness on which mathematical thinking 

is based. (Burton, 1984, p. 44)” 
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Differentiating developing mathematical  thinking from generating problem solving approaches in  the  

classroom, she suggests that making the processes overt and concentrating on them so that they become 

the focus of the learner’s attention is key to the former. 

The characterisations of mathematical thinking seen in Section 2.6.1 highlight certain dispositions and 

practices. Burton’s framework on the other hand also includes the dynamics of thought processes, in  

addition  to  operations  and  practices.  The  framework  draws  attention  to  the  repeated  cycles  of 

manipulation,  getting  a  sense of  pattern and articulation that  students  go  through as  they engage  in 

mathematical  thinking.  That  is  a  pattern  or  result  that  is  articulated  becomes  the  subject  of  further 

manipulation in the next  stage.  These repeated cycles lead to increasing levels of  abstraction,  which  

captures  an  important  element  of  doing  mathematics.  Thus  Burton’s  framework makes  apparent  the 

extent to which students progress on the path to abstraction. I therefore draw on Burton’s framework to 

discuss mathematical thinking as it happens in a marginalsed context.

2.7 The Indian context and the academic motivation

In this section I present a brief idea of the educational context in India and how it motivated this study. 

It is widely acknowledged that the schooling system in India contributes to the reproduction of societal  

inequalities. Despite the Indian schooling system being unified and uniform in principle, with limited 

variation in curriculum or syllabus, schools vary a great deal. Some key dimensions of variations are the 

management structure (whether the school is financed and run by the government, privately managed  

with  some  degree  of  government  intervention,  or  entirely  financed  by  school  fees  and/or  corporate 

grants), medium of instruction, and school costs. There is an unstated ‘hierarchy’ among schools based on 

these parameters, with the privately managed, high fee charging English medium schools occupying the 

top of the hierarchy (Majumdar & Mooij, 2012). 

Majumdar and Mooij (2012) also identify factors such as cost of education and admission policy, and 

school  choice and voice exercised by the more well-to-do and educated parents  in favour  of  private 

schools, as reproducing segregation and segmentation. The selective admission process and the high fee 

charged by the schools at the top of the hierarchy favour the wealthier and high-status sections of the 

society. In addition to having the choice of schools at the top of the hierarchy, these parents also use their  

voice to monitor school quality and complain if there is a deficit. Unlike this section of the society, the 

poor and the uneducated parents are usually neither able to insist on quality from mal-performing schools 

nor able to choose a “better” school. Thus, the multiple segregating factors identified lead to class, caste-

wise sorting and streaming of children into different categories of schools with the schools themselves 
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becoming socio-economically stratified. The government schools happen to be the only option for the 

socio-economically disadvantaged sections.

Sarangapani (2018) studied the “quality” in the variety of school types and found a “complex picture of  

pedagogy”  emerging.  Based  on  factors  like  teacher’s  aims  for  students,  their  expectations  regarding  

potential parental support in their children’s education, methods the teachers employed to teach and to  

ensure learning and the disciplinary culture of schools, this study arrived at an understanding of pedagogy 

across school types.  Sarangapani  notes that  at  the lower  end of the social  spectrum,  “pedagogy was  

mostly massified with focus on disciplining students and forming citizenship” while at the upper end, the 

focus was “all round development of students and becoming an individual with autonomy” (Sarangapani,  

2020). The textbook discourse was the dominant pedagogic discourse and the teachers seemed to function 

on the implicit belief that their role was to mediate between the textbook and the student (Vijaysimha, 

2013). 

The dominant role played by the textbook in the Indian classroom has led to the term “textbook culture” 

(Kumar,  1988; Sarangapani,  2020; Vijaysimha, 2013). The variations of textbook culture captured in  

research are marked by themes of teacher centred classrooms, strong pacing arising from the teachers ’ 

goal of completing the portions of the prescribed syllabus, emphasis on repetition, drill and word-for-

word recall. Sarangapani (2020) notes that it is widespread in the government schools in India accounting 

for as much as 55 to 75% of class time. She also notes the layered and stratified nature of variations  

wherein rote learning and drilling is evident in the classrooms for children of the poor, while “answer in 

your own words” is found in classrooms with students from higher socio-economic groups. It has also 

been noted that  in schools catering to  lower  socio-economic groups traditional  instructional  methods 

dominate,  whereas  ‘student-centric’  and  active  learning  may  be  encountered  in  classrooms  where 

facilities are better (Sankar & Linden, 2014; Sarangapani, 2018). 

Vijayasimha  (2013)  also  marks  this  difference  emerging  in  an  ethnographic  study  of  pedagogic 

recontextualisation in different school types.

“Control over students was highest in government schools, present to a lesser extent in the private school  

and least visible in the international school, indicating that poor children were perceived as requiring more 

disciplining. Poor children were also constructed as passive and probably unwilling/undeserving recipients  

of worthwhile knowledge, whereas affluent children were seen as capable of discursively constructing this 

knowledge” (Vijaysimha, 2013, p. 67). 

In addition to being subject to a directive and controlling pedagogy, students from government schools 

are also subject to negative attitudes and deficit perceptions.
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“Research on teachers working in Indian government schools frequently report that they have stereotyped 

and  ‘deficit’  perceptions  of  children  from marginalised  communities.  They perceive  of  themselves  as  

working in ‘deficit situations’ and cite ‘inability of children to engage with schooling on account of low IQ 

or  ability’,  ‘lacking  in  parental  support  and  interest  in  schooling’,  ‘lacking  concentration’,  and  ‘being 

disruptive’” (Sarangapani, 2020)

These may also be attributed to cultural stereotypes and prejudices carried by teachers into the classroom. 

Vijayasimha  (2013)  goes  on  to  suggest  that  the  pedagogic  discourse  experienced  by  students  from 

government  schools  in  conjunction  with  systemic  problems  results  in  creating  an  educational 

disadvantage for these students.

There  are  very  few  research  studies  on  mathematical  attainment  of  children  in  schools  catering  to  

marginalised groups. There are two major periodic large-scale assessments – the National Achievement  

Survey (NAS) conducted by the National Council of Educational Research and Training (NCERT) and 

Annual  Status  of  Education  Report  (ASER)  conducted  by  an  independent  organisation  PRATHAM. 

According to the National Achievement Survey 2021, 90% of Class 8 students in a wide-ranging sample 

drawn in Tamil Nadu are at ”basic” or “below basic” level in mathematics. However, such reports have 

been critiqued by scholars (Johnson & Parrado, 2021) and also reinforce the deficit perspectives leading 

to lowering of expectations from marginalised students.

There are a few studies that look at mathematical thinking in marginalised settings in the Indian context.  

These  studies  describe  the  sense-making  and  mathematical  thinking  engaged  by  students  during 

curriculum focused classroom learning. Subramanian and Verma  (2009) discuss how students relate to 

the fractional symbol in a meaningful way and employ a variety of methods to compare fractions drawing 

on multiple interpretations of fractions. Menon (2015) highlights the variety of strategies used by 8+ year 

olds in solving addition and subtraction problems and argues that this is indicative of an understanding of 

what is being done, rather than a mechanical execution of a single taught procedure. Rahaman  (2022) 

draws attention to the process of construction of area-concept happening in a classroom with students  

proposing varied and contending solutions to a given problem and engaging in collective argumentation. 

She also notes the intense student engagement that marked this process. These studies which report on 

interventions aimed at creating spaces where students could actively engage with mathematics and offer 

evidence  of  curriculum  based  interventions  fostering  mathematical  thinking  and  understanding  in 

marginalised contexts. 

Apart  from mathematical  thinking  engendered  by  appropriately  designed  curricular interventions, 

Subramanian et al. (2015) draw attention to the oral and informal mathematical computations, including 
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solving simple algebraic equations that students in marginalised contexts can perform, and talk of the  

need to recognise these competencies. They suggest a rethinking of the upper primary curriculum so that  

it is relevant to students who have the necessary reasoning skills but have not been trained in written  

mathematics. However I did not find any study that discusses similar competencies of secondary school 

students in the Indian context. The central aim of this study is to explore ways of creating opportunities  

for students to engage with the process of discovering mathematics on their own and recognising the oral  

and informal competencies that secondary school students bring to this process. 

Aiming to design alternative approaches, this study builds on mathematical explorations as a means to  

move away from the exercise paradigm. The absence of a privileged discourse in an exploratory context 

foregrounds student talk as a means of doing mathematics, especially in contexts where students do not  

have sufficient background in or access to formal mathematical language. The study intends to investigate 

the  potential  of  mathematical  explorations  to  support  mathematical  thinking  and  mathematical  talk 

especially in marginalised contexts. 

I have not come across studies of students' involvement with exploratory processes on a sustained basis in 

the  Indian  context.  Also,  given  the  complex  dimensions  that  produce  marginalisation  in  the  Indian  

mathematics classroom, there are no studies that address the possibilities of overcoming deficit discourses  

by  privileging  students’  language.  Thus,  this  study  aims  to  examine  the  potential  of  mathematical 

explorations and talk in recentering the margins. 

2.8 Summary

In  this  chapter  I  identified  and  examined  literature  around  the  different  dimensions  along  which  

mathematics  marginalises  and  associated  deficit  discourses.  Among  these  I  identified  narrow 

conceptualisation of school mathematics and its right-answer focus (the disciplinary dimension) and the 

formalised and class-mediated language (the language dimension) as points of concern and undertook a 

more detailed analysis of literature around the role of language in mathematics education and alternate  

focal points centered on mathematical thinking and ways of framing mathematical activity to overcome 

deficit discourses. 

We noted that scholars suggest:

a) Organising educational  processes  in such a  way that  they allow students  and teachers to get  

involved in exploratory processes guided by dialogic interactions (Skovsmose, 2022). Open tasks, 

landscapes of Investigations or mathematical explorations are means to this end.
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b) Multidimensional  framing  of  mathematical  activity  to  include  mathematical  thinking  and 

practices such as sense-making, connection seeking, experimentation, argumentation, etc., that  

highlight the resources and strengths of those at the margins (Louie et al., 2021)

c) An  orientation  that  views  students’  language  and  the  multiple  means  that  they  use  to 

communicate,  including oral  language,  as  resources  instead  of  shortcomings to  be  addressed 

(Adler, 2002c; Moschkovich, 2018; Planas & Civil, 2013)

d) Developing a better understanding of the discursive practices of mathematicians and introducing 

some of these practices into the classroom, thereby expanding the genres of spoken mathematics 

available to students (Barwell, 2013). 

The chapter also discussed the different frameworks relevant to the points of interest of this study, namely 

explorations or open tasks, mathematical thinking, and mathematical discourse. Among these, I draw on 

Yeo’s framework of open tasks (discussed in Section 2.5.2) as the analytical background for task analysis  

in Chapter 4.In Chapter 5, I draw on Burton / Mason’s framework of mathematical thinking (discussed in 

Section 2.6.2) to analyse student moves towards abstraction and Sfard’s Commognitive framework and 

Moschkovich’s ALM framework (discussed in Section 2.3.2) to analyse student talk. I draw on Mason  

and Davis’s work on noticing and listening as background to reflect on the challenges faced by a teacher  

in noticing students’ mathematics. 
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3 Methodology

3.1 Research Questions

Having set myself the goal of moving away from deficit discourses including the perception of school  

mathematics as “truths” to be memorised and procedures to be replicated, innateness of mathematical  

ability, and consequently the impossibility of some /many students being good at it, I asked myself if 

students, especially those at the margins, could be given a different mathematical experience. If yes, what  

would  this  involve  and how would  students  respond to  this  experience?  By margins,  I  refer  to  the  

‘mathematical margins’ along the dimensions as described in Section 2.1.3, comprising of students whose 

mathematics “achievement” is not what is expected at their grade level,  who have not had any prior  

mathematics  experience  other  than  the  ‘school  mathematics  tradition’  and/or  those  who  are  not  

conversant with the formal language of mathematics. As discussed in Chapter 2, there are large overlaps  

between the socio-economic margins and the mathematical margins, given the influence of a students’ 

socio-cultural background, especially language, on their mathematics performance. The broad aim of this  

study  was  to  address  the  dimensions  of  marginalisation  stemming  from  narrow  conceptions  of 

mathematics and the use of formal language in the classroom experience of mathematics among the  

students at the margins. Drawing on literature that suggested “landscapes of investigations” as a learning 

environment  that  differs  from  the  school  maths  tradition  and  the  Open  University/ATM  ideas  of  

explorations, I intended to study the potential of explorations to enable mathematical thinking, especially  

at  the  margins.  I  also  noted  the  potential  of  informal  and  home  languages  of  students  to  support  

meaningful discussion of mathematical ideas as different from the procedural mathematics that a more  

formal  language seems to encourage (as discussed in Section 2.3.4.3)  and wanted to investigate this  

further.  I also hoped to understand the challenges involved in designing and facilitating an exploration 

from the perspective of a teacher and what it takes to be attentive to students’ mathematics which may be 

expressed in ways unfamiliar to me.

The goal  of  studying the potential  of  mathematical  explorations to  support  mathematical  thinking in 

marginalised  contexts,  called  for  observation  of  institutionally-marginalised  students  engaging  with 

mathematical explorations. I needed to observe students as they engage with mathematical explorations  

and understand the kind of thinking they engage in when not constrained by the textbook language and 

curricular goals, their ways of communicating their thinking, the mathematical and linguistic hurdles to 

engagement and communication, the multiple resources including linguistic resources that they draw on  

to  overcome these  hurdles.  The position of  the teacher  is  central  to  this  enterprise  and I  wanted  to  

represent the interpretation of events and to ground evolving questions from this perspective. I was also 

sensitive to the constraining factors like the demands on the teacher, prior knowledge requirements both 

66



for students and for the teacher and other pragmatic constraints in making explorations a part of  the 

schooling experience of a student. I wanted to examine what it takes to engage with these explorations  

both for the students and the teacher.

Our research team that  brought together the first  hand experience of a teacher, the perspectives of a  

mathematician  and  an  educator  opened  up  special  possibilities  for  insight  and  understanding  and 

generated further questions. While we anticipated that the flexibility offered by explorations could be an  

enabler  for  mathematical  thinking,  we  also  felt  the  need  for  constraints  so  that  flexibility  does  not 

contravene considerations fundamental to the discipline. We felt the need to redefine boundaries for what  

counts  as  mathematical  thinking  and  mathematical  discourse  such  that  they  balance  disciplinary  

considerations  and the need for flexibility.  This raised questions  like:  What constitutes  mathematical 

thinking  in  such  contexts?  What  constitutes  acceptable  mathematical  discourse  in  the  context  of 

explorations? These questions call for a conceptual answer informed by the practice of mathematics. The 

mathematician in the research team brought in this perspective. 

The broad concerns of this study were: a) design features of mathematical experiences that deviate from 

the  school  mathematics  tradition  and  support  mathematical  thinking,  especially  at  the  margins,  b) 

documenting  student  response  to  such  experiences  including  the  resources  they  draw  on  and  the  

challenges they face, c) disciplinary considerations in allowing flexibility, and d) implications for the 

teacher. 

The research questions that my study addresses are:

RQ 1. What task-features support mathematical thinking at the margins?

RQ 2. What does engagement with mathematical explorations entail at the margins?

a) What is the nature of mathematical thinking seen in these contexts?

b) How do students communicate their mathematical thinking?

c) How does language support or hinder mathematical communication?

d) What counts as mathematical discourse in such contexts? 

RQ 3. What does it entail for the teacher to facilitate mathematical explorations at the margins  

balancing the need for flexibility and the need to adhere to disciplinary considerations?

In the course of my study, the school authorities requested me to take some sessions that would help  
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students  understand curricular  content  better.  This  created an opportunity  for  me to  teach curricular  

content without being tied by the need to “complete the syllabus” and therefore to extend some learnings 

from the facilitation of explorations to a curricular context. This created the opportunity for the study to  

address a further question:

RQ 4. What could mathematical engagement look like in a curricular context? 

RQ1  entailed  that  the  study  involved  a  design  experiment,  where  exploratory  tasks  in  mathematics 

suitable for students at the margins would be developed. RQ2 entailed observations in the classrooms as  

students engaged with exploratory tasks. Since exploratory activities in mathematics are rarely taken up in 

classrooms situated at the margins, the study also needed to implement such activities. Hence I had to  

play the role of both the teacher and the researcher. RQ3 and RQ4 necessitated that I reflect carefully on  

my own experience as a teacher, supported both by records of what occurred in the classroom as well as  

my interactions with the research team in designing and implementing the exploratory activities. 

Methodologically, this study interweaves the empirical approach of a practitioner rooted in a reflective-

practice and conceptual-analytic approach of a scholar. It calls for a research design that aligns with what  

Kelly  and  Lesh  (2000)  call  “teaching  and  learning  experiments”.  This  type  of  research  design 

“distinguishes itself by its conscious breaking down of the researcher-teacher divide.  The role of the  

researcher is recast, sometimes as a teacher, always as a co-learner. Similarly, the roles of students and  

teachers often are recast as collaborators in the search for critical issues, promising perspectives, relevant  

data, or useful interpretations. In all cases, the characterization of research is transformed beyond that of a  

remote viewing of classroom life in which the researcher acts by judging the classroom life against a  

prefabricated ideal” (Kelly & Lesh, 2000, p. 118). Studies that follow this design focus on development  

that occurs within conceptually rich environments designed to optimise the chances that the intended 

developments will occur in observable forms. They involve a component of design research along with  

classroom observation. 

3.2 Classroom-based research from researcher-teacher first person perspective 

I adopt the methodological stance of classroom-based-research (Kelly & Lesh, 2000) from what Ball  

(2000) calls “researcher-teacher first person perspective”, with elements of design research. This involves 

blending the construction and analysis of practice. Within this paradigm, the site for research moves out 

of  the  researcher’s  laboratory  setting  and  into  real  classrooms  and  the  researchers  are  not  simply  

“disinterested observers” but are significantly involved in projects aimed at improving instruction. The  

roles of teachers and researchers become blurred with researchers functioning as teachers or co-opting  

teachers as researchers. Ball (2000) emphasises ways that researchers may benefit from the viewpoint of  
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“insiders'' - by adopting the role of teachers. 

The focus of studies based in this stance is on “what is possible''  rather than in “what is typical” in  

ordinary classrooms. Rather than test whether a given design or model is true or false, or better or worse 

than another, the focus is more on the “extent to which a model or design is sufficiently meaningful and  

detailed to be useful and powerful for specific “customers''  to achieve specific goals” (Kelly & Lesh,  

2000, p. 222). The goal is to develop descriptions of existing situations, or conjectures about possible  

situations, and the research results are “existence proofs” or designs of alternate learning environments. 

Ball (2000) discusses three paradigmatic examples of classroom-based research where the researchers use 

their own teaching as a centrepiece of their inquiry, with three different focal areas and three different  

designs.  These three examples are Lampert  (1986) who studied student learning, Heaton (1994) who 

studied teacher learning and Simon (1995) who studied teacher-educator learning, all in the context of  

their own teaching. Calling these as special cases of the genre of qualitative case studies, Ball points out  

the common underlying purposes of such research as illuminating a border case, probing a theoretical 

issue and developing an argument or framework. In all three cases, the researchers played an important  

role in constructing the fundamental features of the context of study, the issue studied being at once 

situated in everyday challenges of practice and in a larger scholarly discourse as well. 

“Instead of merely studying what they find, they begin with an issue and design a context in which to  

pursue  it.  The  issue  with  which  they  begin  is  at  once  theoretical  and  practical,  rooted  in  everyday  

challenges of practice but also situated in a larger scholarly discourse, and they create a way to examine 

and develop that issue further.  What they ultimately focus on may emerge out of the situation and its  

unfolding, but they have an important hand in constructing fundamental features of the arena of study” 

(Ball, 2000, p. 236).

Lampert  (1986)  examined ways  of  intertwining  a  computational  focus and a  focus on mathematical 

structures  and  principles  in  an  elementary  mathematics  classroom.  The  approach  to  teaching 

multiplication  in  which she  was  interested  was  rare  in  practice.  So  she  created an instance  of  such  

teaching and sought to examine how it works and to describe it so that pursuing it becomes viable in any 

classroom. In investigating these questions Lampert used her own teaching as the site for research. She  

wanted to  shape teaching in  particular  ways and to  adjust  her  design to  enable  a  particular  kind of  

learning.  Having another  teacher  do  the teaching  would  mean adding an additional  layer  of  teacher  

learning that would interfere with the aims of the project. Being the teacher as well as the researcher  

afforded Lampert a space in which to work that is not easily available otherwise. In a broader sense  

Lampert asked how disciplinary dispositions, like a focus on mathematical structures, can be acquired and  
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used  her  teaching  as  evidence  of  what  is  possible.  Lampert’s  creation  of  an  instance  of  teaching 

multiplication differently is also generative of questions on what such creation involves, broadening the  

relevance of her research.

An experienced and skilled teacher Ruth Heaton, examined in a disciplined way her own struggles to  

change her teaching from a traditional approach to one grounded in reform ideas about good teaching. In  

her  dissertation research,  “Creating  and Studying  Practice  of  Teaching Elementary Mathematics  for 

Understanding” (Heaton, 1994) draws on her own teaching to answer the questions ”What would it take 

to teach elementary mathematics in ways envisioned by the current reforms in mathematics education?  

What struggles would be experienced by teachers as they transform their teaching?” In documenting the 

struggles that she faced during her year of teaching, she sought to make claims regarding challenges that 

any teacher might face attempting to engage in reform teaching.  Thus they go beyond one teacher’s  

struggles to transform her own practice and is therefore of broader interest. Heaton documented what she 

found difficult and why, in terms of content and pedagogy, and what helped her learn. 

Problematising the common view that the role of a teacher within constructivist theories of learning as 

one  of  noninterference  in  students’  learning,  Simon focussed  on  the  role  of  deliberative  and design 

aspects  of  practice  involved  in  constructivist  teaching  such  as  selecting  tasks  and  choosing 

representations. He sought to address the question “what is the nature of design work when constructivist  

theory underlies  pedagogy?” through his  own teaching of  prospective elementary teachers  within an  

experimental teacher preparation program. Analysing his own actions as a teacher in this context,  he  

developed a provisional theoretical model that captures the design processes that underlie teaching rooted 

in constructivist learning theories. 

The concerns of all three studies necessitate studying teaching-learning from a first person perspective.  

Their concerns are rooted in practice, but are relevant from the larger scholarly discourse as well. The  

goals of this study overlap with the goals of these three studies to varying extents. With Lampert I share  

the goal of designing a phenomenon of interest and describing the possibilities that follow from the new 

design. In describing what her students did in the context of her approach, Lampert offers insights into 

what learning of other students might look like with a similar approach. By describing the mathematical  

thinking observed as students from marginalised contexts engage with mathematical explorations, I hoped 

to  offer  insights  on  how  other  students  from  similar  contexts  might  respond  to  such  tasks.  By 

documenting what students could do and the kind of thinking they engaged in, and how they expressed  

their thinking, I hoped to present “counterstories” which challenge the deficit perspectives about the kind 

of  tasks and modes of  instruction that  are  considered appropriate for  students at  the margins.  As in  
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Lampert’s situation, this generated further questions on what is entailed in designing and implementing 

the  novel  learning  environment.  With  Heaton  I  share  the  concern  for  challenges  in  implementing  a 

different pedagogy called for by the flexible and accommodating learning environment I imagined and  

the  nature  of  support  needed  to  mitigate  these  challenges.  With  Simon,  I  share  the  concern  for  

documenting what teacher moves supported or hindered the progress of an exploration. 

3.3 Insider Research as my methodological choice

Studying teaching and learning from the inside may not be a fruitful approach for all research goals. For a 

given research goal, one therefore needs to ask if the first-person perspective has an advantage to offer  

and if yes how may the perspective be used. Ball (2000) identifies three crucial questions in considering 

the appropriateness of first-person research for a particular research agenda, 

First,  does  the  phenomenon  in  which  the  researcher  is  interested  exist?  Does  the  researcher  have  a 

conjecture or image of a kind of teaching, an approach to curriculum, or a type of classroom that is not out 

there to be studied? And, if it is this need to create the phenomenon that underlies the impulse to engage in 

first-person research,  does the researcher  think he or she is  particularly well  equipped to be designer,  

developer, and enactor of the practice or would an experienced practitioner be a more reliable partner in 

this construction? Second, is what the researcher wants to know uniquely accessible from the inside or 

would an outsider be able to access this issue as well, or perhaps better? Third, is the question at hand one 

in which other scholars have an interest, or should have an interest, and if so, will probing the inside of a  

particular design offer perspectives crucial to a larger discourse? (p240).

Though the idea of explorations itself is not uncommon, instances of marginalised students engaging with  

explorations for a long enough period for me to undertake an in-depth study of the phenomenon is rare if  

not absent in the Indian context. Despite having a wide network of connections with schools and teachers  

through my institution and parent research group (mathematics education at the Homi Bhabha Centre for  

Science Education) we were not  aware of such instances.  Further,  the curricular  imperatives and the 

consequent time-constraints for the regular teacher; and the prevalent deficit perspectives around what  

these students can or cannot do, make it improbable to find a classroom where the students are engaging  

with mathematical explorations in anything more than a one-off instance. I therefore had to create the  

phenomenon  I  wanted  to  study.  I  needed  to  design  modules  or  tasks  that  offer  flexible  ways  of 

engagement with mathematics and a corresponding pedagogy. I conjectured that flexibility - be it in the 

kind  of  language  used;  preferred  means  of  expression  (talk  over  writing);  methods  and  procedures  

followed; all are important in enabling explorations in such contexts. At the same time, the flexibility  

admitted needs to be within disciplinary boundaries. So I needed to adopt a pedagogy that is accepting of  

students'  ways  of  communication  and  ways  of  doing  mathematics  while  keeping  the  disciplinary 
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considerations firmly in view. I imagined tasks and pedagogy that balances flexibility and disciplinary 

constraints.

Given the improbability of finding a teacher willing to invest the time and effort the project demands, and  

the added layer of teacher preparation, I decided to capitalise on my experience as a teacher who has  

taught in marginalised contexts,  and facilitated explorations albeit  in more affluent and resource rich 

contexts. Our research collaboration which includes a teacher-researcher with prior teaching experience, a 

mathematician  who also  brings  in  a  rich  experience  of  interacting  and facilitating  explorations  with 

students across levels, and an educational researcher, is ideally positioned to support my study, to design  

exploratory contexts and undertake a “first-person inquiry’ into teaching to understand the pedagogical 

elements involved in enabling such a context. 

The schools that were part of this study not being “exceptional” in any way, I argue that studying how the 

students engage with explorations in these schools gives us a window to “what might be'' in schools with  

a similar context. Also the process of designing an alternate learning milieu allows us to ask what is  

involved  in  designing  this  milieu?  What  kind  of  tasks  support  flexibility  and  accessibility?  What 

challenges is a teacher likely to face in designing and implementing such modules? These questions are of  

wider relevance and not limited to the two schools that were part of the study. Moreover the larger goal  

motivating this study, namely the potential of explorations to address at least some dimensions of the  

marginalisation stemming from mathematics, I argue, is of importance to the larger community. While the 

expertise  available  in  the  research  team  is  more  difficult  to  replicate  across  contexts,  and  limits 

generalisability of the study, I argue that this very expertise adds value, given the exploratory nature of 

the study and the goal of unearthing possibilities. 

We  planned  to  design  a  number  of  explorations,  with  me  as  the  teacher-researcher  facilitating 

explorations in a school catering to students from socio-economically disadvantaged backgrounds. This 

we anticipated, would allow us to probe what students are capable of doing when not forced to follow the 

expected norms. Rather than offer a generalised trajectory along which mathematical explorations could  

progress or conclusions about having students at the margins engage with explorations, my aim was to  

produce an image of what students engaging in explorations would look like - a pointer to “possibilities”.  

Drawing on approaches that worked across the explorations I also hoped to offer some guiding principles 

and noteworthy points while facilitating explorations. 

In the following sections, I look at our study context, the data corpus and the analysis carried out.
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3.4 The study context

The schools that were sites for this study were chosen based on their approachability through contacts and 

their willingness to take part in the study. As mentioned earlier in Chapter 1, two of the schools that were  

initially chosen did not continue due to the constraints they had in accommodating the teaching sessions 

for the study in their schedule. The school which forms the primary source for my data is a “Corporation 

School” run by the city government in Chennai in South India. The school complex consists of a Primary  

school for Grades 1 to 5 which feeds into a High School for Grades 6 -10. Both schools function from the 

same compound and are two separate units for administrative purposes. My interactions were with the  

High school section. This section has a strength of approximately 350 students, with 150 boys and 100  

girls across classes 6 -10. There are about 65 - 80 students at each class level, with two divisions for each  

class.  The  class  sizes  vary  from  30  -  40.  It  caters  largely  to  students  from  socio-economically  

disadvantaged  backgrounds,  mostly  from the  oppressed  social  classes.  The  students  qualify  for  fee-

exemption and mid-day meals and most of them are first generation school-goers. This implies that there  

is almost no academic support available at home, should they face difficulties in school-learning.

Tamil is the first language of most students in the class and language of teacher-student and student-

student conversations. The school had a few students who opted for Tamil as the medium of instruction, 

but most parents preferred English (about 10 students in Tamil medium and around 50 in English in  

Grade 9 in 2018 - 2019). Tamil as a medium of instruction has now been discontinued because of the  

decreasing number of parents opting for it. In the years that I taught, because of the fewer number of  

students who opted for Tamil medium, both the sections were frequently combined and taught together.  

The students who opted for English or Tamil medium have their textbooks in the respective language, but 

the  classroom teaching  itself  often  happens  together,  with  Tamil  being  the  preferred  language.  The 

students who were part of this study came from the section where the medium of instruction was English. 

The only exposure the students have to English is their textbooks and what they learn as part of their  

English lessons at school. With this, they understand when spoken to in English. Some of them can carry 

on a rudimentary conversation in English, but none are fluent speakers. Even the high-scorers amongst  

the group of 13-14 year olds struggle to independently read and comprehend their subject textbooks in 

English.  Literary  or  written  Tamil  is  starkly  different  from the  conversational  versions,  which  vary 

regionally and carry markers of caste, class and community. The o cial medium of instruction being�  

English, these students do not have an opportunity to gain familiarity with the literary Tamil and the  

disciplinary terms in the language,  doubly disadvantaged and denied access to academic language in 

either their home language or the language of instruction.

My own fluency in Tamil when I started to teach was limited to speaking, and that too a variant that was  
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typical of a particular caste from a different region. My familiarity with the language was limited to 

informal conversations at home. I could understand literary Tamil to a large extent but not speak, and I  

had rudimentary reading skills and no writing skills. I have no prior experience in teaching in Tamil, and 

started out with a reluctance to do so given the variant of the language that I speak and the social markers  

that it carries. My teaching was in a mix of English and Tamil, with me switching to English whenever I  

had difficulty expressing myself. Over a period of time I gained comfort in Tamil, became sufficiently 

familiar with the language to speak the regional conversational variant (or a close enough version!) and 

my language became dominantly Tamil with technical vocabulary alone being in English. I also picked 

up reading skills.

In addition to the primary site, I also had a second school, catering to students from similar backgrounds, 

with the difference that the first is a school run by the local government and the second run by a trust and  

charges a nominal fee. School 2 has classes from Pre-KG to Class 12, with a total strength of about 650 

students. Of these around 300 are girls and 350 boys. There were around 160 students - 60 girls and 100 

boys - in the High school section (Classes 6 to 10) and the class size varied between 25 and 35. English 

was officially the medium of instruction,  and classroom teaching happened in a  mix of English and 

Tamil. Going forward, I will refer to the first school as School 1 and the second as School 2. 

3.5 The data 

The teaching for the study spanned 3 academic years. The classes were in the nature of after school  

enrichment classes. In the first year, I implemented one exploration in School 1. In the subsequent years I  

taught twice a week in School 1 and once a week in School 2 for most part of the academic year. There  

were breaks in classes during school exams, or other activities and when I was travelling. The schools  

requested that I devote a few sessions to help students understand curricular content better. The total 

hours that I engaged with students in these schools, including the curricular sessions are as shown in 

Table 3.1. Other than this I also helped a group of 20 students with the preparation for the school leaving  

examinations in School 1, (involving 26 hours of engagement) and a small group of 5 students in School 

2 for their annual science project (involving 8 hours of engagement), both at the request of the respective 

schools. 
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Table 3.1: Total hours of teaching

Year School 1 School 2

2017 - 2018 8 hrs

2018-2019 22 hrs 15 hrs

2019-2020 21 hrs 17 hrs

In  both schools,  the students  were assigned to  the  study by the school  authorities  based  on interest 

expressed  by  the  students,  time  constraints  of  students  coming  from  involvement  in  other  school 

activities, and the concerned teacher's perception of “students who would benefit from participating in  

this study”. Marks obtained in the school exams was not a criteria for selecting students as attested to by  

the teachers. 

Table 3.2: Student information

Academic 

year

Approx 

number

 Gender 

Distribution

Grade Remarks

School 1 Cohort 1 2017 - 2018 15 14 girls, 1 boy Grade 9

Cohort 2 2018 - 2019 20 10 - 15 boys, 

3 -5 girls

7-8 Grade 8 

students & 

12 - 13 

Grade 9 

students

Cohort 3 2019 - 2020 20 10 - 15 boys, 

3 girls

Grade 9 Includes the Grade 

8 students from 

Cohort 2 

School 2 Cohort 1 2018 - 2019 15 Roughly even 

gender 

distribution

5-6 of 

Grade 8 and 

rest Grade 9

Cohort 2 2019 - 2020 10 Roughly even 

gender 

distribution

Grade 9 Includes the Grade 

8 students from 

Cohort 1 
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The primary focus was Grade 9 students, but both schools also assigned a few Grade 8 students to the  

group in the year 2018 - 2019. These students continued to participate in the study in the following year,  

as ninth graders, along with a few more students who were freshly assigned. In School 1, I interacted with  

three cohorts of Grade 9 students. Each cohort had 15-20 students. The cohort of 2017-2018 consisted  

almost entirely of girls - 14 girls and 1 boy. The later cohorts were predominantly boys with 3-5 girls and 

around 12-15 boys. In School 2, I interacted with 2 cohorts of ninth graders and the gender distribution 

was more even. The group in School 1 that I worked with for the Grade 10 exams was the same group  

that was with me the previous year. So in both the schools I worked with a good proportion of students 

for two academic years. The student details year wise are as in Table 3.2. 

As noted earlier,  the school authorities in School 1 requested that  I  do some classes related to their  

curriculum as well, in addition to exploratory tasks that I had planned for. Responding to this request, I  

devoted some hours of teaching to textbook related content like percentages and discounts, mensuration,  

algebra and set  theory.  The attempt in these curricular  sessions were to  engage in  more open-ended  

problem solving. In general I repeated the explorations and tasks done in School 1 at School 2 as well,  

both  exploratory  and  curriculum related.  During  the  later  stages,  the  teacher  at  School  1  explicitly 

requested to do “revision problems” from specific topics, which I complied with. These sessions, though 

not part of the initial design of the study, contributed to my evolving understanding, and I draw on some 

salient moments from these classes in my analysis. 

I  facilitated  a  total  of  11  explorations  across  these  two schools,  some of  them being  repeated  with 

different cohorts and some being done with only one cohort. During this span of 2 years I also facilitated  

explorations with other groups of students - as part of summer schools and talent nurture camps and as an 

enrichment activity in a third school where some of these 11 explorations were repeated.  I draw on  

implementation of  6  of these explorations for  the analysis for  this  study.  These 6 explorations were 

chosen  based  on  the  number  of  times  they  were  repeated  including  outside  the  project  schools,  the 

availability of audio recordings and a detailed teacher diary entry from the project schools. Although the  

data analysed here is only from School 1 and 2, the repetition of these explorations in other sites led to my 

increased familiarity with them. Table 3.3 shows a snapshot of these 6 explorations and the number of  

times  they  were  done  in  the  project  schools  and  elsewhere.1 A  more  detailed  description  of  these 

explorations and their development process is discussed in Section 3.6

1. The other 5 explorations are NIM game, Clapping game, Views of Solids, Arithmagons, and Consecutive 
numbers. 
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Table 3.3: Snapshot of explorations

Exploration Details Cohorts In 

Project 

schools

Elsewhere

Matchstick 

geometry

Students explore matchstick shapes with focus on the 

concepts of similarity, congruences, constructable 

shapes, shapes that can be replicated without 

measurements, etc. 

1 2

Magic triangle A puzzle that involves writing numbers along the 

perimeter of polygons such that the sum of numbers 

along each side remains the same. The starting point is 

a triangle with numbers at the vertices and at the 

midpoint of the sides. 

2 4

Guess the 

colour

A game based exploration where a 5 x 5 square grid, is 

divided into two rectangles (horizontally or vertically) 

and each coloured differently, and students guess the 

division by asking an optimum number of questions. 

The problem is extendable and generalisable.

1 4

Polygons In this task students figure out the maximum number of 

right angles possible in a polygon. Task variation is 

achieved by interpretations of “polygon” and “right 

angle”.

2 2

Leapfrogs Another game based exploration, where the primary 

task is to interchange a set of black and white tokens 

arranged in a straight line with a gap of one space in 

between, following specified rules of movement.

1 3

Partitions and 

cells

Students imagine “partitions” that slot into one another, 

in a crate, to create “cells” to hold bottles. The 

exploration involves exploring the number of cells 

possible with a given number of partitions and 

optimising the number of cells and partitions. 

2 0
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The exploratory sessions were audio-recorded by placing two recorders at vantage points. I maintained a  

teacher diary during the entire teaching span. These and the audio-recordings constitute the major data  

sources for this study. Most of the sessions were done in the presence of an observer. The sessions in  

School 1 in the years 2017-2018 and 2018-2019 were observed by the students’ mathematics teacher.  

There were post-class discussions with the teacher on problems faced by specific students/groups and 

what worked/did not work in the particular class. These discussions were noted in my teaching diary and  

when necessary course corrections were done based on the input received from the teacher. An observer 

was recruited for the project in the academic year 2019 - 2020, who wrote observer notes in addition to  

participating in post-class discussions. However, for the explorations chosen for analysis in both schools, 

observer notes were not available and hence these notes were not included in the analysis, although they  

were consulted. At a later stage in the study, noting the rich discussions that happened in the curricular 

sessions and how they add value to the larger study, I audio recorded these sessions as well though not  

part of the initial design. Table 3.4 is a consolidated table of the data collected. 

The teachers and headmistress in School 1 took a keen interest in the study and were very co-operative.  

This allowed for smooth scheduling of activities and most of the planned explorations were done here.  

The scheduling of activities in School 2 was not very smooth and consequently some of the explorations  

could not be done there. Therefore the data for this study is mostly from teaching sessions in School 1.  

The data sources from School 1 available for each of the explorations analysed are as in Table 3.5.

In addition I also draw on the implementation two explorations - Magic triangle and Partitions and cells in 

School 2. Detailed teacher diary entries were made for both these explorations and the Magic triangle  

exploration was audio-recorded (a total of 2 hrs and 25 minutes of recording).
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Table 3.4: Data sources2

School Session Type Number of 

sessions

Audio 

recorded

Teacher diary 

written

Observer 

notes 

available

School 1 Explorations 

analysed (all those 

listed in Table 3)

20 sessions 14 sessions 

(totalling approx 

12 ½ hrs)

20 sessions 0 sessions

Other Explorations3 11 sessions 6 sessions 

(totalling approx 

4 ½ hrs) 

9 sessions 7 sessions

Curricular sessions 17 sessions 5 sessions 

(totalling approx 

4 ½ hours)

15 sessions 6 sessions

School 2 Explorations 

analysed (Magic 

triangle and 

Partitions and cells)

5 sessions 3 sessions 

(totalling approx 

2 ½ hours) 

5 sessions 0 sessions

Other Explorations4 13 sessions 7 sessions 

(totalling approx 

5 ½ hours)

10 sessions 3 sessions

Curricular sessions 10 sessions 5 sessions 

(totalling approx 

4 hours)

7 sessions 4 sessions

2. Some sessions could not be audio recorded (or the quality of recording was such that it was not usable) because of 

unforeseen disruptions. Also the teacher diary was not written for some classes when there were observer notes, and 

no significant events marked for discussion. Video data was collected for school 2 but not analysed to maintain 

parity with school 1.

3. The other explorations done are NIM game, Clapping game, Views of solids, Arithmagons. 
4. Other explorations done are Views of solids, Clapping game, Consecutive Numbers and Arithmagons and a 
simpler version of Magic triangle. 
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Table 3.5: Data sources from School 1

Exploration

Approx 

Module 

duration

Audio 

recording 

duration Teacher diary

1 Matchstick geometry 7 hrs5 6 hrs 18 mts Y

2 Magic triangle 3 hrs 2 hrs 19 mts Y

3 Guess the colour 3 hrs 2 hrs 58 mts Y

4 Polygons 3 hrs 51 mts Y

5 Leapfrogs 2 hrs N Y

6 Partitions and cells 2 hrs N Y

Students were requested to record their written work in the loose sheets and later in a separate notebook 

provided so as to collect written work. But as mentioned earlier in Section 2.3.3, there was reluctance to  

write and very little (less than a total of 10 pages of written work per student for the entire teaching span)  

written work was collected. I encouraged them to write in the notebooks provided but did not insist they 

write in any specified form, in the interest of keeping them engaged. I collected whatever they wrote in  

the material  provided and also occasionally captured images of  written work on the blackboard and 

classroom floor. I  also tried to insist on writing on two occasions - once in the Matchstick geometry 

exploration and once in the Views of solids exploration - by giving them worksheets to be filled in. I 

discuss the worksheet related to the Matchstick geometry exploration, which is one of the explorations I  

have chosen to analyse, in Section 5.3. The written work collected was also looked at along with audio  

recordings of corresponding sessions and these enabled better sense-making of the recordings, especially  

the pointing words. 

Another important data that I drew on were the notes from the regular discussions with others in the 

research team. The design of the explorations, the steps of implementation to be followed in class, the  

progress of the exploration, any salient moments that stood out for me in the class and my reflections on 

them were all discussed with the team. I noted the key points from these discussions in my teacher diary  

and they contributed to the later analysis. In addition, a record of the versions of the explorations tried out  

5. This was the first module designed and an experimental one, involving multiple activities and worksheets. Hence 
the comparatively longer duration.
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were maintained and analysed. 

3.6 The Explorations

As mentioned in the previous section a total of 11 exploratory modules were done in the project schools.  

Given our goal of moving away from the rigidity of the textbook and formal mathematical language we 

looked  for  tasks  with  multiple  approaches  and  branching  questions.  While  games  and  puzzles  are 

engaging  and  provide  easy  opportunities  to  incorporate  mathematics,  we  needed  to  ensure  that  the 

mathematics involved is accessible and relevant to the mathematics that students learn. We had to look 

beyond solving the puzzle or coming up with a winning strategy for a game to mathematising the puzzle 

or game as well. While the Magic triangle and Leapfrogs exploration draw on algebra, Clapping game 6 

draws  on  properties  of  factors  and  multiples  and  modular  arithmetic.  We  also  strove  to  design  

explorations around curricular concepts as well. The explorations on Matchstick geometry, Polygons and 

Views of solids7 are examples. We experimented with different curricular areas like algebra, geometry,  

number theory, etc. This raised questions on the ease with which particular topics lend themselves to  

designing explorations, whether some content areas lend themselves to more accessible explorations in  

marginalised contexts and the feasibility of curricular starting points for explorations. We observed that  

an exploration rooted in curricular context tended to have prior knowledge requirements and privileged 

the textbook language. Multiple aspects had to be considered during the module development phase.

The explorations were developed and refined iteratively based on discussions within the research team 

and insights drawn from repeated implementation.  The module development process was as follows: 

Based on an idea or question generated by the research team, picked up from literature, or suggested by  

the mathematician in the team from the rich repertoire of explorations he has done with students on  

multiple occasions, I would come up with an initial version of the exploration. This would then be tried 

out informally with colleagues and friends. This was done with the aim of getting pointers to multiple  

possibilities,  ways in which the exploration could branch off.  The tasks which were picked up from 

literature needed to be solved, adapted to the mathematical maturity of the particular group of students  

who would be engaging with the exploration, variations thought through and difficulties anticipated. This 

would then be discussed within the research team and refined if necessary and implemented in class. The 

evolution of the exploration in the classroom would also be discussed and course corrections done as 

necessary  and  changes  incorporated  for  the  next  implementation.  Thus  my  implementations  of  the 

6. This exploration, which is not analysed here, involved N students sitting in a circle and every nth student 
clapping. The starting point is to investigate for what values of N and n do all students get to clap and state the 
relation between N and n in such cases. 
7. An exploration that involves investigating multiple views of solids built from unit cubes, building solids with 
given views and investigating compatible and incompatible combinations of views. 
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explorations outside the project schools and the mathematician's implementations with different student 

groups, though not done with the research agenda in mind, contributed to a richer understanding of the  

possibilities that could open up while implementing these explorations, and learnings from them informed 

the evolution of the explorations and the study. The reflection notes written after each implementation,  

discussions on the learning from these implementations and versions of the explorations served as the  

basis for identifying task features that support flexibility and accessibility (Chapter 4). I now describe the  

6 explorations which constitute the bulk of the data source for the findings reported in Chapters 4, 5 and 6  

of this study in some detail. 

1)  Matchstick geometry: The thought behind this  exploration was motivating students to  explore  by 

making the familiar unfamiliar. The exploration involved students playing with matchstick shapes and  

exploring how these shapes are similar to and different from the shapes of Euclidean geometry they are  

familiar with. The key discussion points planned were: the idea of congruent shapes and similar shapes;  

and use of mathematical terminology in describing shapes; replicable/constructable shapes – shapes that  

can be replicated without resorting to measurement. A series of tasks were planned that would bring to 

focus these ideas as points of discussion. The main tasks included

 i) Freeplay by making matchsticks shape of their own choice

ii) Replicating the given shapes. The shapes included some shapes with only right angles and  

could be replicated based on side-lengths alone and others which required measures of specific 

angles to be replicated. The intention was to call on students to justify that the shape that they  

made was indeed identical to the one provided, thereby opening up a discussion on “when are two 

matchstick shapes identical?”.

iii) Describing a given shape – This was intended as a task where students work in pairs with one  

of them describing a given shape to the other, who would have to make the shape being described 

with matchsticks. This task was intended to create opportunities for students to use mathematical  

vocabulary like horizontal/vertical, parallel/perpendicular and use unambiguous referents.

iv) A further task on replicating shapes intended to identify and discuss non-constructability of 

shapes which involve non-integer lengths. For example, argue for the non-constructability of the 

shape in Figure 3.1 with integral multiples of matchstick lengths.
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Figure 3.1: Matchstick geometry:Replicating shapes

2) Magic triangle: This is a puzzle based task – finding ways of filling up the circles along the perimeter  

of an equilateral triangle as in Figure 3.2, with numbers in such a way that the side-sums are equal.

Figure 3.2: Magic triangle

This puzzle admits of 4 distinct solutions – when consecutive numbers 1 to 6 are used, the side-sums 9,  

10,  11 and 12 are  obtained.  There are multiple  approaches to the solution – namely trial  and error,  

exhaustive listing of possible ways of filling, using parity rules to eliminate some possibilities and solving 

algebraically.

Assuming the 6 numbers to be say a, b, c, d, e and f, and noting that adding the side-sums is equivalent to 

adding the six numbers being used with those at the corners being added twice one can obtain a relation  

between the side-sums and corner-sums as 3S = C + 21. This implies that the corner-sum has to be a 

multiple of 3, and knowing the minimum and maximum possible values, one can find out all possible 

values of the corner-sum and hence the side-sums. Now solving the problem reduces to finding out ways  

of obtaining the permissible side-sums. This vastly reduces the number of possibilities and allows for a  

quicker solution. The variations of the problem include using a different set of consecutive integers, or 
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using sets of numbers in arithmetic progression, or using any set of six numbers. These variations give 

rise to further questions like – Will there always be solutions? What is the condition for existence of  

solutions? Will existence of one solution guarantee four different solutions? If not, under what conditions 

will this guarantee 4 distinct solutions? and so on.

The problem can be extended to other polygons and with more nodes than 3 along each side and is 

referred to  in  literature  as  “Perimeter  magic  polygons” (Trotter,  1972,  1974).  The algebraic  solution 

outlined above may be applied to solve the generalised perimeter polygon puzzles ( and puzzles involving 

open curves) and the relation between the side-sums and corner-sums may be modified according to the 

sets of numbers being used and the number of sides of the polygon. Thus an algebraic solution proves to  

be a method that can be used to solve a class of problems rather than the specific problem posed.

3) Guess the colour: Given a 5 x 5 square grid, which was divided into two rectangles (by a horizontal 

division or a vertical division) and each coloured differently, say blue and green as in Figure 3.3,  the task 

was to guess the division by asking questions. The task admits of multiple questions types – for example 

questions which ask for a particular fact (colour of a particular cell, or number of cells of a particular  

colour, or the direction of division etc) or ones which are answerable by a yes or no. For example the  

following questions give sufficient information to find the dominant colour in the grid:

• What is the dominant colour in the grid?

• How many grid cells are coloured blue?

• Is blue the dominant colour?

• What is the colour of the cell at the centre?

• Is the cell at the centre green?

The goal was to come up with an algorithm to minimise the number of questions. This would involve  

figuring out the key information required to “crack” a grid (Position and direction of partition, dominant 

colour and its  relative positioning) and coming up with an optimal set  of  questions from which this 

information can be inferred. The task was further generalised to larger square grids.

84



Figure 3.3: Guess the colour

For an n x n grid, the position of the partition can be figured out by using binary search and consequently, 

the optimal number of questions required will  be bounded above by log  n.  The remaining pieces of 

information could be asked for by one question each.  Thus in a worst case scenario, one can guess the 

partition with utmost 3 + log n questions.

Figure 3.4: Guess the colour: Student given variations
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Other  extensions/variations to the tasks  include more than one division and grids of varying shapes, 

allowing for other question types and variations in the kind of partitions allowed (for example removing 

the restriction that the partitioning line has to be edge to edge) or rules of the game. Some variations 

which students came up with along with their guess of the difficulty involved in solving the problem, 3 

star rating being the most difficult, are shown in Figure 3.4. Some of these were discussed, but none  

solved.

4) Polygons: This task starts with the question “How many right angles can a polygon have?” (Fielker, 

1981). The question leaves the term polygon and right angles open to interpretation – it  could mean  

convex or concave polygons. Right angles could be internal angles or external. So the first step in this 

exploration is to clarify the question and spell out the goal. In the convex case it can be shown that for n  

>= 5, the max number of right angles possible is 3, and in the case of concave polygon it is the integer  

just less than 1/3( 2n + 4), where  n is the number of sides. There are multiple ways of arriving at and 

proving the answer – using the exterior angle property, or using angle sum property and algebraically 

arriving at an upper bound for the number of right angles, or by generalising the pattern obtained by 

counting the number of right angles in polygons with different number of sides (using induction), etc. 

This tasks lends itself to experimentation, and we have noted students coming up with many different  

shapes  in  an  attempt  to  maximise  the  number  of  right  angles  (Figure  3.5).The  task  lends  itself  to 

variations  through possible  reinterpretations  of  the  key terms involved – for  example polygons may 

include looping polygons or crossed polygons etc.

Figure 3.5: Polygons: Student work
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5) Leapfrogs: Drawn from Mason et al. (2010) the game of Leapfrogs is a single player game whose goal 

is to interchange the black and white tokens arranged linearly, with one blank space in between as in 

Figure 3.6, in an optimal number of moves .

Figure 3.6: Leapfrogs exploration

Task parameters like the number of tokens on each side of the blank space, the position of blank space, 

rules  of  movement,  the  initial  and  final  configurations  all  lend  themselves  to  change  resulting  in  

variations of the task. The task affords multiple formalisations and solution methods.

In Figure 3.6, If one were to label the positions left to right as 1 to 11, with the blank space being at the 

6th position, in the target position, the black tokens should occupy places 7 to 11 and the white tokens 1 

to 5. The move is effected by the tokens of each colour moving in line, en masse, as a train – that is the  

black token at position 5 moves to position 11, the one at position 4 moves to position 10, ... and the one 

at position 1 moves to position 6 and there is a similar shift for the white tokens. That is each token needs 

to shift  position by 6 places,  and there are 10 tokens – which means there needs to be 60 shifts  of  

positions. Every black token has to jump over every white token to reach its designated place and no two 

tokens of the same colour need to jump over one another (This will disturb the train, lead to backward 

moves, and disturb optimality). There are 10 tokens in all and each has to jump over 5 tokens, making it  

50 jumps. But in this each jump is counted twice and so there needs to be 25 jumps, which contribute 50  

shifts. The remaining 10 shifts need to be effected by slides and so there needs to be 10 slides and 25 

jumps totalling 35 moves in all. The particular sequence of moves is obtained by choosing that move 

which avoids jumping over a token of the same colour from each configuration. There is a unique move at 

each step that guarantees this. The argument can be generalised for n tokens on either side. Interchanging 

n tokens requires 2n (n + 1) shifts of which n2 are jumps, resulting in 2n
2 shifts, and the remaining 2n 

slides. So the total number of moves required is  n2 + 2n or  (n + 1)2 - 1. It is also possible to solve the 

problem inductively by observing and extending patterns in the slides and jumps required to make a  
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transition as the students are seen to be doing in Figure 3.7. 

Figure 3.7: Leapfrogs: Student work

6)  Partitions and cells:  In this problem students investigate the number of cells that can be formed by 

placing a number of slotted partitions in a crate as in Figure 3.8. 

Figure 3.8: Partitions and cells

By trying out multiple alignments, it can be seen that for a given number of partitions placing them so as  

to form a square grid or a grid as close to a square as possible gives the maximum number of cells.  

Students are expected to find a relation between the number of cells and partitions and use it to find one  

given the other. Given n partitions where n is even, the maximum number of cells obtainable is given by 
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( n

2
+1)

2

 . The problem can be abstracted to one involving lines and squares (Hardy et al., 2007) and to 

counting squares of larger dimensions as well instead of just the unit squares in the contextualised version 

involving crates. 

3.7 Data Reduction and Analysis 

Among the 11 explorations designed, implemented and observed, I focus on 6 of them in the analysis. An 

opportunistic sampling based on 1) the total number of times the exploration was implemented in the 

project schools and elsewhere 2) availability of audio recording and the details captured in the teacher  

diary, was done to reduce these 11 explorations to 6. From these 6 explorations, a further selection of  

explorations to be analysed for particular chapters was done based on the availability of data relevant to  

the theme of the chapter. Table 3.6 shows the particular explorations analysed for each of the chapters  

where I discuss the findings from the study and the rationale for the choice. The repetitions outside the 

project schools gave room to try out variations in task formulation and implementation and also increased  

my familiarity with the exploration. Therefore these explorations offer a better basis for our inferences on 

task features. For instances that describe student responses to the explorations, the criteria for choice of  

explorations to be analysed was the availability of audio recordings and detailed entries in the teacher 

diary. I choose to anchor the analysis in Chapter 6 (on demands that an exploration makes on the teacher)  

on an exploration whose implementation was observed by the mathematician in the research team. This  

brought to light the gaps in my implementation and the opportunities I missed out enabling a reflection on  

the challenges I faced and the demands I had to navigate as a facilitator.

The selection of instances to be discussed from both the exploratory contexts and the curricular sessions,  

were especially guided by the interactions that were salient in my memory as a teacher. The choice of  

instances was also guided by my insider perspective and intuition as a teacher on the significant events in 

the class. Thus the teacher’s subjectivity was used as an instrument in guiding interpretation and analysis.

Cochran-Smith and Lytle (2006) suggest that in forms of research where the roles of the teacher and  

researcher are blurred, what counts as data and what counts as analysis are often different from those of  

more traditional modes. Reflection-on-practice ((Mason, 2001; Schon, 1983) and stimulated recall were  

the  key  analytical  means  adopted.  Salient  moments  (Helliwell,  2017)  that  stood  out  because  of  the 

mathematical thinking or student agency displayed were revisited in the audio recordings and transcripts  

prepared. These two aspects were central to our study given the research goal of investigating a broader  

framing of what it  means to  do mathematics in  the course of  teaching and learning in marginalised  

contexts. 
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Table 3.6: Explorations analysed - chapterwise details

Chapter Theme of Chapter Explorations analysed Rationale for choice

4 Task features Guess the colour, Partitions 
and cells, Polygons and 

Magic triangle8

Availability of data relevant 
to module revisions and 
repetitions of the exploration 
in other sites 

5 Students’ mathematical 
engagement, language 
use

Magic triangle, Matchstick 
geometry

Availability of audio 
recordings and detailed 
teacher diary

6 Demands on the teacher Leapfrogs Module implementation 
observed by the 
mathematician leading to 
“missed opportunities” being 
brought to light and 
discussed.

The first step in the analysis happened in-situ in the weekly discussions with the mathematician in the 

research team who was aware of all the explorations carried out and contributed to their design and the  

post-class  discussions  with  the  observing  teacher.  The  evolution  of  the  exploration  as  it  was  being 

implemented in class was discussed with focus on moments that stood out for me and their implications 

for the next class and the study goals as well. Notes of these discussions were maintained in the teacher  

diary. The regular diary entries spurred reflection-on-practice and also contributed to the in-situ-analysis. 

Parallely, I listened to audio-recordings multiple times, prepared annotated notes and transcribed selected 

episodes  where  students'  mathematical  thinking  was  expressed.  This  enabled  stimulated  recall  and 

recapturing detailed accounts of what happened in class which suggested further questions and points of  

discussion. The time-lag between the class itself and the revisit also enabled reinterpretation of some 

instances, sensitised me to missed-opportunities and suggested possible alternate approaches for future  

enactment. The formalisability and putative formalisation of students’ arguments and explanations also 

guided interpretation. 

The  initial  review  of  data,  transcription  and  discussion  was  followed  by  further  discussion  of  the 

transcripts with the research team. Alternate interpretations and perspectives were offered in this post-

8. These explorations: Leapfrogs, Clapping game and Views of solids have been used to point to features use of 
physical material, curricular dependencies and game based module design.
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facto analysis and instances where the team (of 3 members) did not concur on the interpretations were  

dropped. This process led to the final selection of instances/ episodes to be focussed on in detail. Thus the  

subjectivity arising from my insider-perspective in data reduction was constrained and validated through 

post-facto discussions with the research team. 

From the systematic observation and documentation of students and their sense making, the analysis was 

collectively constructed and emerged from conjoined understandings of the researcher-teacher and others 

committed to the study, taking into account multiple layers of context, multiple meaning perspectives and 

wide-range of  experiences  in  and outside of  their  immediate  contexts  of  practice  (Cochran-Smith & 

Donnell, 2006).

3.7.1 Ensuring validity

Cohen et al. (2007) suggest that validity of qualitative data may be addressed through honesty, depth, 

richness  and scope of data achieved,  the participants  approached,  the extent  of  triangulation and the  

disinterestedness  and  objectivity  of  the  researcher.  However,  regarding  forms  of  research  where  

subjectivity of the researcher is a central aspect the authors note:

“We, as researchers, are part of the world that we are researching, and we cannot be completely objective 

about that, hence other people’s perspectives are equally as valid as our own, and the task of research is to  

uncover these. Validity, then, attaches to accounts, not to data or methods; it is the meaning that subjects  

give to data and inferences drawn from the data that are important. ‘Fidelity’ requires the researcher to be  

as honest as possible to the self-reporting of the researched”(Cohen et al., 2007, p. 134).

 On a similar note, Mason (2001) suggests that validity rests on whether others can recognise what is  

being described or suggested through resonance with their own experience, and whether they find that  

their  own sensitivities to notice what is  being described are enhanced so that  their  future practice is  

informed. 

Fidelity was maintained in self reporting of classroom instances. These were corroborated with other data  

sources like the audio-recordings, written work of students and observer notes when available to guard 

against  misrepresentation.  The interpretations and meanings assigned to the instances were arrived at  

through multiple reflective cycles and discussed with observers, fellow researchers and the research team, 

with due consideration given to alternate interpretations. Through these discussions,  I also noted that 

these experiences resonated with others thus adding to the validity of the study. Also, the extended period  

of engagement and the different purposes for teaching allowed for the interpretations to be confirmed or  

rejected. 

91



By consciously engaging in introspection and reflexivity throughout the study, I engaged with my own 

positionality, critically examining my own biases and assumptions. Thus I strengthened the validity of our  

research by ensuring that my interpretations were grounded in self-awareness and an understanding of my 

role in shaping the study. 

3.8 Ethical considerations 

Discussing the special ethical concerns when the teacher and researcher roles are conflated and there is a 

close relationship between the researcher and participants, Creswell (2012) acknowledges the sensitivity 

that this requires. He points to the importance of the data collection to be non-coercive and the need for  

students to be able to opt out of the study if they so desire without being penalised. In such situations, 

Creswell goes on to advocate “covenantal ethics” established on the basis of caring relationships among  

the researcher and the researched. “This commitment entails open and transparent participation, respect  

for people’s knowledge, democratic and nonhierarchical practices, and positive and sustainable social 

change among the action research community.” (p 588). He also talks of the need to involve participants  

in as many phases of the research process as possible. 

Cotton (2008) draws attention to the gap between the “researcher and the researched” in mathematics  

education. In this regard, he points out the tendency to relegate the voices of the intended beneficiaries of  

research (teachers and students) to “play the role of clipped commentators, allowed in only so long as 

they offer sound bites that sit neatly in the researcher’s preferred story”. Moving away from this mould, I 

imagined an open space that  allows all  participants  in  the study to think about  alternate  paradigms.  

Guided by the larger goal of recentering the margins, I hoped to create a participatory environment where 

the students and teachers were part of the research rather than as subjects who were researched on. 

Given this, I tried to involve the teacher, who taught the students regularly, in the study, as much as 

his/her time permitted. In School 1, during the sessions in 2017 - 2018 and 2018 - 2019, the teacher was  

present  in most  of  the classes.  I  had post-class discussions with him and noted his inputs.  The time  

constraints of the teacher who taught them in 2019 - 2020 limited her role to coordinating classes and 

occasional participation. She also discussed with the students occasionally on what transpired in these 

classes,  and  passed  on  feedback  from  these  discussions  to  me.  The  curricular  topics  that  I  taught  

intermittently were based on teacher requests/suggestions. Thus the concerned teachers kept themselves 

aware of what was happening in these sessions either by themselves observing or by talking to students  

about the sessions and reciprocally involved me in the regular teaching in topics where they felt I could 

contribute. 

Processes like seeking informed consent, permissions for data use and anonymity of participants while 
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presenting data were adhered to. Video data was not collected respecting the concern at School 1 about 

the identities of students being compromised. 

The project aim, the nature of data being collected and the ways it would be used were shared with the 

students and consent sought in addition to consent from school authorities. The students actively sought 

clarifications  on  these  with  questions  like  “the  future  implications  for  them”  -  whether  their 

“performance” in these sessions would anyway influence their exam scores, or would be “reported to the  

headmistress” etc. A few students (all girls) who were assigned to the study by school authorities were  

not comfortable being recorded and opted out of the study. This was the reason for the skewed gender 

distribution of participating students in School 1. There was also a boy who was drawn to these sessions 

by the initial warm up sessions that I did for the whole class, but did not want to be recorded. For the  

most part of day 1 of the study, when I started audio recording classes, he would neither leave the room, 

nor speak anything. He insisted on staying and communicating through gestures because mathematics 

interested him. Towards the end of the session, he took the recorder in hand saying “It is my turn to talk  

now” and spoke straight into the recorder.  He continued to be an active participant for the first  few 

sessions and then dropped out in favour of music classes whose timing clashed with these sessions. Thus  

students’ voices were listened to and agency respected and encouraged in all matters - from participation 

in the study to the nature of participation. As mentioned in Section 2.3.3, their reluctance to write in the  

notebooks provided was respected and writing on other surfaces in the classroom accepted. This choice  

resulted in very little written work being collected.

The students’ help was enlisted in the data collection process as well, by assigning them to handle the 

recorders.  There was competition amongst  them (at  least  in the initial  days when the novelty of the  

experience had not worn off) to be “the recorders for the day”, and I had to assign students in turn. They 

volunteered to capture board work, to write observer notes, in enforcing class-norms - in general to help  

in any way they could. This reciprocity enabled the established a relationality between the researcher and  

researched and the study results need to be interpreted in this light. 

3.9 Researcher positionality

This study draws on a first person perspective of research and it is of critical importance to spell out 

where I and the researchers who mentored me in this study stand in relation to the subject of study and  

how  our  experiences  and  viewpoints  influence  the  study.  Acknowledging  the  unique  perspective,  

experiences and biases that we bring to the study enriches the depth of qualitative research. 

As an experienced teacher with a deep interest in mathematics and some prior background in educational  
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research I come with a special combination of experience. As a teacher, I have interacted with students 

from varied backgrounds and have engaged in a range of teaching from “teaching to the test” in a low 

resource school to facilitating explorations in nurture camps for the “gifted”. In the course of teaching in a  

low resource school, I have seen first hand students’ struggle with mathematics as a “must pass” subject  

and have had an otherwise meritorious student take her own life because of failure in the 12th grade 

mathematics examination. So the problem addressed in the study has a deeply personal connect to me. 

As a researcher, I have taken part in the program evaluation of a large scale intervention in government  

schools. The school visits, observations and discussions with co-researchers done for this gave me a good 

understanding of low resource government schools and an appreciation of the inequality between these 

schools and the schools catering largely to the middle-class, not just in terms of infrastructure but also in 

terms of pedagogy.

During the course of this study I had the opportunity to be trained in the maths circle pedagogy by Prof. 

Robert Kaplan. His credo that “mathematics is for all” and that learning mathematics is like learning to  

speak in “our lost native tongue” and the interactions and mentoring received from him as also from Prof.  

Ramanujam, a member of the research team influenced me and shaped my teaching for the study.

The  mathematician  who  was  a  part  of  the  research  team  brings  the  rich  experience  of  facilitating 

explorations with students across levels (middle school students to doctoral researchers) and backgrounds 

in  addition  to  his  research  and  teaching  experience.  As  a  person  deeply  concerned  about  equitable  

opportunities for education and the role of language of instruction in enabling this, the language focus of  

this study could perhaps be traced to my interactions with him. The education researcher in the team,  

brings a deep understanding of  how students  learn,  ways of uncovering student  thinking and on the 

demands  on  the  teacher  to  engender  learning.  He  brought  in  the  domain  expertise  in  planning  and 

implementing this study. 

At the core of my teaching is a deep concern for the well-being of my students and the need to foster in 

them a deep understanding of mathematics. The anxiety-inducing nature of mathematics often puts these 

two goals in conflict and in such situations I find myself prioritising care for the student over that for 

mathematics. Perhaps the freedom that I allow in the class, stems from this core belief and is perhaps the 

point of resonance for my argument for flexibility.

3.10 A note on the pedagogy 

The pedagogy followed was a mix of whole class teaching and small group work. Students would work  

on the proposed tasks in small groups, with whoever they chose to work with. They were free to move  

94



around in the class, look at others' work and join other groups as well. The seating arrangement in the  

class was flexible, with students moving around and sometimes preferring to sit on the floor. I and the  

observer when present would move around to get a sense of who was doing what and sometimes provide 

appropriate hints/supports as required. One practice that was followed was that whenever an individual  

student or a group came up with a finding, it would be shared with the rest of the class. If I came across  

some student work which I felt could be the starting point of a discussion, I called upon the student to  

share their work as well. Usually, the student or a student from the group which came up with the result  

would explain to the whole class. The teacher or other students would ask clarificatory questions. This 

practice allowed for interweaving of group work and whole class teaching and ensured that no group or 

student  was  left  behind  without  making  any headway.  I  also  encouraged  them to  write/record  their 

findings on the blackboard with their name. This practice was eagerly taken up and there was a sense of  

pride and ownership about their work. Any further reference to this work happened with the student name 

- Mani’s solution or Neha’s method, etc. One ground rule which was framed as a group was that only one  

person would speak at a time (when talking to the whole class) and the others had to listen when someone 

was presenting. This was perhaps the only “rule” for the class, which the rule breakers would be reminded 

of - either by me or sometimes students. 
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4 Task features that support mathematical thinking at the margins

In Chapter 2, we discussed the different ways in which mathematics contributes to marginalisation. As  

described  in  Chapter  3,  the  overall  goal  of  the  study was to  address  especially  the disciplinary and 

language dimensions of marginalisation in the classroom. Consistent with this goal, I aimed to create a  

teaching learning environment that is recognizably different from the familiar routines of the mathematics 

classroom.  Marginalising  factors  belonging to  the disciplinary dimension include the primacy of  the 

textbook and exercises therein, often having one right answer. When there is one right answer to be found 

and the student fails to come up with it, it is not favourably viewed, be it in the classroom or in the  

assessment. Repeated failure to come up with the expected answer through the intended means leads to a 

deficit  view of  the  student.  Another  major  stumbling  block  for  students  to  engage  in  mathematical  

thinking is the formalism which is expected in assessments and is dominant in textbooks. I asked if I 

could open more pathways for students to make their mathematical thinking visible in ways that do not  

rely on formal language and provide opportunities for “undirected mathematical play” (Barton, 2008, p.  

9). Therefore a guiding principle in designing the explorations was flexibility.

Besides flexibility, accessibility of the exploration to students at the margins was critically important to  

our  enterprise.  While  explorations  already bring  in  a  certain  amount  of  flexibility  in  comparison  to 

textbook based tasks, a more pertinent concern in marginal contexts was to ensure that students could 

engage meaningfully with the tasks. We aimed to design tasks such that every student could make some 

progress within the exploration and feel  a sense of achievement at  having figured out something for  

themselves.  This  meant  that  we needed to design explorations  which  a  student  could  get  started on 

irrespective of whether they have the “grade appropriate content knowledge”. The exploration needed to 

be such that it did not hinge on knowing a particular theorem, result or approach in such a way that no  

progress could be made unless this result is known. We had to side-step such dependencies, if they were 

unavoidable, by anticipating the consequent difficulties and planning workarounds. In general, we needed 

to create “problem situations” which allow for entry at multiple levels.

Guided by the two principles of flexibility and accessibility, we aimed to design explorations that create  

opportunities  to  engage  in  mathematical  thinking.  In  the  following  section,  I  recall  the  module 

development process followed (discussed in Section 3.6) and spell out the analytical lens adopted. In  

Sections  4.2 and 4.3,  I  bring out  the task features  that  enable  flexibility  and accessibility  through a  

discussion of some of our explorations and their evolution both in terms of the design and pedagogy. In 

addition to listing out and describing the desirable features for explorations, I also describe instances from 

the classroom that illustrate how these features facilitated student engagement with the exploration. 
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4.1 Module design process and analytical lens

Flexibility being central, we envisaged the end product of our design process as consisting mainly of a  

context or starting point, some initial tasks and a map of the possibilities and guidelines to navigate rather  

than a well-defined sequence of tasks or trajectory that a teacher could follow when implementing a  

particular exploration (see Section 6.2.4). We found games and puzzles to be good starting points and also 

considered alternatives like an activity or a generative question/problem related to the curriculum. As  

described in Section 3.6, we thought through the possibilities these opened up and spelt out mathematical 

questions that could be posed in the context and ways these could evolve and branch out. I got a broad-

based understanding of the students from conversations with their teacher and my own observations from 

the few classes that I engaged them before formally starting the study. Thus mathematical background of 

the students and the context in which the exploration was being implemented was also factored in. Thus 

we had a “conjectural plan” for the exploration, which was then discussed within the research team and 

reshaped as necessary. This version was then implemented in class. While the exploration was being  

implemented in class, the progress of the exploration was discussed within the research team, course  

corrections made and hitherto unanticipated possibilities mapped out. The exploration continued to evolve 

based on iterations outside the project schools as well. 

An important initial decision to make was regarding the length of the modules. We decided on planning 

for three hours of engagement with a module in class, spread over 3 weeks. This was a decision we came 

to considering the need to challenge the students, give them sufficient time to engage and move on as the 

interest  level  of  the  group wanes.  This  was  more  a  guideline  rather  than  a  hard  and fast  rule.  The 

possibility of some students continuing with the exploration beyond the three hours was open and there 

have been instances when we have stopped short of three hours because of waning interest. 

Deciding on flexibility  and accessibility as key design principles to aim for in explorations that support 

mathematical thinking at the margins, we needed to elaborate and operationalise these principles with  

respect  to  the  module  design.  As  discussed  in  the  preceding  paragraphs,  the  module  development 

followed  an  iterative  process,  with  later  implementations  being  informed  by  the  progress  of  and 

discussions about the earlier implementations. The discussions during the module development phase and 

the post-implementation discussions constitute an in-situ analysis which sensitised us to the underlying 

considerations that guided the choice and design of tasks and their implementation. A post-facto analysis 

of  the  different  versions  of  the  explorations,  the  notes  of  the  research  team discussions  on  module 

development when available, and reflection on the changes incorporated in successive implementations 

and the rationale for these changes further clarified and helped identify the task features that we focussed  
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on. In the process we also arrived at our operationalisation of the guiding principles of flexibility and 

accessibility. In this chapter, I examine the following questions: 

i) What task features afford flexibility in tasks?

ii) What task features make them more accessible for students at the margins? 

It must be noted that I am not suggesting that the explorations must necessarily have all these features. 

These features are presented more as desirable features and an exploration that incorporates more of these  

features being preferable to one which incorporates fewer features.

The instances are drawn from the design and implementation of 6 explorations described in Table 3.3,  

chosen based on the number of times they have been repeated (in project schools and elsewhere) and  

availability of audio recordings and teacher diary entries. Further, as noted in Section 3.7, the choice of  

explorations to be discussed in this chapter was based on an opportunistic sampling from among the 

explorations implemented, based on availability of data pertaining to revisions of the module, that is,  

versions of the modules, records of design related discussions within the research team and comparative 

notes on implementation of different versions. “Guess the colour” is an exploration where discussions 

happened on the module design, and the design was consequently changed. The versions and rationale for  

change have been recorded. Two different versions of “Partitions and cells” were implemented in the two  

project  schools  and  detailed  entries  were  made  in  my  diary  marking  the  differences  between  these 

implementations.  There  is  a  discussion  of  the  design  elements  of  the  “Polygons”  exploration  in  the 

literature (Fielker, 1981) describing the potential paths opened by a framing that leaves some details of  

the problem open to interpretation.  The choice of  these three explorations  were based on the above  

considerations. The choice of instances from the classroom implementation of these explorations, for the  

purpose of illustrating how the identified features facilitated student engagement with the exploration, 

was guided by their illustrative power to show student engagement consequent to the described module 

feature. 

4.2 Flexibility in tasks

Textbook problems are generally well  specified and have one correct  answer.  Typically the problem 

statement contains all the information required to solve the problem and no more. The main purpose of  

such  tasks  is  to  apply concepts  and practise  procedures  taught  earlier.  Yeo (2017)  terms such tasks  

“closed mathematical  tasks”.  As discussed in  Section 2.5,  there  is  a  growing discussion around and 

support  for  other  types  of  tasks,  referred  to  variously  as  open  problems,  open-ended  problems,  

mathematical  investigation and ill-structured tasks in mathematics education literature.  I build on the 
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literature around open tasks and identify features that add to task flexibility. I build on Yeo’s (2017)  

framework (discussed in Section 2.5.2) to characterise the openness of mathematical tasks and reinterpret 

the framework elements for our context and purpose. 

Yeo identifies five dimensions along which a task could be open – goal, answer, method, complexity and 

extension, and differentiates task-inherent openness and subject-dependent openness for the dimensions 

of complexity, methods, and extension. Given our concern for accessibility, our goal was to design tasks  

that give sufficient guidance to students on how to solve the task, rather than ones which students may not  

know how to start. Therefore task openness along the complexity dimension was judged to be not relevant 

to our study context. 

On the dimension of extensibility, some task formulations have evident possibilities for generalisations, 

making  extensibility  task-inherent,  whereas  other  formulations  may  require  the  teacher  or  students 

engaging with the task to deliberately vary the task parameters to extend or generalise  the problem,  

making extensibility subject dependent. Similarly some task formulations may explicitly suggest multiple 

methods, whereas others may leave it implicit leading to one preferred method being adopted. Given that  

the implementation of the explorations in this study were teacher mediated, the distinction between task-

inherent  openness and subject-dependent openness with regard to the dimensions of extensibility and 

method was of limited relevance: only to the extent of sensitising us to the need for the teacher to be  

aware of the multiple possibilities. Also, since we privileged talk as means of doing and communicating 

mathematics  and students  engaged with the explorations  through discussions,  necessarily  bringing in 

multiple voices and methods, these nuanced distinctions that Yeo makes were judged as not pertinent to  

this study. 

Another difference I wish to mark is that Yeo specifies that the extension of a task be another task related 

to the initial task. I do not differentiate whether the subsequent tasks are related to the initial one. Going 

beyond  generalisability,  I  reinterpret  openness  along  the  extensibility  dimension  as  “generativity  of  

problems”. I look for tasks that give rise to further questions, irrespective of whether they are “related” to  

the initial task as Yeo indicates. Thus I consider explorations on integer geometry, rectilinear polygons or  

describability of matchstick shapes, all as offshoots from the exploration of matchstick shapes though  

they may be “unrelated” in Yeo’s terms. 

Yeo terms  a  task  statement  that  does  not  specify  a  goal  as  open along the goal  dimension.  Such a 

statement affords flexibility in that it  allows students to choose their own goals.  The following task,  

which Yeo terms an “investigative task”, is used to exemplify the many dimensions along which a task  

could be open. 
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The powers of 3 are 31, 32, 33, 34, … Investigate. (Yeo, 2017, p. 178) 

The  purpose  of  such  a  task  is  for  students  to  investigate  and  discover  the  underlying  patterns  or  

mathematical structures. With such a task formulation, students could choose to investigate if there is a 

pattern in the last digit of successive powers, or the sum of their digits, or in the number of digits in  

successive powers or any other interesting pattern that may occur to them. They may also investigate if  

similar patterns exist for powers of other numbers. However, Yeo (2008) reports that even “high-ability”  

students in Singapore did not  know how and what to investigate and were unable to pose their own 

problems to investigate when the task statement did not provide any sample problems to investigate. Task 

statements  that  give some pointers  as  to  what  to  investigate,  with sufficient  room for  interpretation, 

without being overly specific may enable flexibility without compromising on accessibility. Thus one of 

the challenges in designing and implementing the exploration is to achieve a balance between specificity  

and  openness,  indicating  that  sometimes  there  is  a  tension  between  the  goals  of  accessibility  and 

flexibility. While flexibility is important as noted above, openness must be balanced with specificity in  

such a way that satisfactorily addresses this tension. While it may not be possible to specify general  

features, detailed discussion of selected cases of explorations will, I hope, illuminate task features that  

have a bearing on this issue. 

We now look at task features that afford flexibility in tasks.

4.2.1 Openness in task formulations: room for interpretation and choice of goals

Based on the evolution of three of our explorations a) Guess the colour b) Partitions and cells and c)  

Polygons and how they panned out in class, I examine how to balance the specificity/flexibility in the task 

statement, ways of allowing space for students to interpret and reformulate the tasks and the extent of 

information/direction to be specified in the task statement in order to support such reformulation. I also  

describe instances to illustrate how such a formulation facilitated student engagement. 

Guess the colour: In the initial conceptualisation of the exploration, the main task was framed as follows: 

Given a 5 x 5 grid of squares, divided by a single horizontal or vertical line into two rectangles of 

two different colours, say blue (B) and green (G), the goal of the puzzle is to find out how the  

grid is divided (i.e., the colouring pattern of the entire grid).

1. The colours of how many grid squares would you ask about to solve the puzzle? 

2. What is the minimum possible number of grid squares, whose colour must be revealed 

through questions so that the puzzle is solved?”
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Implicit in this task statement is our expectation that students would figure out the colouring pattern by 

asking questions about the colour of individual cells. Based on this, I planned scaffolding tasks, involving 

inferring the colouring of as many cells as possible, given the colour of some cells as can be seen in  

Figure 4.1. I drew attention to relevant “clues” through questions such as whether it makes a difference if  

the revealed cells are the same colour, different colour, or how they are positioned etc. I also pointed to 

the patterns that would help them make inferences. For example, in Figure 4.1 (a) from the information 

given it can be inferred that the entire rectangle with the pair of diagonally opposite corners marked by 

the Bs will also have to be coloured blue. From Figure 4.1 (b) it can be inferred that the square has been 

vertically split into a 5 x 2 rectangle coloured blue and a 5 x 3 rectangle coloured green.

Figure 4.1: Guess the colour: initial 

version

There were questions that drew attention to relevant facts such as the colour of the centre square being the 

dominant  colour  and  diagonally  opposite  corners  being  differently  coloured.  Other  questions  asked 

students to think of positions of “revealed squares” that would allow them to infer the colours of more  

squares and the kind of inferences that could be made if the “revealed squares” were of the same or  

different colours. The expectation was that by engaging with such questions, students would figure out  

the combination of cells  to ask for that  would reveal  the maximum information,  thereby solving the  

problem. 

Two points that emerged during the discussion of this version of the task within the research team were:

1. The formulation allows students to ask for only one kind of question - namely what colour 

is a particular grid-cell. Students would also need to precisely specify the cell whose colour they  

wanted to know - for example the cell in the third row, fourth column etc.

2. From inferring additional information based on what is given (as in Figure 4.1) to figuring out the  

combination of grid-cells  that will  reveal  the entire colouring is perhaps a leap, which might 
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make the task inaccessible at least to some students. More importantly it privileges one solution 

method and the sub tasks “funnel” towards this privileged method. In that sense it is goal-directed 

and prescriptive in a manner similar to a textbook problem.

Based on the discussions, the initial formulation was changed to

I have a 5 x 5 grid. I have divided into two rectangles and coloured each with a different colour -  

One rectangle is red and the other is blue. You have to guess how exactly I have coloured the 

grid. You can ask me questions.

The kind of questions that could be asked by the students to obtain information about the colouring in the  

grid  were  left  open.  We anticipated  that  at  least  some students  might  have  difficulty  in  identifying 

questions to ask. We planned to get around this difficulty through a demo game where the teacher asks  

questions and guesses the colouring the students had in mind. It was decided to observe what kinds of  

questions students ask and how they refine the questions if they had to do it in fewer turns. We now look  

at some of the questions that were asked in School 1 and how they were subsequently refined. A sample 

of questions that came up in the first few attempts of the game were:

● How many blue coloured squares have you coloured ? (I answered 15)

● Straight line or cross line?

● Would it be across or down? {with hands gesticulating. The intention was to ask if the blue strip 

was going across the grid or down the grid.} 

● Will blue be upside-down or side-side?

● Blue up-to-down or side-to-side?

● Blue sideaa varuma straightaa varuma? (Will the blue be on a side or will it be straight?)

● Is the 15 upside or downside?

Terms like horizontal/vertical,  row/column,  did not  emerge at  all  and were clearly not  a part  of  the  

students’ active vocabulary. In articulating the questions, the students gestured and drew figures to clarify 

their point. For example, when I asked for clarification of the question: straight  line or cross line?, the 

student came up to the board, drew Figure 4.2 and asked which of these divisions I had in mind.
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Figure 4.2: Guess the colour: 

"Straight lineaa cross lineaa?"

This was addressed in subsequent runs of the game by their  coming up with their  own terminology  

(standing/sleeping lines for vertical/horizontal lines) and by my giving them the necessary vocabulary  

(row/column, horizontal/vertical), which they took up. The questions were refined not just in terms of 

language, but they had to be sharpened to get unambiguous information as well. Among the questions that  

came up in later runs were 

● Does the first row have blue?

● Is blue there in the first row on the left side? (Meaning if there is blue in the first column)

A “yes” to the question “does the first row have blue?” could come from a horizontal division with blue at 

the top of the grid, or a vertical division with the first row having both blue and red cells. However, a  

“no” clearly indicates a horizontal division. Unlike an answer of “no”, a “yes” to either of these questions  

does not give unambiguous information about whether the division was horizontal or vertical. Students 

initially took a “yes” as indicative of the entire first row/column being blue, leading them to an incorrect 

guess of the colouring. This was eventually sorted out by asking if it was “fully red/blue” or pairs of 

questions,

● Is there red in the first column?

● Is there red in the last column?

OR

● Is there blue in the first column?
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● Is there red in the first column?

Yet another opportunity for refinement that came up was in terms of avoiding redundant questions. In one  

of the runs of the game, the series of questions and answers went as follows

● How many Blue? 20

● Is blue in the first column? Yes

● Is red in the first column? Yes

● How many blue in the first column? 4

From the first three questions, it is possible to infer that it is a horizontal division, with four blue rows and 

one red row. The relative positioning of the rows is what remains to be figured out, which can be done by  

asking for the colour of the first or last row. The fourth question is redundant in that the answer can be  

figured out from the first three. I drew attention to this and said that going forward I would not answer  

questions, if the answer could be inferred from questions already answered. This step brings to the fore  

the  need  to  infer  additional  information  from  what  is  known.  This  was  the  motivation  behind  the  

scaffolding tasks in the initial version and is key to guessing the colouring with an optimal number of  

questions. 

In later runs of the exploration elsewhere (in talent nurture camps and summer schools), more complex 

and  language  intensive  questions  like,  questions  like  “Is  the  length  of  the  blue  rectangle  along  the 

top/bottom/left  or  right  edge of the square?” or “is  the number of cells  in either of the rectangles a  

multiple of 3?” came up.

Based on the  variety of  questions  that  came up and the  refinement  that  happened both in  terms of  

sharpening  the  question  to  extract  relevant  information  and  more  precise  references  to  objects,  we 

concluded that the revised and more “open-beginninged” formulation that did not restrict the kind of  

questions admissible was more in line with our goals than the initial formulations of the tasks. The wide 

range of admissible questions created more opportunities for students to talk and articulate their own 

ideas than when there was a template to be followed with only one kind of question to be asked. The 

refining of the questions itself provided opportunities for mathematical thinking and to develop ways of  

expressing ideas, refining these ways and expanding vocabulary.

After a few runs of the game, we chose to restrict to questions that can be answered with a yes/no. We felt  

that  the  “how many”  questions  was  giving  the  game  away  too  soon  (For  example,  students  asked 
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questions like how many blues in the first row, followed by how many blues in the first column) and that  

some  restriction  would  keep  the  challenge  level  high.  Narrowing  down the  scope  of  questions  also 

enables better planning for further progress of the exploration and offers an obvious path to generalisation 

than when any kind of question is admissible. Thus, for this exploration, an approach that did not overly 

specify the kind of admissible questions, giving students room to work with their own interpretations of 

what could be asked, and narrowing down questions as the game progressed depending on the context 

gave  flexibility  to  the  task,  without  compromising  on  accessibility  and  being  generative  of  further 

questions. This has been corroborated by our experience with other tasks as well.

Partitions and cells: The motivation for this task was the task titled “Lines and Squares” in Hardy et al.  

(2007) (see Figure 6.1), which requires students to find out the minimum number of lines, vertical and/or 

horizontal, needed to make a certain number of squares in a rectangle and asks students to “investigate 

further”. The intended goal is to let students explore possibilities, notice patterns in how the number of  

lines and squares vary, articulate and generalise these patterns. We found this task suitable for our setting 

with some adaptation. For a start, we restricted to counting only unit squares as opposed to including 

squares of larger dimensions as in the original, and contextualised the task (see Section 3.6). The intention 

was to  make the starting  point  simpler.  We added the  context  of  crates  that  hold  soft  drink bottles  

(assuming of course that the partitions could slot into one another!) as in Figure 3.8. We started with a 

small number of partitions inside a crate or cardboard box and counted the number of cells formed, so that 

students could get started. One of the possible results we hoped students would see was that the maximum 

number  of  cells  are  formed  in  a  square  array.  The  task  presentation  in  the  two  schools  where  I  

implemented the task varied in the extent to which I foregrounded this goal. In School 1 the presentation 

was geared towards this goal, and was limited to square arrays. In School 2 on the other hand, I went with 

a more open formulation, where students were asked to explore the possible number of cells they could 

form inside a crate with a given number of partitions. The exploration evolved to finding out and listing  

the number of possibilities for this case and eventually to the optimality question. I now share some  

excerpts from the teacher diary describing the task formulations and the differences in how these were 

received by the students. 

In School 1, the task was presented in a form that had a unique answer, but lent itself to extensions and 

generalisations. In Yeo’s (2017) terms, the task was not open in terms of admissible answers and goal 

specification, but was open in terms of extensibility and methods that could be adopted. The problem was  

posed in terms of the number of “cells” that could be created with a given number of “partitions”, such 

that the “cells” form a square grid or fit into a square crate. Quoting from the teacher’s diary entry written  

after the exploration was done in School 1, that describes the task presentation.
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The problem I gave today was that I have a cardboard box with a square shaped base and I wanted to 

make it into the kind of box in which Pepsi/coke bottles come, by placing partitions. I showed them if I have  

2 partitions I get 4 cells, If I had 4 - I had 9 cells and asked them how many cells would I have if I had 16  

partitions. The idea was to move to rectangular boxes, the multiple possibilities therein for a given number  

of partitions and get them to find out the min/max cells/bottles possible with a given number of partitions  

and find ‘formulae’ for one in terms of the other. Didn’t get that far. (Diary entry dated 4th Feb, 2019)

Given  the  restriction  of  the  square  box,  they  soon  realised  that  there  must  be  an  equal  number  of  

horizontal and vertical partitions and based on this arrived at an algorithm to find out the number of cells  

given the number of partitions, and vice versa. They did not want to pursue my suggestion of coming up 

with a closed form expression for these and were not enthused enough to explore the case of rectangular 

arrays of cells. I did not pursue the task any further in School 1.

In School 2, I tried a different presentation, which may have contributed to the higher engagement levels 

and further progress on the exploration. The excerpts below are from the teacher diary from School 2 and 

describe the difference in formulation and engagement levels. 

I did the same Pepsi/carton Problem as on Monday - but this evolved very differently today. From my part, 

I kind of started in a more open way and I found the class leading me on to the rectangular array first - For 

a moment I debated within if I should restrict to square grid - but let the class flow as it will. And I think it  

was a good move - I saw almost all of them engaged - number of happy faces and comments at the end and 

persisting after the bell - obviously had a rub off on me as well.

I started with the same Pepsi Crate - but said with 2 partitions, we could either make 4 cells or 3 and drew.  

Asked them what if we have 3 partitions - they came up with multiple ways - The usual 4 cells (linear 

arrangement) and 6 cells (2 x 3 arrangement) Then they started drawing 3 inclined lines, and 3 lines which 

didn’t go from edge to edge of the carton. I ruled out the oblique line case saying that we will take it up 

later and drew the rest on the board. Ninan objected to the one where the partition was not going edge to 

edge and said that cells in that was not uniform and so he wouldn’t allow it. I crossed out and said we will  

stick to partitions where all cells are identical. (From diary entry dated 6th Feb, 2019)

Since the initial formulation did not specify a square grid, students had the opportunity to try out other  

options and as a group,the students and I narrowed down the problem to be investigated. In the course of 

this session, students investigated the various possibilities for a given number of partitions, had a way of  

exhaustively listing them and came to the conclusion that the maximum number of cells is obtained when 

there was a square alignment and when that is not possible, when the length and breath differed by as less 

as possible. They also noticed some patterns and structure in the possibilities for a given number of  

partitions and how the number of cells increase both when the given number of partitions are realigned 
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and when the number of partitions changes. In a subsequent session they went on to find an expression for 

the maximum number of cells when the number of partitions was  n even producing the closed form 

expression  (n/2  +  1)2.  In  addition,  there  were  indications  that  they  were  engaged and enthused  and 

interested in pursuing similar problems. Another excerpt from the diary 

Now RK came and asked me why I was making them do all this - Is it to get them interested in Maths, or to  

make them think or for fun. I asked if all this was happening and I got a resounding yes from 3 girls (and  

beaming faces too) They said when I leave them with those questions - they are driven to find the answer - 

“we want to find out how it works” . They also asked me where I get these problems from, and if they can  

try and solve these on their own as well, if I am not there. (From diary entry dated 6th Feb, 2019)

The task presentation in School 1 was more as a problem to be solved, rather than an invitation to explore. 

The presentation focused on finding the number of cells for a given number of partitions and generalising 

for any number of partitions. The presentation in School 2 was a more tentative presentation, where the  

goal evolved in the course of the session with contributions from the students as well. Robert Kaplan 

captures this difference with these words “no eliciting of answers according to pre-ordained schema, but  

the free flow of invention and zaniness, with goals of your own kept in mind (these may change as the 

conversation takes unexpected turns).” Perhaps this led to higher levels of engagement in School 2. Also 

students observed other patterns9 over and above the relation between the number of partitions and cells  

in the case of a square array. These indicate that open formulations offer more scope for mathematical  

thinking,  especially at  the margins  where a formulation that  specifies  a  hard and fast  goal  could be  

daunting. 

Another instance where I have observed a task formulation that allows multiple interpretations enabling 

mathematical thinking is the Polygons exploration, which is inspired by Fielker (1981).

Polygons: The task here was formulated as “What is the maximum number of right angles possible in a  

polygon?” The question leaves the words “polygon” and “right angles” open to interpretation. Feilker  

points to certain questions as recurring in his experience of multiple groups of teachers engaging with the 

task, such as “must the polygons be convex?” or “can the right angle be outside the polygon?” and the  

self imposed restrictions of “having all sides horizontal or vertical '' or “at least as many as possible”.  

9. For example: With 5 partitions, it is possible to get 6, 10, or 12 cells . 
            With 7 partitions, it is possible to get 8, 14, 18, 20 cells. 
            With 9 partitions, it is possible to get 10, 18, 24, 28, 30 cells.

These numbers of possible cells form a series, with the differences between two consecutive terms in each series 
being the decreasing sequence of even numbers - 8,6,4,2 in the case of number of cells with 9 partitions. 
With an even number of partitions, the possible cells come out as series that differ by a sequence of odd numbers. 
For example with 10 partitions one could have 11, 20, 27, 32, 35, 36 cells, with the difference between consecutive 
numbers being 9,7, 5, 3,1. 
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These questions also came up when I tried the exploration with students in School 1. In addition, I also  

encountered questions such as: Are we talking of a specific polygon, say a triangle, square or hexagon? Is 

it a polygon in which all angles are right angles? Does it need to be a regular polygon? Clarifying the 

problem was the first step in engaging with this problem and intentionally so. If I had spelt out these  

details in the task statement, it might have been a problem which the students had not encountered before,  

but with a specific goal that they could pursue. In Feilker’s words

But, it seems a pity firstly to stifle all this originality which interprets the problem in other ways, but more  

importantly  it  seems better  that  the solver  should  make decisions about  which  interpretation  is  worth  

pursuing. In this way it is more likely to become the solver's problem, rather than someone else's with 

implications of a solution already lurking which the solver is trying to divine. (p.11)

Aligned to this view, I see asking for and clarifying the required details and reframing the question with  

the desired level of specificity itself as a mathematical practice that is worth engaging in. 

The loose formulation that allowed for alternate interpretations led to students working with definitions of  

polygons that differed from conventional textbook definitions. In School 1 where polygon was understood 

intuitively as “many-sided figure” some students did not exclude shapes with intersecting sides or looped  

shapes from polygons and explored the possibility of these having more right angles. The “lack of grade  

appropriate  knowledge”  which  might  have  been  viewed as  a  handicap  opened up  an  opportunity  to 

explore  a  different  track.  Not  having  access  to  analytical  methods  to  address  the  problem,  was  

compensated for by experimentation, and students drew various shapes with the goal of maximising the  

number of right angles - some of them with sides crossing over as seen in the Figure 4.3. While no results  

were obtained on this, other reinterpretations led to results and their justification. 

Fielker (1981) notes the differences that stem from the two statements - the “sides of the polygon are at  

right  angles” and “the polygon’s angle is  a right  angle”.  While the former interpretation leads to an  

external-right angle being counted as a right angle as well, the latter does not. In the process of drawing  

polygons so as to explore ways of maximising the number of right angles, rectilinear polygons (polygons 

all whose angles are either 90o or 270o that is all whose sides meet at right angles) invariably appear and 

some students raise the question whether they could include right-external angles of the polygon as well.  

This was the case in School 1 as well, and led to observations such as “in an even sided polygon, the  

maximum number of right angles is equal to the number of sides” and in turn to questions about polygons 

with an odd number of sides. These alternate interpretations proved to be opportunities to observe and 

justify patterns and ask further questions. While a result like the above obtained by counting the exterior-

right angles as well, may not be part of any standard textbook or of much importance mathematically, I 
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see value in them as opportunities for students to figure out something by themselves and to justify their 

finding.

All three examples described above illustrate how a task formulation that does not over-specify what  

needs  to  be  done,  allowing  for  alternate  interpretations  and  choices  of  goals  to  pursue,  provides  

opportunities to engage in mathematical thinking and sustaining student engagement. I therefore suggest  

that a task formulation which points to potential directions of inquiry without spelling out a specific goal 

or preferred approach, affords flexibility. Also, not spelling out all information necessary to solve the  

problem opens up room for multiple interpretations, approaches, and therefore room for more engagement 

and mathematical thinking. 

Another task feature that I identify as supporting mathematical thinking at the margins is the affordances 

to function at multiple levels of formalisation. 

4.2.2 Affordances to function at multiple levels of formalisation

As discussed in chapter 2 it is well-recognised that the symbolic representations and the formalism of  

mathematics are entry barriers to the discipline. Affordances to work at different levels of formalisation is  

a feature that we looked for to make the task more flexible and allow students to make some progress,  

even when functioning at informal or semi-formal levels. For example, game based problem formulations 

allow for solutions within the context of  the game while demanding mathematical  thinking. Students 
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working through the game may come up with a winning/optimisation strategy as required, intuitively, 

with hardly any formalisation visible. I now illustrate the levels of formalisation afforded by some of our  

explorations.  I  choose the Magic triangle exploration to highlight  the possibilities and the Guess the 

colour exploration to show the levels of formalisation seen as the exploration was implemented. 

Magic triangle: In this puzzle, the starting point is the goal of arranging distinct numbers 1-6 along the 

sides of a triangle, such that numbers along each side sum to the same total. We expected students to try  

out different possibilities and see that there are four distinct solutions to the problem. We also expected 

them to systematically eliminate possibilities and enagage with the processes of conjecturing, proving, 

and symbolising. That there are only four solutions to the puzzle needs justification which can happen at 

multiple levels of formalisation. One might do a brute-force listing out of all possible arrangements of the 

numbers  and  observe  that  there  are  only  four  solutions,  or  use  parity  arguments  to  rule  out  some 

possibilities right away. For example an alignment that has the odd numbers 1, 3 and 5 at the positions as 

in Figure 4.4 is not possible, as this will give an even sum to two sides and an odd sum to one side.

Figure 4.4: Magic triangle: An 

impossible arrangement

The odd numbers need to be positioned in one of the ways as shown in Figure 4.5  for all side sums to 

have the same parity.
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         Figure 4.5: Magic triangle: Possible positioning of odd numbers

This argument vastly reduces the number of possibilities compared to a brute force listing and with some 

systematic work can lead to the four arrangements that give equal side sums. Neither of these approaches  

require formalisation. 

Another approach is by finding upper and lower bounds for the side-sums. The numbers at the vertices 

are two of the three numbers that contribute to a side-sum. So one can argue that the minimum side-sum 

is obtained when the numbers 1, 2 and 3 are at the vertices and the maximum side-sum when the numbers  

4,5 and 6 are at the vertices. Reasoning further one can see that the minimum side-sum is 9 and the  

maximum side-sum possible is 12. This drastically reduces the possible arrangements to be considered 

and leads to a justification that there can only be 4 solutions. Though more “sophisticated” than the earlier  

arguments this can still be carried through without resorting to symbolisation (see Section 5.5.4). The  

algebraic approach described in Section 3.6 on the other hand is more general and solves a larger class of  

problems and can be extended to solve the variations of the problem as well. 

Even if the formalised approach is not within reach, the student can still solve the problem, obtain the  

four distinct solutions, and justify that there are exactly four. The multiple approaches that lead to the 

solution, ranging from brute force listing that requires no formalisation, to semi-formal reasoning to a  

symbolised formalised approach ensures  that  formalisation is  not  an entry barrier  to  the task.  I  will  

discuss students’ responses to this task in more detail in Sections 5.1.1 and 5.2.1. 

Through the above example, I illustrated the potential of one of the explorations that we chose to enable 

functioning at multiple levels of formalisation. I now look at Guess the colour exploration to illustrate  

how the potential was actualised in the classroom. The game based formulation of this exploration allows  

students to engage in mathematical thinking within the game context drawing on informal reasoning. In  

Section 4.2.1, we saw the informal language that students used in framing the questions in Guess the  

colour exploration and the adoption of formal terminology over a period of time. I now look at some of 

the  students'  strategies,  how  they  expressed  these  strategies  and  the  approach  that  they  took  to  

generalising the problem. In this I draw attention to the different levels of formalism that was visible in  
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the class. The strategies were described referring to a figure and hence there was frequent use of deictics.  

The generalisation was in the form of an execution of an algorithm which was not explicitly articulated. 

The number of questions required was not formulated as a closed form expression. 

Guess the colour: One of the claims that came up was that the colouring can be guessed in 4 questions.  

Abhi10 of  School  1  who  came  up  with  this  strategy  said  that  he  would  ask  “is  there  blue  in  this 

row/column?” for each of the 2nd and 4th columns and 2nd and 4th rows. He later said that there were 

holes in the strategy and changed it to asking for the middle row/column, followed by the first and last  

row/columns. The various cases that could come up, on following Abhi’s initial strategy are as shown in  

Table 4.1. 

Table 4.1: Guess the colour: Unpacking a student strategy

Case Possibilities for “Is there blue in 

the 2nd and 4th rows? “

Implications and Further questions

1

● This implies that the 2nd, 3rd and 4th rows 

are red and either the 1st or 5th row is blue. 

(assuming that the entire square is not 

coloured with a single colour).

● Further question needed to find out which 

of the 1st or 5th rows are blue to get the 

division. 

2

● The case where the 4th row has blue and 

the 2nd does not is identical up to a rotation 

by the symmetry of the situation.

● For the case on the left, the given 

information implies that the first two rows 

are blue and the 4th and 5th rows are red.

● Further question needed to clarify the 

colour of the middle row to get the 

division. 

10. All student names used are psuedonyms.
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Case Possibilities for “Is there blue in 

the 2nd and 4th rows? “

Implications and Further questions

3

● This could either mean a vertical division 

or a horizontal division with either of the 

1st or the 5th row being red and the 

remaining rows blue. 

● Further questions to clarify if it is a 

horizontal or vertical division and if 

vertical questions to fix the position of the 

division. 

On probing further it was seen that Abhi had thought through these cases and said that he was asking for  

the colours of the 2nd and 4th column to address the possibility that the division is vertical. But he did not  

clearly disambiguate the possibilities for this case. Considering the case that one of these columns has 

blue  and the  other  does  not  he says  “ appidinnu paatha,  mukkavashi  chance vandhu ithukulla,  ithu 

randukkula blue irukka chance irrukku” (“In this case there is a three-fourths chance that there is blue 

within/ between these two” ). Unlike in the first two cases, here he only offers a possibility and does not  

make a clear statement. His later statement that “there is a hole in the strategy”, and that it didn’t work  

out, may perhaps be because he was not clear of how the vertical division case could be tackled. Perhaps 

he noted that the additional questions that he had to ask over and above the four that he initially said he 

would need were about the central row/column and the extreme row and columns. This seemed likely as 

his revised strategy started with asking about these.

Another strategy came from a student, Saju, who said that he could guess the colour in 5 questions. He  

would ask “Is there red?” in the 3rd row, followed by the same question for either the 2nd or 4th rows. 

Depending on the answer the third question would be of the form “Is this your division?” where he would  

propose a horizontal split where either the first two or first three rows are of the same colour. He took a 

“no” to this question as an indication that the split was vertical and proceeded to ask the same question for 

the 3rd column and either the 2nd or 4th column. 

Evidently, both these are well thought out strategies. The students did consider a number of hypothetical  

situations and branching in the form “If they answer yes, then…, if they answer no, then…” , but they  
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missed out a few possibilities as well. On being probed further with a “what if…?” question, they realised 

the need to consider these possibilities as well. All this was done orally. They did not write the strategy  

down listing out all the possibilities or show their decision processes diagramatically. The articulation  

was  accompanied  by  pointing  to  the  diagram at  hand with  a  frequent  use  of  deictics.  The  students 

frequently focussed only on one of either horizontal or vertical division and were unclear about how to  

incorporate both possibilities in their chain of questions. For example, a question “is this row blue” would 

come up even before ascertaining that a single colour could be ascribed to the row. All this points to the  

informal expression of mathematical ideas. For the students, it was a game they were playing, trying to  

guess the division with fewer questions than others and strategies were arrived at and refined in that spirit.  

Perhaps they did not feel the need to represent their decision tree through a flow-chart or consider the  

benefit of doing so when they could play the game very well without any of these. Moreover, neither  

strategy discussed above is “complete” in the sense of laying out all possibilities, nor are they optimal.  

But the exploration affords the possibility to come up with such “partial solutions”, and further discuss 

and refine them unlike typical textbook exercises. Thus I suggest that an exploration that affords students 

the  opportunity  to  engage  with  mathematics  at  multiple  levels  and,  not  limited  to  arriving  at  the 

predetermined answer, supports mathematical thinking.

Moving beyond the game to generalising the problem of guessing the division for larger grids they came  

up with an algorithm to find out the number of questions required. This was evident in action - given a  

grid, they would first ask two questions to clarify a) if I had drawn a “standing line or a sleeping line” (i.e 

vertical and horizontal lines) and b) if I had more of red or blue. This was followed by a set of systematic  

questions intended to fix the dimensions of the rectangle- for a 20 x 20 grid, they would ask, have you  

done a 19 by 1 division, have you done a 18 by 2 division, have you done a 17 by 3 division and so on till 

they reach the halfway mark. This was followed by a question on whether the dominant colour was at the 

top/left of the grid depending on whether the division was horizontal or vertical. To respond to how they 

would go about guessing in a 8 x 8 grid, they felt the need to draw a grid of the given size, point to  

appropriate grid lines as they asked, have you done a 7 x 1 division, have you done a 6 x 2 division etc.  

With a few attempts they got to asking the questions without the grid, but not to verbalising the strategy.  

(Describing what they would do in words such as “We will ask for such and such information and then  

identify the particular division through these questions” etc. as opposed to actually asking those questions  

and executing the algorithm). Going further, one could have gone on to get them to verbalise the strategy,  

give a count of questions that would be needed for a particular grid size, articulate the procedure that  

would give such a count or give a closed form expression for such a count. This group of students were 

not ready or rather chose not to take this path and stopped with the execution of the algorithm. Even this  

gave them a sense of achievement at having figured something out for themselves. The exploration allows  
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the flexibility to function at multiple levels of formalisation, and students could engage at whatever level  

they are comfortable with, moving to more mathematically sophisticated ways as they gain comfort.

4.2.3 Incorporating multiple trajectories 

Choosing  tasks  that  can  branch  out  along  multiple  paths  possibly  to  multiple  content  domains  of  

mathematics is another way of bringing in flexibility. One way of incorporating multiple trajectories is 

through  variations  on  task  parameters  (Brown  &  Walter,  2005).  In  a  game  based  exploration  like 

Leapfrogs,  one  could  vary  the  initial  configuration,  rules  for  operations  allowed  or  the  desired  end 

configuration. Other tasks may give room for such questions as whether a property that is true for a  

restricted class of objects may hold for a larger class (e.g. whether a property that is true for a regular 

polygon is  still  true of  any polygon? Convex polygons? )  and if  it  does  not,  how may one modify 

(weaken) the statement so that it holds for a larger class or can one characterise the largest class for which  

it  holds  and  so  on.  This  gives  students  choice  to  pursue  a  trajectory  that  they  find  interesting  and  

accessible.

I now list  out the different parameters that can be varied in the Magic triangle exploration and some 

possible trajectories that evolve from this. 

Numbers used: We start with consecutive numbers 1-6. We could vary this and use a different set of 

consecutive numbers.  We could also relax the condition that  the numbers  must  be consecutive.  The 

defining property of consecutive numbers is that they differ by 1. We could use a set of numbers that  

differ  by  a  constant  number  other  than  1.  That  is,  we  could  use  a  set  of  6  numbers  in  arithmetic 

progression. We could further relax the condition of constant difference and use any 6 arbitrarily chosen 

numbers. With numbers 1-6, we see that there are 4 distinct solutions. The question comes up whether  

there would be 4 distinct solutions whatever be the set of numbers we use. If not, under what condition  

would there be 4 distinct solutions, Can there be more or fewer number of solutions than 4, can we predict 

the number of solutions for a given set of numbers, are there sets of numbers for which a solution does 

not  exist  at  all,  under  what  conditions  does  a  solution  exist,  all  these  could  be  potential  points  of  

investigation. One might even admit negative numbers and rational numbers.

The triangle shape: We could vary the shape and consider numbers along the sides of other regular  

polygons like square, pentagon etc. We could also have open curves like in Figure 4.6 and insist that the  

sum of numbers along all arms are equal. 
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Figure 4.6: Magic triangle: Variations

We  could  have  star  polygons  or  even  three-dimensional  shapes  as  in  Figure  4.711.  In  3-D  shapes, 

corresponding to side-sums, we have two different notions namely edge-sums and face-sums. We could 

choose to equalise either of them or both.

Number of numbers per side: We start with 3 circles per side. This could be 4 or 5 or more.

The condition of equality: Instead of insisting that the side-sums be equal, we could specify conditions 

like the side-sums be all even, or all odd, or consecutive-numbers or even that all side-sums be distinct. It  

is  possible that solutions cannot exist  under some of these conditions - and that could be a point  of 

investigation, what choice of numbers can afford what relations between side-sums . 

11. Thanks to Mr. Joseph Eitel for permission to reproduce image from 

https://amagicclassroom.com/uploads/3/4/5/2/34528828/permeter_magic_polyygons_introduction.pdf
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Figure 4.7: Magic triangle: More variations (Reproduced with permission)



Other possibilities: It can be observed that some transformation of solutions leaves the solutions invariant 

whereas others yield new solutions. As shown in Figure 4.8, flipping the triangle about the median line  

(corresponding  to  a  reflection)  or  moving  the  numbers  around  by  two  positions,  (corresponding  to 

rotation by 120o) gives the same solution in that the side-sums and corner-sums remain the same. 

Figure 4.8: Magic triangle: Solution preserving transformations

Moving the numbers around by one position, or swapping the numbers along the median line gives a  

different solution (Figure 4.9). Applying the same transformation on the new solution, we get back to the 

initial solution. This is to be expected as rotation by 60o twice, corresponds to rotation by 120o degrees 

which is a symmetry of the equilateral triangle and swapping the numbers along the median a second time 

can be considered the inverse of the initial transformation. 

Figure 4.9: Magic triangle: Transformations that give a different solution

Observing these transformations could lead to questions like how many permutations exist for a given  

solution? What transformations leave the solution invariant and what do not? What transformations yield  

new solutions and what do not? Do the arrangements that are derived by transforming one solution share 
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any common properties? 

Some of these variations may come up naturally from students and others may be suggested by the  

teacher through a “what if..” or “what if not…?” question. Thus the goal of the exploration need not be  

having students find the four distinct solutions and have them prove that there are only four solutions.  

Students may explore transformations of solutions, even before finding all the solutions. In fact, we have  

had students using the transformations to generate more solutions having found one solution, especially  

when working with larger numbers (see Section 5.1.1). Similarly if they are not comfortable working with 

justification  and proofs  they  could  move  on  to  other  shapes  and solve  them or  observe  patterns  in 

solutions working with different sets of numbers. The different trajectories available makes it more likely  

that even when one particular path does not enthuse a student or is not accessible, there is another that can 

engage them. 

Variations may come up that may not be accessible to students or the teacher. Some might even lead to  

problems yet  unsolved by the community of  mathematicians.  But  these need not  hold back students 

thinking through these variations.  One practice that I generally followed is  to have students think of 

possible variations irrespective of whether they can engage with the variations. Our observation has been 

that students engage well with this task and come up with well thought through variations. The teacher 

could choose the ones that are accessible and engaging for students to pursue. 

While doing the Guess the colour exploration in school 1, questions of whether they could start with a 

triangular grid instead of a square grid came up very early on in the exploration. Later when it was set up  

as a game between two groups within the class, the spirit of the game prompted students to try out other  

variations - students asked if they could divide into three rectangles or if they could divide the 5 x 5 grid 

into two by drawing a smaller square within as opposed to a straight line that was proposed by the task, so  

as  to  challenge  the  opponents.  I  also  explicitly  asked  students  to  think  of  variations  for  the  game,  

especially to make it “more difficult for opponents to guess” with a few questions. Figure 4.10 below 

shows some of the variations that students came up with when asked to do so. 
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Figure 4.10: Guess the colour: Board work on variations

Dividing the grid by drawing an inner rectangle or square that is mentioned above is the first variation  

recorded on the board in the part marked A. The second was to divide the grid into 3 rectangles. Within 

this an additional layer of variation was suggested by using either 2 or 3 different colours to colour these  

(part B). There were also suggestions to divide the square grid into 4 squares and a diagonal division 

(parts marked C). Some of the variations used grids of other shapes - a triangular grid, a hexagonal grid, a  

shape that is made of two-rectangular grids with their central regions overlapping etc (parts marked D).  

Some of these were presented without sufficient thought, like what would the division of the hexagonal 

grid be like or in the diagonal division what exactly was to be found out. But some details were worked 

out for other variations like the square inside a square or a three-way-division with 2 colours. None of  

these were taken up either in class or later, in the sense of working through all possibilities, but I believe 

that  the very act  of  thinking through what  could be varied and how these could be varied calls  for 

mathematical thinking. We chose to deliberately allot time and space for this in our explorations. Also the 

Figure 4.10 shows that students used the board to record their variations and wrote their name against it. 

They often attached their names to their findings and subsequently referred to these by name. So I have  

had “Nishant’s Theorem”, “Mani’s game” etc. These are indicative of a sense of ownership and joy in  

their discoveries/creations. I made it a point to encourage this practice as mentioned in Section 3.10. 

In addition to flexibility in tasks, there needs to be flexibility in pedagogy as well, in terms of what is 

considered acceptable, what is considered worthy of building on, preferred approaches to problem solving 

and communication, etc. For example, in the Magic triangle exploration, if the teacher’s goal is to have 

students  prove  that  there  are  four  and  only  four  solutions,  investigations  into  the  symmetry  and  
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transformations  of  solutions  may be limited to  the extent  that  they contribute  to  identifying  distinct 

solutions. Similarly the incomplete and not very precisely articulated strategies in the Guess the colour 

exploration may be labelled incorrect and a deficit view taken of the students. The teacher needs to shift  

the goal post from “finding the solution” to accommodating these lateral explorations. In addition to tasks 

being designed to accommodate shifting goal posts, the teacher needs to play along as well, so that the  

design comes alive in the implementation. Being sensitive to the mathematical potential of investigating  

the symmetry of solutions or being accepting of partial-strategies, seeing the mathematics in these and  

working with students to refine them can be very challenging for a teacher. I discuss these challenges and 

supporting measures in Chapter 6.

We see through these examples that, flexibility incorporated in explorations by making available multiple  

trajectories, multiple goals to pursue and opportunities to work at informal or semi-formal levels is a 

move away from right-answerism and an attitude of intolerance to student error.  The discussion also  

illustrates  how flexibility  and specificity  could  be balanced to  allow for  student  engagement.  Going  

further, I now look at other task features that make tasks more accessible. 

4.3 Accessibility of tasks

The general perception is that explorations are meant to challenge the mathematically inclined and that  

explorations cannot be sustained at the margins where even the “grade appropriate content knowledge” 

may be lacking. I now ask how we can counter these deficit views and design “low threshold” tasks that 

are accessible to students at the margins, without sacrificing the potential to elicit mathematical thinking. 

4.3.1 Limiting prerequisites

A key consideration while designing tasks has been to minimise dependence on specialised prerequisite 

knowledge or algorithms to get started on the task. I have observed that at times what may be considered  

“grade-appropriate content knowledge” or theorems that students are supposed to have learnt as part of  

their curriculum can prove to be stumbling blocks to progress when an exploration crucially depends on 

them. Students may not be able to recall or apply these results in an unfamiliar context, or may not have 

understood them sufficiently to retain and use them beyond the requirements of the end of year exams. 

When such a dependence is unavoidable, we sought to incorporate alternate paths based on what the  

students know and the nature of the result in question and how it is expected to be used in the exploration.  

These may vary from the facilitator “giving” the result as something to be taken for granted and used, to  

having students arrive at it through a process of guided discovery, or having them “look up” the result  

from other sources or drawing on the knowledge of the few in the class who may be aware of the result,  

etc. Most of our explorations discussed in Section 3.6 do not require any prior content knowledge to get 
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started. 

The Magic triangle exploration is a puzzle that assumes hardly any curricular knowledge. Finding the 

four solutions could be done by trial  and error.  The effect  of  transformation of solutions,  those that  

preserve side-sums and those that generate new solutions could be identified intuitively. Students could  

also engage with extensions to other polygons, and prove the existence of 4 and only 4 solutions using  

simple reasoning. There is much that can be done without any specialised prior knowledge. However, a 

facility with algebra suggests a solution strategy that applies across polygons and leads to an elegant 

solution. 

The explorations Guess the colour,  Leapfrogs,  and Clapping game are structured as games,  enabling 

students to engage as they would in a game. Even with this they could try and refine strategies, think of  

optimisation and attempt generalisation. As in the case of Magic triangle, algebraic reasoning supports  

and greatly eases the generalisation process. Making progress in the Leapfrogs exploration hinges on  

coming up with and working with an appropriate representation. The same holds for Clapping game as 

well – a presentation of the observations from multiple trials of the game as a table makes it easier to see  

the inherent patterns. Even though the prerequisite content knowledge is limited, the explorations enable 

engagement  with  a  number  of  mathematical  practices  and  were  found  sufficiently  challenging  by 

students. 

 Clapping game draws on the curricular concepts of factors, multiples, common factors, least common 

multiples, etc. However it is possible to engage with the exploration with an intuitive understanding of 

these concepts. These are concepts which students would have encountered by Class 9, but may need  

brushing up. Not being able to recall the term factor, I have had students work with the Clapping game  

exploration referring to the factors of a number n as “those numbers in whose table n appears”. I consider 

this  acceptable,  but  not  desirable  and  try  to  “slip-in”  the  term  at  an  opportune  moment.  Without  

“abstracting”  the  concept  of  factor/divisor,  referring  to  and  working  with  the  concepts  of  “Greatest  

Common Divisor (GCD)” or “co-prime”, which is necessary to solve the initial problem posed in the  

exploration, may be cumbersome. Having an understanding of “common divisor” may make it easier to 

understand and work with the concept of GCD. 

The exploration on Views of solids hinges on visualisation, being able to “see” and draw the different  

views  of  a  solid  and  working  with  them.  Students  in  School  1  had  not  met  these  as  part  of  their  

curriculum.  But  working  hands-on  with  unit  cubes  and  blocks,  they  could  easily  get  the  required  

familiarity to work with this exploration. 
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Thus none of the explorations discussed above crucially depend on any curricular concept. Even when  

there is a need to draw on such concepts it is possible to brush up or build the required knowledge easily  

in  a  short  time.  Such skills  as  reasoning,  visualisation,  representation,  which can be expected of  all 

students, are more central for these explorations. Algebraic reasoning is a crucial factor, which determines 

progress in the exploration, but not having facility in it does not function as a barrier to engagement. The 

students did not have any readily available solution methods for any of these tasks and could arrive at  

some methods with some thinking and reasoning.  Thus the tasks  were not  “watered down” and did  

succeed in challenging the students.

The Polygons exploration was an exception in that it crucially depended on knowledge of Angle Sum 

Property of polygons. Students cannot engage with the task deeply unless they are familiar with this  

result. With one group of students in School 1, realising that this was not something which they could 

draw on readily, I had students arrive at the property through a series of guided questions and then had  

them use it to obtain the maximum number of right angles in the polygon. This was laboured progress and  

many students found it difficult to engage and did not want to continue with the exploration. In School 2, 

the students were not familiar enough with the notion of polygons and the exploration had to be dropped 

altogether. Thus the task may need to be adapted, or dropped altogether depending upon the level of  

preparedness of students with whom it is done.

4.3.2 Using physical material

Some tasks can be made more accessible by starting with hands-on experience using physical material.  

While the use of hands-on material is a recommended practice at primary levels, use of such material  

tapers off in middle and secondary school. I suggest that use of hands-on-material has its benefits even at  

secondary school level, especially as starting points for explorations at the mathematical margins. The  

question  itself  may  be  framed  in  terms  of  the  activity  and  may  evolve  to  be  framed  in  more 

abstract/general terms. A formulation in terms of the physical material allows for a solution in terms of  

the material, which does not rely on formalism. This makes the task more accessible at the margins. It can  

serve as  a  first  step  in  the  transition to  a  more  formal  framing and solution.  The transition  from a  

formulation in terms of physical material to more abstract formulations also creates affordances to work  

with multiple representations. 

For example,  moving tokens around in the case of Leapfrogs helps students “see” the problem. The 

tokens in Leapfrogs offer  a way to try out multiple moves and retrace them if required without any  

penalty. After playing a few times with actual tokens students go on to devising means of representing the 

positions  of  tokens  and  the  moves  through  various  means  and  gain  comfort  in  working  with 
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representations, but the experience of playing with the tokens helps them arrive at these representations.  

The act of manipulating matchsticks to make shapes also aids the exploration. In School 1, in the initial  

stages the questions framed were all with respect to the matchstick shapes - for example, having observed 

that they cannot fit a diagonal in a unit square, asking whether it is possible in a larger square is the first  

step to  generalisation,  taken in  the context  of  matchstick shapes.  The physical  matchsticks  available  

helped  students  to  actually  try  out  the  construction.  However,  in  this  case  it  led  to  the  misleading 

conclusion that it is possible in larger squares. In the case of views of solids, the difficulty of visualising  

the various views of a three dimensional solid was eased considerably by working with models. Thus 

while concrete material, visual representations all have been observed to enable access to tasks one needs  

to be wary that statements made of physical objects may not be necessarily true of abstract mathematical 

objects. 

On a similar note, I have observed that posing the task in a game context also has some benefits. This  

makes the task more engaging for the student. For example, the Guess the colour exploration could have  

been framed as a question of the form - what information would you need to guess the colouring and how 

many questions you would need to ask to get this information. But framing it as a game and having  

groups or individuals playing the game against one-another creates a spirit of friendly competition that  

helps in maintaining engagement levels.

4.3.3 Multiple entry points, answers or approaches

Another  means  of  making  tasks  accessible  is  by  allowing  for  multiple  entry  points,  answers  or 

approaches.  I  discussed  multiple  trajectories  from the  perspective  of  task  extensibility  and available 

methods in Section 4.2.3. I now suggest that a sufficient number of these, or ways along which the task  

could progress, should be at a low threshold. 

In the example of the Guess the colour exploration discussed above, the formulation which does not  

specify the kind of admissible questions, allows for multiple approaches to the problem. Also there is no 

one set of questions that need to be asked to elicit the required information. There are multiple ways of 

doing this.  Students are likely to find out  one way or another to solve the problem, making it  more 

accessible.

Similarly, that there are four ways of filling in the numbers in Magic triangle ensures that a student is able 

to find at least one of them and feel a sense of accomplishment. Many of the trajectories outlined in  

Section 4.2.3 are easily accessible and can be the entry points to the task. There are multiple ways of 

proving that there are only 4 solutions, from informal counting strategies to algebraic proofs. 
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4.4 Summary

To summarise, I suggested that flexibility and accessibility as key design principles in designing tasks 

that  support  students  who  are  marginalised  by/in  mathematics  to  engage  in  mathematical  thinking.  

Flexibility in tasks makes it possible for teachers to suitably tune the activity and tasks so that students  

sense an invitation to engage. Also students feel encouraged to bring in their own ways of thinking. Thus 

flexibility enables access. However flexibility must be accompanied by some degree of specificity as  

well, so that students are not at a loss as to which direction to take or what problem to address. In the  

various explorations in this chapter, this specificity is brought in through appropriate interventions and 

suggestions by the teacher. 

The analysis offered in this chapter contributes to an understanding of how flexibility is enabled through  

various task features. An evident aspect of flexibility is “openness” of the tasks. But openness can be  

along different dimensions. Openness along the dimensions of goals and extensions that could be pursued  

emerge as important from this study. Openness of goals implies a task that does not specify a unique goal  

to be reached but offers a choice of goals that could be pursued. The dimension of extensibility implies 

that the provided starting points are generative of further questions and the task could potentially branch  

out to multiple trajectories. When students are unfamiliar with formal modes of expression and have a 

limited formal repertoire, affordances to function at multiple levels of formalisation becomes important.  

This is a more subtle aspect of the task that may not be evident or emerge through the teacher's own 

explorations.  It  is  in the interactions with students and the ways they engage with the tasks that  the 

different levels of formalisation at which students may engage with the task comes to light. I did not  

anticipate  the ways in which students  articulated their  strategies in  the Guess the colour  exploration  

discussed in Section 4.2.2. They emerged in the course of the implementation of the task. 

Besides flexibility, there are other task features that contribute to making the task accessible. These are  

especially important in working with students who are marginalised even through their experience of 

mathematics. An important way of making tasks accessible is by minimising dependence on prior content  

knowledge. This is achieved by choosing and framing tasks that allow for multiple solution approaches, at 

least some of which do not hinge on specialised content knowledge. Working with physical material like  

matchsticks, tokens, etc., used in some of the explorations gives students a “feel” for the task and enables 

a  solution  to  be  found  at  the  concrete  level.  This  may  then  be  represented  visually  and eventually 

formalised. The move from concrete to abstract has its benefits at the secondary level too. Having a  

sufficient number of low threshold entry points is another feature that enables access.

While there is a need to make tasks at a low threshold, this should not be at the expense of making 
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available opportunities for mathematical thinking and making it challenging to students, especially the  

ones  who  are  eager  to  move  on  and take  more  challenges.  Designing  tasks  that  are  accessible  and 

approachable does not mean reducing the intellectual challenge. Challenging extensions and variations  

need to be built on a low-threshold starting point. The aim is to strike a balance between making tasks  

accessible and engaging for all  learners,  and at  the same time providing access to rich mathematics.  

Incorporating  multiple  dimensions  of  generalisation  and  multiple  trajectories  leading  on  to  multiple  

domains are some means of keeping the challenge level high without compromising on access. 
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5 Engagement with mathematical explorations at the margins

In the previous chapter I posited accessibility to mathematics in less structured ways than required by a  

textbook as a requisite for supporting mathematical thinking at the margins and identified design features  

that  have  the  potential  to  make  tasks  flexible  and accessible  in  these  contexts.  I  now look at  what  

engagement with mathematical  explorations that  incorporate these features entails  at  the margins.  As 

noted in Chapter 2, while there is ample literature around students at the centre engaging in mathematical  

explorations, the same is not true of the margins. The general perception of explorations is that they  

challenge and hone the creative skills  of  the mathematically  inclined,  more so because they call  for  

students  coming  up  with  their  own  approaches,  procedures  and  discoveries  rather  than  replicating  

previously taught procedures. For this reason, from a deficit view, their usefulness for students at the  

margins  may  not  be  acknowledged,  and  there  is  scant  literature  on  such  students  engaging  with 

explorations in the Indian context. The potential of explorations to enable mathematical thinking in such 

contexts has not been sufficiently studied. One of the aims of this study was to explore how students at  

the margins engage with mathematical explorations. 

As discussed in Section 3.7, I draw on the implementation of two explorations - Magic triangle in Schools 

1 and 2 and Matchstick geometry in School 1 - to describe the nature of mathematical thinking seen at the 

margins. The choice of these explorations is based on the availability of multiple data sources that allow 

for a thorough study of student engagement. Audio recordings of all the sessions and detailed notes in the 

teacher diary were available for these explorations. As noted in Section 3.5, Matchstick geometry was one  

of the explorations where I insisted on written work through a worksheet, making available a sample of  

students’ writing as well. In the Magic triangle exploration, I observed students engaging with multiple 

variations and taking different trajectories and coming up with rich insights. In the Matchstick geometry 

exploration, I observed them working with and rediscovering familiar concepts in a slightly unfamiliar 

context. The deep engagement that I saw in these explorations also added to the illustrative power of the  

chosen instances.  Burton (1984) identifies,  as have other mathematicians and educators,  the study of  

relationships and transformations as being central to mathematics. Therefore I have chosen student talk  

and writing around the theme transformations in the selected explorations to point to some features that I  

noticed in the way they communicated their mathematical thinking. The choice of explorations to be 

discussed in this chapter was guided by the above factors. 

The data sources for this chapter are the teacher diary, the audio recordings of these sessions and the  

written  work  collected  in  these  sessions.  The  audio  recordings  were  listened  to  multiple  times  and 

annotated notes prepared. Moments that stood out saliently for me as the teacher, marked by student  
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agency and/or  mathematical  thinking,  were  further  discussed  with  the  research  team and selectively 

transcribed. Thus, the instances discussed below were selected for their power to illustrate aspects of the  

students’ engagement and to show its feasibility, while I as the teacher revisited the data and reflected on 

my experience. 

In this chapter I describe the nature of mathematical thinking that I observed as students at the margins 

engaged with explorations and the means that they adopted to communicate their thinking. I saw that  

while using means other than the formalised language of mathematics to express mathematical thinking 

was liberating, these also hampered progress in explorations in some ways. I document such instances. 

With a view to better understanding how one could work with and build on informal mathematics in  

marginalised educational contexts, I looked to the practice of research mathematicians. Drawing on this, I  

suggest an acceptability criteria for informal discourses in an educational setting, especially in the context 

of explorations. 

I address the following questions:

1. What does engagement with mathematical explorations entail at the margins?

a. What is the nature of mathematical thinking seen in these contexts?

b. How do students communicate their mathematical thinking?

c. How does language support or hinder mathematical communication?

d. What counts as mathematical discourse in such contexts? 

I  begin the chapter  with extended descriptions  of  student  engagement  with two of  our  explorations,  

Matchstick  geometry  and  Magic  triangle,  with  transcripts  of  student  discussions  where  relevant.  In  

Section  5.2,  I  use  these  descriptions  to  draw attention  to  the  elements  of  mathematical  thinking  as  

identified by Burton (1984).  In  Section 5.3,  I  draw attention to  the notable  features  of  the ways of  

communication students adopted. In Section 5.4, I discuss how these support or hinder engagement with 

and  progress  in  the  exploration.  In  the  light  of  these  and  drawing  on  the  practice  of  research  

mathematicians,  in  Section  5.5,  I  identify  central  features  of  mathematical  discourse  in  contexts  of  

discovery and suggest an acceptability criteria for mathematical discourses that aligns with these features. 

5.1 Two Explorations

In this section I give descriptions of student  engagement with the two selected explorations - Magic  

triangle  and Matchstick geometry.  For  each exploration,  I  give an  overview of  how the  exploration 
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evolved and how far it progressed and zoom in on the relevant parts to give a more detailed description. I 

largely draw on implementations in School 1 and a few instances from School 2 for the Magic triangle  

exploration. 

5.1.1 Magic triangle

As discussed in Section 3.6 this is a puzzle that involves arranging distinct numbers 1-6 along the sides of 

a triangle as in Figure 5.1, such that numbers along each side sum to the same total.

Figure 5.1: Magic triangle

I briefly describe how the implementation of the exploration progressed in School 1. This narrative also  

illustrates how the variations and extensions of the task described in Section 4.2.3 were realised in class.  

Within the first six minutes of posing the problem, students came up with three solutions with side-sums 

9, 10 and 11 and some permutations of these solutions. They noticed that some solutions were similar in 

that the same combination of numbers appeared on the sides, and some students also noticed that the side-

sum was the same in these cases (Transcript excerpts presented in Section 5.3). It was decided to count  

those solutions that have the same side-sum as the same solutions. 

A student Krithi raised the question if they could get all numbers as side-sums. I picked up the question  

and also asked if they could come up with more distinct solutions. Some students argued that side sums of  

8 or less are not possible. Two approaches that were seen are: a) They made a sum of 8 on a side with  

three numbers,  say 5,  2 and 1 and argued that  the remaining three numbers cannot be placed in the  

remaining circles so as to make a side sum of 8. b) The side on which 6 is present will have two other 

distinct numbers from 1 to 5 and so cannot have a sum of 8 . Some students also tried to argue that a side-

sum of 12 is not possible as well, using an argument similar to a) above, but others found a solution with 

side-sum  12.  There  were  also  students  trying  to  get  13  as  side-sum  and  others  trying  to  argue  its  

impossibility  (Details  and analysis  presented in  Section 5.5.4).  Based on their  not  finding any more  

solutions, some students claimed that there are only three distinct solutions. I asked for a justification. In 

the meanwhile, in an attempt to get a side-sum of 13, some students changed the numbers and used 7 
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instead of 1. This opened up the possibility of changing numbers and students chose different sets of  

numbers and went on finding solutions. Using numbers 2 - 7, they found solutions with side-sums 13, 14  

and 15. 

By now there were multiple groups working on multiple things - Some students trying to find more  

solutions with numbers 1-6, others working further on solutions already found and yet others varying the  

numbers to other sets of consecutive numbers and solving the puzzle with these numbers. A student, V2.  
12, came up with what he called a “theorem” - namely that if one exchanges the vertex number with the  

middle number of the opposite side, one gets another solution (transformation of solutions as discussed in  

Section 4.2.3). This was termed “V2’s Theorem” and was used by him and by other students subsequently 

to find more solutions. They also experimented with other transformations on the solutions to see if they  

result in new solutions. In the process V2 came up with what he called “V2’s second Theorem”, which 

was that moving the numbers around by one position yields another solution. Working with the original  

set of numbers from 1-6, V2 used this exchange or transformation on the arrangement that had a side-sum 

of 9 to get another solution with side-sum 12, thus finding the 4th solution. He also found that applying  

the same transformation on the solution with side-sum 12 gives back the solution with side-sum 9. Using  

these transformations, experimenting with other sets of numbers and not finding more than four solutions 

strengthened their conviction that there would be four and only four solutions for the initial problem.

Noting  that  the  side-sum of  his  initial  arrangement  was  9  which  is  currently  established  to  be  the 

minimum possible,  and  that  he  obtained  a  “maximum” 12,  V2 claimed that  there  can  be  only  four 

solutions, one each with side-sums 9, 10, 11 and 12. He later came up with a more convincing argument  

that this is indeed the case. (I analyse this proof in later sections - Sections 5.2.1, and 5.5.4) 

Intending to get them to prove formally that there would be four and only four solutions with any set of  

consecutive  numbers  as  they  had  been observing  through multiple  examples,  I  introduced algebraic 

notation n, n + 1 … n + 5 for the six consecutive numbers that they were using. This move did not work  

as intended - the students were not very comfortable with algebraic manipulation. Also I realised that it  

would be a better option to prove that there are only 4 solutions for a specific set of consecutive numbers,  

rather  than for  any set  and presented and explained the proof  outlined in  Section 3.6.  Students  had  

difficulty in following the proof. Also they were not enthusiastic to go on any further with the exploration  

and hence it was decided to move on to another exploration.

The  implementation  of  the  exploration  in  School  2  was  similar  in  that  students  came  up  with  the  

transformation of shifting the numbers by one position to get  another solution early on and actively  

12. Pseudonym chosen by the student himself is being used for this student.
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looked for other such transformations and patterns. A number of statements related to parity were made - 

some of them applicable only to the specific solution being considered and others more general. Some 

examples of such observations are: if odd numbers are at the corners, the side-sum would be 10, if there 

even numbers  are  at  the corners  the side-sum would be 11.  Finding solutions  with different  sets  of 

numbers  kept  students  occupied for  a  good amount  of  time in School  1,  while  this  was done for  a 

comparatively shorter time in School 2. But patterns were observed and side-sums with other sets of  

numbers predicted without actually finding the solutions - For example, one student predicted that the 

sum of the maximum and minimum side-sums possible using numbers 3-8 would be 33 and that with 4-9 

would be 39, with an increase of 6 for every increase of 1 in the starting number (A detailed analysis of  

this can be found in Section 5.2.1). Here also, I explained the proof outlined in Section 3.6 to them. A few 

students used this to find possible side-sums and solutions for a square arrangement of numbers 1-8 and  

arrangement  of  numbers  1-7  in  the  form  a  Z,  but  many  of  them  found  it  hard  to  follow  and  the  

engagement levels waned.

Across the many iterations of this exploration with other groups of students across different contexts, we  

have noted some common “stages” - finding different solutions, proving there are only four, working with 

different  sets  of  numbers,  looking  for  patterns  in  solutions  and  transformations,  extending  and 

generalising to other figures. However the order and extent to which the different groups engage with  

each stage differs. For example, between School 1 and School 2, School 1 spent more time working on  

solving the puzzle with different sets of numbers and came to the conclusion that there had to be four 

solutions  based  on  these  attempts  whereas  pattern  finding  was  a  prominent  activity  in  School  2.  

Elsewhere, where students had sufficient facility with algebra and found the algebraic proof that there are  

only 4 solutions accessible, more of the extensions and variations were explored. The exploration has the  

potential to engage students at different levels of mathematical proficiency and is what is called a Low 

Threshold, High Ceiling (LTHC) task. 

5.1.2 Matchstick geometry

The first task in this exploration was to replicate some matchstick shapes. Students were given three kinds 

of sticks to use - matchsticks, toothpicks and a third variety of thin sticks cut into identical pieces. They  

were expected to replicate the shapes using one of these. This activity was used to anchor the question  

“when are two matchstick shapes the same?” Students considered conditions such as number of sticks  

used to make the shape, the number of sticks per side, the “size” and shape itself, the length and breath of  

the shape and angles. There were also instances where the replicated shapes did not retain the proportions 

of the original shape. Responding to the need to further discuss these points, a worksheet was designed 
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bringing these to the fore (Figure 5.7 on page 143). This had two sets of shapes, and students were asked 

to  spell  out  what  they  consider  “same shapes”  and compare  each  shape  with  the  first  shape  in  the 

corresponding set and write whether they considered these shapes the same as the first shape and why or  

why not. The points of discussion that I hoped would come up as students worked through this task were  

whether students would consider shapes transformed through the following ways same or different: 

a) Scaled shapes, with scaling being done by: 

i) using a different number of unit-lengths per side.

ii) keeping the number of unit-lengths identical, but using “units” of a different length. 

b) Transformed shapes - with shapes being rotated and reflected along different axes. 

Different students had different definitions for what they would call “same shapes” - some considered the 

total number of sticks, some considered the number of sticks per side and others considered the number of  

sticks per side and their lengths as well. This led to their formulating competing criteria for when they 

would consider two matchstick shapes the same and raised questions about why one should be preferable  

to another (I examine some student work and some turns of conversation from this discussion in Section 

5.3). 

The second task was to describe a shape such that a friend who has not seen the shape could replicate it  

without seeing it. This called for precise description and use of mathematical vocabulary such as parallel, 

perpendicular, horizontal, vertical, adjacent, midpoint etc. The third task was again on replicating shapes, 

but  this  time  the  shapes  were  drawn  (as  opposed  to  the  first  task  where  matchstick  models  were 

presented) and they included shapes which could be made with matchsticks and those that could not be 

made as can be seen in Figure 5.2. The number of matchsticks per side not being specified opened up the 

possibility  for  experimentation  with  students  trying  to  make  the  shapes  with  different  numbers  of 

matchsticks per side. This led to discussions on the need to keep the proportions between the different 

edges/sides of the shapes constant.  These discussions also fed into the worksheets mentioned above.  

Questions on the diagonals of squares and other shapes like rectangles and rhombuses were discussed at  

length – whether these could be made with matchsticks without gaps or overlaps and if yes for what  

dimensions.  I  examine  the  discussion  and  student  work  around  the  question  of  constructibility  of  a 

diagonal of a square in Section 5.2.2. 

The final task of the exploration was about identifying shapes that could be described to another without  

resorting to any measurements. The last two tasks opened up possibilities to investigate “constructable”  
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and “describable” shapes when the allowed “steps of construction” was restricted to laying matchsticks 

end to end, with no gaps or overlaps, without resorting to measurements. This is a further restricted  

version of  the ruler  and compass  constructions  in Euclidean geometry,  where the use of compass is 

restricted too. The shapes that can be constructed are contingent on the restrictions in place. 

Figure 5.2: Matchstick geometry: Some shapes for replication  

5.2 Nature of mathematical thinking seen at the margins

As discussed in Chapter 2, (see Section 2.6.2), Burton (1984) terms an idea, an observation, a happening  

or any event that can provide a stimulus to begin thinking, as an element on which mathematical thinking 

operates. Operations constitute the first of the three components of mathematical thinking and include 

enumeration;  iteration;  study of  relationships  such as  ordering,  correspondence,  equivalence,  inverse, 

converse, etc.; transformation by combination, substitution. Burton identifies the second component of 

mathematical thinking as consisting of four key processes - specialising and generalising, conjecturing  

and convincing. The third component in Burton’s framework is dynamics of mathematical thinking which 

consists of cyclic movements through the stages of manipulating an object, getting a sense of pattern and  

articulating the pattern and making the articulated pattern the subject  of  further manipulation.  I  now 

discuss  these  components  of  students’  mathematical  thinking  as  they  engaged  in  the  explorations 

described above. 

5.2.1 Students’ mathematical thinking: Magic triangle

I anchor my analysis of students’ mathematical thinking in this exploration around the process of making  

claims and conjectures. I distinguish a conjecture from a claim or a conjecture-in-action in terms of the  

attention paid to examining its validity or truth. A claim would become a conjecture if in the course of 
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students’ exploration, they either succeeded in refuting or proving it or at least attempted to do so, even if 

to a limited extent. If a claim is merely stated or is a conjecture implicit in the students’ actions, it does  

not  become  a  conjecture.  I  noted  many  instances  of  claims  and  conjectures  in  the  Magic  triangle 

exploration. These are as follows:

S - 1 The Magic triangle puzzle has only three solutions for a given set of consecutive numbers.

S - 2 Larger the numbers used in the triangle the fewer the number of solutions.

S  -3  The  side-sums  corresponding  to  different  solutions  for  a  given  set  of  numbers  are  

consecutive numbers.

S - 4 The sum of the maximum and minimum side-sums obtainable using numbers 3-8 is 33.

S - 5 The Magic triangle puzzle has four and only four solutions. 

S - 6 Nine is the minimum side-sum possible with numbers 1-6, and 12 is the maximum side-sum 

possible

Of these S - 1 and S - 2 were unsubstantiated claims, S - 3 was an unarticulated conjecture implicit in  

action, S - 4 was a conjecture that was made building on a few other conjectures but not proved and S - 5  

and S - 6 were eventually proved as can be seen from the following discussion.

In School 1, students found solutions to the puzzle with side-sums 9, 10 and 11 within the first 5 minutes  

of  posing the problem,  but  the fourth solution with side-sum 12 was found after  a  gap of about 25 

minutes. The difficulty experienced in coming up with the 4th solution may have been the basis for  

statement S - 1 above. Students tried to solve the puzzle with different sets of consecutive numbers and in 

both the schools, they found it harder to equalise the side-sums when using larger numbers like 10-15.  

Based on this experienced difficulty, they thought it plausible that there would be fewer solutions when 

larger numbers are used. Similar to S - 1, S - 2 is also based on the experienced difficulty in solving the  

puzzle.  Neither of these statements were pursued further and remained unsubstantiated claims. These  

were in effect refuted when S - 5 was proved later, but an explicit connection was not made. 

S - 3 was not articulated but seen in action and can be termed a conjecture-in-action. Students noted that  

the side-sums in the four solutions found for the initial version of the puzzle with numbers 1-6 were 

consecutive numbers 9, 10, 11 and 12. Perhaps they expected this to be true of other sets of numbers. I  

noted that having obtained a few side-sums, they were trying to bring about contiguous numbers as side-

sums. For example, with numbers 2-7, having found solutions with side-sums 13, 14 and 15, 12 and 16 

133



were the side-sums they tried for. It can be considered a pattern noticed but not articulated. There were  

other patterns that were noticed, articulated and built-on as well. 

S -  4  above  is  one such.  Velan,  a  student  of  School  2,  conjectured  that  the sum of  maximum and 

minimum side-sums obtainable with numbers 3-8 is 33. This conjecture itself is the result of cycles of  

manipulating solutions, getting a sense of pattern, articulating the pattern and further manipulating these 

patterns - what Burton calls the dynamics of mathematical thinking. The starting point for this conjecture 

was manipulating the obtained solutions to the puzzle. Moving the numbers around and observing the 

resulting arrangements, students noticed two kinds of transformations - i) those that result in the same  

solution (or the side-sums being preserved) and ii) those that lead to a different solution. (see Section 

4.2.3 for a more detailed discussion of transformations of solutions). To recall, the transformations that  

lead to other solutions are- a) interchanging the number at the vertex with the one at the midpoint of the  

opposite side (Figure 5.3 (a)) b) moving the numbers around cyclically by one position (Figure 5.3 (b)).  

Both these transformations have the effect of moving the numbers at the three vertices or corners of the 

triangle to points on the midpoints of the side and vice-versa. 

Figure 5.3: Magic triangle: Transformations that give a different solution

Applying either of these transformations on a solution with side-sum 9 gives the solution with side-sum 

12. Transforming the solution with side-sum 12 in a similar fashion gives back the solution with side-sum 

9. Thus the solutions with side-sums 9 and 12 are “paired” in that transforming one results in the other.  

These two happen to be the maximum and minimum side-sums possible with numbers 1-6. Solutions with 

side-sums with 10 and 11 are similarly paired. (Figure 5.3 (b)). The sum of these paired side-sums is a  

constant, 21 ( 9 + 12 = 10 + 11 = 21). 

Velan  noticed  this  “pairing”  of  solutions,  thereby  establishing  a  correspondence  (a  mathematical  

operation in Burton’s framework) between solutions that can be obtained from one another through well-
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defined transformations. He also noted that the solutions with maximum and minimum side-sums are  

paired in this fashion. These pairs of solutions then became the object of his attention and he identified a 

property that they share, namely that the sum of their side-sums is a constant. Having got a sense of this  

pattern, he verified the pattern with another set of numbers, 2-7. He saw that the pattern holds in this case  

as well, with the side-sums of paired solutions summing to 27. Manipulating and building on the pattern 

that  “sum of  side-sums of  paired  solutions  remains  a  constant  for  a  given  set  of  numbers”  he  also 

conjectured a rule as to how this sum varies with the set of numbers being considered. Thus S-4 above is  

a complex conjecture that is based on the following observations and intermediate conjectures.

1) Starting from a solution of the Magic triangle puzzle, interchanging the numbers at the vertex 

with those at the midpoint of the opposite side, leads to another solution. 

2) The solutions of the Magic triangle puzzle with a given set of consecutive numbers are “paired” 

in a certain way - transforming a solution as in 1) above leads to the other solution of the pair.  

The side-sums of these solutions form a corresponding pair.

3) The maximum and minimum side-sums obtainable are so paired.

4) The sum of paired side-sums is a constant for a given set of consecutive numbers.

5) The constant sum in iii) above increases by 6 for contiguous sets of 6 consecutive numbers

Velan’s conjecture that “the sum of the maximum and minimum side-sums obtainable using numbers 3-8 

is 33” follows from 4) above and the observation that the sum of the paired side-sums with numbers 1- 6  

is  21.  The  students  did  not  attempt  to  prove13 this,  but  arriving  at  it  itself  involves  mathematical 

operations,  processes  and cycles  of  manipulation,  getting  a  sense of  pattern,  articulating pattern and 

further manipulating articulated pattern. We now look at S - 5 and S - 6 above, which were proved. The  

proof that the students came up with is described in the following paragraphs.

V2, of School 1 suggested that the maximum side-sum is obtained by placing the three larger numbers  

13. The proof is as follows:
We noted that the transformations in Figure 5.3 have the effect of moving the numbers at the three vertices or 
corners of the triangle to points on the midpoints of the side and vice-versa.
Therefore an arrangement with C as corner-sum gets transformed into one with (21 - C) as corner-sum. We also saw 
in Section 3.6 that the side-sum S and corner-sum C are related by the equation
3S = C + 21  (A)
If S’ and C’ are the side-sum and corner-sum after a transformation, C’ = 21 - C and we also have
3S’ = 21 - C + 21 (B)
Adding equations (A) and (B), we see that S + S’ = 21. That is the sum of “paired side-sums” is 21, which is also the 
sum of the 6 consecutive numbers being used. One can explain the “increase of 6” that Velan observed in this sum, 
based on this observation.
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from among those given at the vertices of the triangle and placing the remaining numbers in such a way 

that the side- sums are balanced. In Figure 5.4, the side with 5 and 6 has the maximum partial side-sum  

and so the smallest of the remaining three numbers needs to go there. Similarly the with 5 and 4 has the  

smallest  partial  side-sum and so the largest  of  the remaining numbers  goes  there.  By following this  

algorithm we find the maximum side-sum to be 12. By a similar argument, placing the three smaller 

among the given set of six numbers at the vertices, and balancing the side-sums, we get the arrangement 

with the minimum side-sum, 9 here. V2 came to this argument by considering multiple examples (or by 

the process specialising in Burton’s framework) and then generalising (also a process) the pattern across 

cases. 

Another student Krithi in an attempt to convince herself of this noted that the numbers at the corners get  

counted twice when calculating the side-sum and hence if the larger numbers are placed at the vertices  

one  gets  a  larger  side-sum than  otherwise.  Thus  V2  came up with  an  inductive  argument  which  is 

complemented by an explanation from Krithi.  Having obtained the maximum and minimum possible 

side-sums (9 and 12) and solutions with the side-sums in between (10 and 11), V2 proved that 9, 10, 11 

and 12 are the only possible side-sums and hence there are only four solutions. Here we see an instance of 

the process that Burton terms “convincing”. 

Figure 5.4: Magic triangle: Student strategy to get maximum side-sum

5.2.2 Students’ mathematical thinking: Matchstick geometry

I now look at the discussion and student work as they argue that a diagonal cannot be placed inside a unit  

square without gaps or overlaps, then consider a larger square and then generalise to any square. This is 

from the Matchstick geometry exploration and was the fourth of the six sessions of this module. 

Trying to accommodate two sticks along the diagonal, they said
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1. “Ithu edamme paththamatenguthu” (There is not enough space at all). 

With one stick they said

2.  “ithu romba chinnatha irukke, intha end ukku varamatteguthu” (this is too small, it doesn’t 

come to this end) which I revoiced as “corner to corner varallaye” (It is not coming from corner  

to corner).

One  student  suggested  that  they  make  a  bigger  square  (with  more  than  one  matchstick  per  side).  I 

encouraged them to go ahead and explore  this.  In  the meanwhile  another  student  said that  it  is  not 

possible to fit the diagonal whatever the size of the square, and I asked to be convinced.

In the following turns of conversation, Maariya, Priya, Aashika and Megha are students, J is the teacher, 

and T is their regular teacher who was observing. Translation into English is given in parentheses. Turns  

that were judged to be not relevant and have been omitted are indicated by “…”.

3. Maariya: diagonal vanthu eppovme..(The diagonal of the square is always…)

4. Priya: Square-oda diagonal is not equal to the side of length, squarennudayathu (The diagonal of the 

square is not equal to the side-length)

5. Maariya: ithodu lengthum athodu lengthum equal aa ve irrukkathu (The length of this and this will not 

at all be equal.)

6. Maariya and Priya: Diagonal eppovme vanthu, diagonal is greater than the side of the square (Diagonal 

is always, diagonal is greater than the side of the square,)

7. J: How much greater?

8. Maariya: Eh? How much aa? (What? How much?)

…

9. T: you tell me how much bigger, Maariya and Priya?

10. Maariya:Double

11. J: Double aa? Appo rendu kuchci vacha varannume? (Double? then two sticks should fit)

12. Maariya: half double.

13. J: half double na? (Half double means?)
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14. Maariya: One and a half

…

15. Priya: Miss, Pythagoras Theorem. This square plus this square is equal to this square

16. Aashika: Hey, yaar sollithantha? (Hey, Who taught you?)

17. Priya: nangalle kandupidichom (We found out ourselves.)

18. J: Ok, So you are telling me that you cannot make this?

19. Priya: huh huh (No No)

20. Megha: Pythagorus theorem thane? ( It is Pythagorus theorem isn’t it?)

21. T: Appadiya? (Is it so?)

22. Priya: This square plus this square is equal to this length

23. T!: Enn? Why?

24. Priya: Because it is a right angle. Yes, Squarekku right angle sir. (A square has a right angle)

(Someone claps)

In the meanwhile, the group who was making a larger square fitted a three-unit diagonal to a 2-unit sided 

square. I drew attention to this and asked the group Maariya, Priya, Aashika and Megha if they wanted to 

reconsider their stand that a matchstick diagonal cannot be fitted to any square. Priya and others pointed 

out to Maariya that she was wrong. The diagonal could be longer than the sides and yet it may be possible  

to fit in a matchstick diagonal. There was confusion - Some of them sensed something was wrong, but did 

not connect it to Pythagoras theorem that was mentioned earlier and tried to figure out what was wrong.  

One student felt that the 2-unit square with the 3-unit diagonal may be flawed (“not perfect”) in some way  

and wanted to measure the lengths. I suggested that the lengths are obvious - the matchsticks along any 

side could be counted. A boy pointed out the possibility of the matchsticks being slightly different in  

lengths and wanted to check the exactness of lengths through a pencil and paper construction. In the  

meanwhile a group of girls writing on the floor as shown in Figure 5.5 drew on Pythagoras Theorem 

again to justify that the square was indeed “flawed” - Pythagoras theorem gives the value of 4 + 4 = 8 for  

the square of diagonal, whereas the matchstick square on the floor has the value 9.
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Figure 5.5: Matchstick geometry: "4 + 4 is not equal to 9"

In order to see if there could be other squares with integer sides and integer diagonal lengths, they looked 

for perfect squares which when added to themselves would give another perfect square. They tried out  

specific examples and evaluated the square roots by long division method (see Figure 5.5, Part C). At this  

point I intervened to suggest using factorisation and writing the square root as a surd in a√2 form instead 

of evaluating it as a decimal. They had been introduced to the surd form as part of their curriculum and  

could do this. Based on a student’s statement that √2 is a never-ending decimal, I pointed out that the  

diagonal is a non-integer multiple of the side and hence not constructible using matchsticks. 

The processes of specialising, generalising, conjecturing and convincing are evident in this description as 

well. Students first consider the case of a unit square (specialisation), manipulate matchsticks and observe 

that it is not possible to fit in a matchstick diagonal without gaps or overlaps. They articulate the observed 

pattern for a special case, namely the unit square. The observation that it is not possible is explained by  

the statement that the diagonal of a square is always greater than its side. Here we see students trying to  

prove a statement (matchstick diagonal cannot be accommodated) using already known facts (diagonal is 

longer than the side) - a distinctive feature of mathematical proofs. While a few steps are missing in the  

proof, it is clearly an attempt to convince. I sought to fill in the missing steps with the prompt - “how  

much greater?” .  The prompt is  heard but  not  pursued;  instead the students  draw on the Pythagoras  

theorem to justify their claim. They then build on this observed pattern and conjecture that it is impossible  
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to fit a matchstick diagonal in any square. However, a group of students manage to make a 2-unit square  

with a 3-unit diagonal with matchsticks. This was contrary to expectations and led to what Burton terms a  

“surprise fueled attack” (that is,  exploration motivated by a surprising finding; see Section 2.6.2 and  

(Burton, 1984, p. 43)). They again draw on Pythagoras theorem to convince themselves and others that  

the 3-unit diagonal that seems to fit inside a 2-unit square had a flaw. The 2-unit side a square is another  

special case that was considered to exemplify the impossibility of matchstick diagonals. They eventually 

generalise the conjecture to all squares and attempt an inductive proof. They note that twice the squares of  

3, 4, 5… are not themselves perfect squares and therefore matchstick diagonals are not possible in squares  

of  these  sides.  They conclude  that  the conjecture  is  true based on  the  fact  that  they  did  not  find a  

counterexample. I intervene to present and explain a deductive proof. 

5.2.3 Students’ mathematical thinking: What was seen? What was missing?

The  nature  of  thinking  seen  in  the  instances  discussed  above  aligns  with  Burton’s  description  of 

mathematical thinking and I pointed to evidence of mathematical operations, mathematical processes and 

cycles of manipulating ideas/objects, getting a sense of and articulating patterns and building further on  

them as students engaged in explorations. In addition to the two examples of such cycles highlighted in 

the previous two sections, V2 coming up with his “theorems”(see Section 5.1.1) and these theorems being 

used by V2 and others to find more solutions is another example of an articulated pattern being built-on  

and manipulated (Mason, 1989). V2’s initial work was the search for a pattern/transformation through the 

process of manipulating solutions. Once the pattern/transformation is found and articulated, it becomes an 

entity in its own right, usable by others to find more solutions. We have observed other instances, both in  

this exploration and in other explorations where students demonstrate engagement with the elements of 

mathematical thinking as described by Burton. 

Also notable is the way V2 terms it a “theorem” - though technically it is a conjecture - perhaps based on  

the familiar textbook terminology. V2 attaching his own name to the “theorem” and the class accepting  

and referring to the transformation as “V2’s theorem” is indicative of ownership and a sense of pride in  

their  own achievements.  Similar feelings are reflected in “we found out ourselves” in turn 17 of the  

conversation shared above and positive emotions are  visible  when others  acknowledge the effort  by 

clapping.  An important  fallout  of  the openness  of explorations is  that  they provide opportunities  for 

students to “make and own” their own mathematics. 

While the instances described above show “little mathematicians at work” (Ramanujam, 2010), I also 

draw attention to two instances where we thought that they went one step too short. Formalisation is one 

aspect that we saw very little of in these examples. That apart I point to a couple of instances which were  
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puzzling for us - raising the question “having gone thus far, why was the next step a struggle for them?”

a) Maran in School 1 correctly argued that the side on which 6 appears needs to have two more distinct 

numbers, the minimum possibilities being 1 and 2. So the minimum side sum has to be 9. I encouraged 

them to use a similar argument to prove that 12 is the maximum possible side-sum. I suggested that they  

start from the side on which 1 appears. The side that has 1, needs to have two more distinct numbers, the  

maximum possibilities  being  5  and  6,  and  therefore  the  maximum side-sum possible  has  to  be  12.  

However neither Maran nor others  in  the group who heard Maran’s  argument  could adapt  the same  

reasoning to explain the impossibility of 13 as a side-sum. 

b) While justifying the impossibility of a matchstick diagonal for a unit square, though students in School 

1 started with the reasoning that this is because the diagonal has to be longer than the sides, they soon saw  

that as an application of Pythagoras theorem. Having made the connection, they were still confused by the  

two-unit square with the three-unit diagonal fitted in. After some time, one student came to the conclusion 

that Pythagoras Theorem is being violated in this arrangement as well. 

Perhaps this may be because the “shift from articulating to manipulating” which Mason calls abstracting 

has not happened here? In Maran’s case, what he offers is a reasoning to explain an observation. The shift 

from “a reason to explain an observation” to “a  reasoning to explain some observations”(abstracting a 

pattern of reasoning), akin to the shift from “a sequence with a property to a property satisfied by what 

sequences” that Mason (1989) points to has perhaps not happened. The same can be said about the use of  

Pythagoras Theorem by the students working on Matchstick geometry.  Their  reference to Pythagoras 

theorem was with respect to the triangle at hand - “this square plus this square is equal to this square.”  

That they did not refer to the theorem in terms such as “sum of squares on the perpendicular sides of a  

right triangle is equal to square on the hypotenuse”, independent of the triangle at hand and that applying 

it  to  a  different  example  was  not  an  instinctive  response,  may  perhaps  be  because  they  have  not  

“abstracted” Pythagoras theorem to be able to manipulate it further. 

In this section, we saw examples of students making their own mathematics, or “re-making” previously 

met and perhaps forgotten mathematics. In the following section, we look at how they communicate their 

mathematical  thinking.  To this  end I  share some transcripts  of  instances  from the classroom already 

referred to in the previous section and identify features that mark these discourses.

5.3 How do students communicate their mathematical thinking?

The key observation here is that talk was the primary means that these students adopted to communicate 

their thinking. As pointed out in Section 3.5 , in School 1 there was a preference to write on impermanent  
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surfaces like the blackboard, classroom floor or the desk and erase what was written after the task was  

completed.  Though notebooks were provided so as  to  make available  records  of  student  writing for  

analysis, they were hesitant to write in these, and very little writing was collected. The writing that did 

happen was done more as an aid to thinking through and working out, rather than for presenting their 

work to a wider audience. The impression that I got on going through written work was that it was scanty 

compared to the rich conversations that happened in class and that the writing that they produced was not  

an indicator of the mathematical thinking they were capable of. As an example of the writing seen, I 

discuss the worksheet on Matchstick geometry (described in Section 5.1.2) here. Of the 15 students who 

completed the worksheet, 8 had answers with reasons stated in some detail. The rest either did not state 

reasons or wrote only 2-3 sentences in all. In this section, drawing on student talk and writing on the 

theme  of  transformations,  I  highlight  some  features  I  noticed  in  the  ways  students  communicated  

mathematics. The characteristics of mathematical discourse identified by Sfard (2008) and Moschkovich 

(2015a) discussed in  Section 2.3.2 provide points  of  reference for the analysis.  I  briefly  recall  these 

characteristics. 

Sfard (2008) identifies the distinctive observable features of mathematical discourse – namely (a) word-

use (b) visual mediators (c) routines and (d) endorsed narratives. Word-use as described by Sfard is not 

limited to technical vocabulary but implies objectified word use. This impersonal and reified use of words 

is indicative of awareness of the discursive objects signified by them. Visual mediators are the visible  

means that support communication. While informal mathematical discourses are mediated by real-life 

objects either seen or imagined, academic mathematical discourses are mediated by symbolic artefacts 

like graphs or algebraic notation created specifically for the purpose. Routines are recurrent forms of  

communication actions and the meta-rules governing them. Academic mathematical discourse is marked 

by  routines  that  aim  at  knowing  objects,  i.e.  producing  endorsable  mathematical  facts  about  them,  

whereas informal discourses often have routines resulting in practical action. Endorsed narratives are sets  

of propositions produced using the given language, mediators and routines and are endorsed as potentially 

useful  or  true  by  the  given  community.  The  meta-discursive  rules  that  govern  the  endorsement  of 

narratives or even the response of discursants are specific to discourses. In mathematical discourse only  

those narratives are endorsed that can be logically deduced from narratives already endorsed. Though  

concrete  or  iconic  mediators  facilitate  production  of  factual  narratives  through  appropriate  routines, 

symbolic  realisations  are  necessary  to  warrant  these  narratives’  general  endorsement  in  academic  

mathematical discourse.

Moschkovich  (2015a) defines  mathematical  discourse  as  “communicative  competence  necessary  and 

sufficient for competent participation in mathematical practices”. Mathematical discourse is embedded in  
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mathematical  practices  and  draws  on  hybrid  resources  –  oral  and  written  text,  multiple  modes, 

representations  (gestures,  objects,  drawings,  tables,  graphs,  symbols,  etc.),  and  registers  (school 

mathematical language, home languages and the everyday register). The ALM framework admits of the 

vernacular even when engaging in academic literacy practices and draws on a multimodal repertoire.  

Meanings are situated and develop through participation in mathematical practices. It is also marked by  

precision,  brevity,  logical  coherence,  particular  modes  of  argument  and  tends  to  value  abstraction, 

generalisation and search for certainty. 

I now analyse how students communicated their mathematical thinking on the theme of transformations, 

keeping the features identified by Sfard and Moschkovich as a background.

5.3.1 Transforming solutions of the Magic triangle

In the following turns of conversation students are explaining what they mean by “same solution” in the  

context of the Magic triangle exploration. This conversation happened pointing to this part of the board, 

where students had recorded their solutions and labelled them with their name.

I recreate the solutions circled on the board for clarity in Figure 5.6.

Through this discussion, students point to two properties of solutions which they would call the same. 

The first is that the side-sums in all these would be the same though the positions of the numbers may 

change (turn 4 and 22). The second, which may also be considered an elaboration of “ numbers maathi 

maathi varum” (numbers will change) in turn 4, is that the three numbers that appear on any given side  
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stay together, but they may appear on any other side of the triangle, in any other order as well.  For  

example the numbers 6, 1, 4 appear along the base of the triangle in part (i) of Figure 5.6 (b) , along one 

side of the triangle in (ii) and (iii), and are differently positioned, But all three numbers are on the same  

side of the triangle, whichever side it may be (turn 11). This ensures that the side-sum remains the same. 

Adding 6. 3 and 2 will give 11, whichever direction (on whichever side) they are written. (turn 22).

Transcription conventions followed: … indicates irrelevant turns omitted. [] indicates indistinct words. 

Translation with sentences completed for understanding where required are shown in brackets.  Smaller 

font is used for explanatory commentary where required.

1. J: Nitin is saying that these three things (referring to the circled solutions on the blackboard) which I have 

circled here are the same solutions - En Nitin? Explain (Why Nitin? Explain)

2. Nitin: Ore number irundha ellam ore mathiri dhan irrukkum (If there is the same number, all will be 

alike )

3.  J: Ore number irundhanna? enga ore number iruntha? (What does it  mean,  ‘if  there is the same 

number’? Where should there be the same number?)

4. Nitin:  Ore..11 aa iruntha .. Ellathukkume 11 aa iruntha, intha munnume onna than varum. Numbers 

maathi maathi varum ( The same .. if it is 11.. if it is 11 for all, these three will have to be the same.  

Numbers will change.) The 11 being referred to here is the side-sum in the three solutions marked

5. J: Puriyalle ennakku (I don’t understand)

6. Sneha: Miss naan sollaren miss. (Let me say, miss)

7. Abhi: place vere vere maathi pottirukkanga. (They have changed the places and put in different places)

8. Raju: Pointing to appropriate places on the board and referring to the change in position of numbers 2, 5 and 4 in  

parts (ii) and (iii) in Figure 5.6 (b) above. inga irukkara intha number [..] ithu ippadi irrukkutha? intha 2 a 

tukki inga pottirukkanga miss, inga 5 pottirunkkanga, aana inga 4 pottirukkanga [..] (The number that is 

here.. This is like this? They have picked up this 2 and put it here miss, they have put 5 here, but 4 here)

9. J: enna, enna, enna? (What, what, what?)

10. Maran:  ithu straightaa potirukkanga miss, ithu tiruppi pottirukkanga (They have put this straight 

miss, they have turned this) Reference to the sides with numbers 2, 5, 4, being horizontal in (ii) and “turned” in  

(iii)
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[]

11. Nitin: ithu 6,1,4 inga irrukku, ithu 6,1,4 inga irrukku, ithu 4,5,2 inga irrukku, ithu 4,5,2 inga irrukku 

miss, 2,5,4 inga irrukku miss Pointing to the solutions on the board - In this 6,1,4 is here, in this 6,1,4 is here. 

In this 4,5,2 is here, in this 4,5,2 is here, 2, 5, 4 is here)

12. J: Ok.. so sum 11 varuthu (Ok, so the sum is 11)

…

12. J:  Athinala intha muunumme patha vithyasama irunthalum munnum… (So even though they look 

different, these three…)

13. Nitin: onnu than (... are the same)

14. J: ore solution. (same solution)

15.  J: So oru solutionlenthu innuru solution eppadi kondu varathu? (So how do we bring one solution 

from another?)

…

16. Maran:  Number mattum maathuvom miss, vere number poda kodathu. Antha numberkku badil (We 

will only change the number. We should not put a different number instead of that number)

17. J: Entha numbera maathuvenga? Eppidi maathuvenga? (Which number will you change? How will 

you change?

18. Maran: Edatha eppidi venunna maathikkalam. (We can change the position in any way)

19. Nitin: Ultava podalam, ippadi podalam, eppidei venna maathikkalam. (We could put it inversely, we 

could put it like this, we could put it in any way.) 

20.  Maran: Indha  linela  intha  number  irunthunna,  itha  inga  pottu,  Itha  tuuki  ippadi  pottu,  eppadi 

pottalum 11 than miss varum. (If this number is on this line, if we put this here, and this here, it will be 11 

whichever way you put)

21. J:eppidi pottalum? (Whichever way you put?)

…

22. Maran:  Ippovanthu, 6 um three um 9 miss, athila 2 add pannina 11 miss, Athe entha directionla 
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pottalum antha 11 than miss varum. (Now 6 and 3 is 9, If you add 2 to that it is 11. It will be 11 in 

whichever direction you put these numbers)

The two characteristics shared by same solutions and referred to in these turns by the students, namely  

side-sum being the same and triplets of numbers staying together on whichever side they appear, is a  

complete characterisation of two solutions being the same, but the way it is articulated is based on the  

image on the board and as it applies to this specific example. The objects of discussion here are some  

permutations  of  the  numbers  1-6  around  a  triangle.  The  talk  is  visually  mediated  by  a  pictorial  

representation of the situation as opposed to a symbolic or algebraic notation for the permutation. My 

statement  that  “I  don’t  understand”,  intending to  push  them to clarify  their  articulation led  to  more 

pointing to the board. Students do not talk of the triangle or the arrangement of numbers being rotated or  

reflected, but as some unknown agent picking up the numbers on one side and putting them on another  

side. Even when they do use the word  turn (tiruppal), it is the agent who is turning a line of numbers 

which they had written straight earlier (turn 10). Word use here is not objectified or impersonal. Rotation  

here is expressed through the act of moving the numbers around. The talk is about the imagined/practical  

act of moving the numbers in groups of 3, in such a way as to maintain side-sum, and not about the “fact”  

that  rotation  leaves  the  side-sum  invariant,  as  in  Sfard’s  (2008)  characterisation  of  mathematical  

discourse. 

While students are aware of rotation as the transformation that keeps the sum invariant, not having the  

abstract language to talk about it, they communicate it in an operational sense, by moving the numbers  

around. I suggest that the purpose of the routines leading to an action on numbers (imagined entities) is to 

express a fact or truth that side-sums are preserved in the process. Also they have not yet assigned a 

name/label to the concept “side-sum” here and refer to it by the specific value, 11 in this case (turn 4), but  

they do see side-sum as something that remains invariant through these transformations. Another example  

of non-standard word use seen is the use of “ulta” (which means reverse) to refer to a reflected shape. 

Many of the utterances are vague and part sentences. For example by “numbers maathi maathi varum”, 

Nitin is referring to the change in position of the numbers in the different arrangements that give the same 

side sum. Abhi tries to clarify with the statement “place vere vere maathi pottirukkanga” meaning that the 

places of numbers have been changed. Even with the clarification, it is difficult to fathom what they 

mean. Turn 16 seems self contradictory “We will change only the numbers. We should not put other  

numbers instead of these”. The first instance perhaps means “position”. So “number” has been used to 

mean position in both turns 4 and 16. The generous use of deictics makes it impossible to make sense of 

the  conversation  without  referring  to  the  diagram they  are  pointing  to.  My attempt  to  get  them to  
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articulate the transformation verbally, through the question “what would you do to get one solution from 

another?” also gets a vague answer that one could realign the number in any way. Implicit in the response 

however is the need to preserve the side-sum. The conversation lacks the characteristics of precision and  

brevity that Moschkovich (2015a) identifies in mathematical discourse. Even with the kind of word use 

and expression seen here, evidently the students are making sense of the underlying ideas. 

5.3.2 Transforming shapes in Matchstick geometry

We now look at how a group of students of School 1 discuss transformations of geometric shapes in the  

Matchstick geometry exploration. This was in the context of the worksheet created for the purpose, as  

described in Section 5.1.2. The worksheet had two sets of figures Set I and Set II as shown in parts (a)  

and (b) of Figure 5.7. that included rotations, reflections and scaled-up and scaled-down versions of the 

first shape and 1-2 figures that were different. Students were asked to write when they would consider  

two shapes the same, and compare each shape with the first one and write whether it is the same as the  

first one or not as per their definition, with reasons. Students’ concern here was how Shape I of each Set  

is related to the other shapes in the Set and what transformation takes Shape I to the others in the Set. 

          Figure 5.7: Matchstick geometry: Worksheets
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While they considered rotated or reflected shapes to be the “same shape”, they did not use the language of 

rotations  or  reflections  to  refer  to  these  transformations  and  justify  their  stand.  They  distinguished 

between the shape and size of a shape and referred to scaled- up and scaled- down figures as being of the 

“same shape but different size”. 

Talking of rotations and reflections: We now look at how some students compared Shape I of Set II 

(Figure 5.7(b)) with Shapes II, IV, V and VI. Shape I is rotated by 90o in anti-clockwise and clockwise 

directions to get shaped II and IV respectively, and reflected about the vertical and horizontal edges of the  

longer rectangle (that is part of the shape) to get Shapes V and VI respectively. 

Figure 5.8: Matchstick geometry: Samples of written work - 1

The instruction to them was to compare “each shape” with Shape I of the corresponding sets and many of 

them grouped some figures together as can be seen in the write-ups in Figure 5.8. This indicates that they 

identified a common property across these shapes. In the first write-up in Figure 5.8, the student remarked 

on the change in orientation of the shape (as compared to Shape I) by referring to the side of the longer  

rectangle where the smaller one is attached as the “direction it faces” (Shape I to the left, Shape II down  
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etc), rather than view these shapes as a rotation or reflection of shape I. She marks a difference between  

Shapes  I  and VI  -  though the smaller  rectangle  is  placed  to  the  left  of  the longer  one  in  both,  the  

positioning is different. She has not seen it as a reflection about one of the horizontal edges of the longer 

rectangle. Another student just marks that the shapes are placed at a different angle (the second write up 

in Figure 5.8). Other phrases that were used to articulate the same idea are “turned to that side”, “facing 

different  direction”,  “opposite  to  each other”,  “upside down to each other”.  Thus while  the students 

recognise and mark the change of orientation of the shapes, they do not use the language of rotations or  

reflections to talk about them. They point to the transformations using everyday language. Also in Figure  

5.8  (a)  the  student  uses  the  pronoun  “it”  without  specifying  the  referent  and  is  perhaps  using  the  

preposition “beside” instead of “below” or “beneath”. Some of these may be because of not being fluent  

in English.

While the transformations done on Shape I to get the other shapes in Set II may not be immediately  

obvious and needs some mental manipulation of the shapes, those on Shape I in Set I are obvious. There 

were a few references to rotation in the student responses to this set: Comparing Shapes I and IX in Set I a 

student writes  “ Shape I and Shape IX are equal shapes, but it turn little a side, but it looking same.”  

Comparing shapes I and VI another student writes “I and VI are same because they have the same length 

and angle. Even though it is facing another side we can rotate it”. And yet another student said “In Shape 

I it goes up and shape VI it goes right”.

Talking of similarity or scaling: We now look at how students communicated the idea of similarity and 

the transformation of scaling. The following are some samples of student responses where they describe 

this relation. 

“Shape I and VII are semicular (sic. meaning similar) figure because same diagram and different length 

and small sticks are used.” (Set II)

“Shape I and Shape III are semicular figure but the matchstick size is small.” (Set II)

“One and two are not same. Why because in the figure one they kept at 2 cm distance in the figure two 

they kept 4 cm. So second figure is bigger than the first figure and the angle were not same” (Set I)

“Figure 1 and 2 are not same because the length is different and matchsticks used differently. If the 

length and matchsticks are used samely it will be same.” (Set I)

“I and VII are not same because each stick of figure 7’s length comparing to first figure is different” (Set 

I)
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The term “similar” was a “met-before” for them as part of the curriculum, but was perhaps forgotten. I  

gave them the term for what they referred to as “of the same shape but different sizes”. They adopted the 

terminology and here we see a student reusing the term as “semicular”. While students seem to have 

noticed the difference in side-lengths between similar or scaled-up figures, they have not expressed that 

the side-lengths need to be proportionately scaled up or down in the above statements. However, I infer 

that they are aware of this requirement. One student used a series of diagrams (Figure 5.9) to explain what  

she understands/means by “same shape” where proportions between the sides figured explicitly. 
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Considering the unit square as reference, the parts marked A tell us that shapes with different proportions  

are not considered the same by this student, whereas the part marked B indicates that the dimensions also  

need to be the same in addition to the proportions. Some students noted the number of sticks used to make 

the figures (5 and 10 respectively for Shapes I and II of Set I, 14 and 28 for Shapes I and VII respectively  

of Set II). But they did not express scaling in multiplicative terms, perhaps because they did not have the 

language necessary to express a multiplicative relationship. 

Though none of the students explicitly verbalised the need to conserve proportions, all of them noticed 

that Shape III of Set I has not been scaled up proportionately. Some ways in which they expressed this is  

as shown in Figure 5.10. 

Figure 5.10: Matchstick geometry: Samples of written work - 3

Worth noting in Figure 5.10 (a) is that the first two uses of “they” refers to some external agent who made  

the shapes,  whereas the third “they” stands for the sticks.  Figure 5.10 (b) and (c)  point  out  that  the 
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triangular part in Shape III was not equilateral unlike in the other shapes (Set I Figure 5.7). It can be 

inferred that these three students have noticed that the proportions of Shape I are different from that of  

Shape III. In Figure 5.10 (d), the student suggests that Shape III was “incorrect”, because the lines don’t  

look straight. On probing this student and another student on how to make it correct, they suggest either 

removing two sticks one each from the two sides of the triangular part, or adding a stick to each side of  

the square part. This adds strength to the inference that these students were sensitive to the differences in  

the ratios between sides of these shapes. Also they are clearly participating in mathematical practices. We 

now look at the turns of conversations with these two students Vidya and Rima. 

Figure 5.11: Matchstick geometry: The "wrong" shape

1. Vidya:  Intha figure vanthu …konchum… ithuva irukku. Ithu thappu.  (This figure is a little .. This is 

wrong.) Referring to shape III in Set I (Figure 5.11)

2. J: Thappunna? (“wrong” means?)

3. Vidya: It is … 1, 2, 3… So it is not correct. Referring to the three sticks per side in the triangular part of the 

figure.

4. Rima:  Appadiya sideaa pokuthu. Ippidi. Neenka sonnengale ippadi poy…innu. Athumathiri pokuthu 

ithu. (It goes to one side. Like this. Like you said earlier, it goes like this)

5. Vidya: This is not same to this. Meaning that Shape III is not the same as Shape I.

6. J: Overlap with Vidya …same to this. But this, is same to this? Referring to shapes I and II
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7: Vidyaand Rima: Similar

8: J: ithu samum alla, (This is neither same… ) Referring to shape III

9. Vidya and Rima: similar figurum illa. (not a similar figure)

10. J: similarum alla. Can you make this similar? What will you do to make this similar? (...Nor similar.)

11: Vidya:  Naan itha eduthittu, nan ithaappadiya join panniduven. (I will take this out and join this). 

Indicating that she would remove two of the sticks from the triangular part of the shape III and close the triangle  

with the rest of the sticks. 

12:J: Sari, naan itha thodakoodathunnenna? How will you make this similar? (Ok, What if I tell you that 

you cannot touch this?) Indicating the triangular part

13. Rima: Itha edukkama itha mattuma? (Without taking this, only this?) 

14: J:  Aa, itha edukkanuma, Itha modify panni, appadi sameaa pannuvenga? (Yes, Without taking this, 

how will you modify this to make the figure the same? ) Indicating that only the lower part of the shape III in 

Figure 5.11 is to be modified

15: Rima:  Itha Innum konjam intha ithila eduthinnu varanam. (This has to be taken a little bit to this 

side.) 

16: J: Enna? Ethila? (What? Where?)

17: Vidya: Innum oru stick randu stick eduthu, inka, chi, inka vachu, Intha edathilla three sticks vachu. 

(one more stick, taking two sticks, here, no, keep here, keep three sticks in this place) Vidya is talking off 

adding a stick each to the vertical sides of the square part of Shape III in Figure 5.11 and making the horizontal side 

3 sticks long

18: J: Intha edathila? (in this place?)

19: Vidya:  three sticks vachu, congruent aa pannidalam, similar, simlaraa pannidalam (Keep 3 sticks, 

and it can be made congruent…similar. It can be made similar)

20: J: Similar.  Intha edathilla 3 stick vacha ithu ennakum? (Similar, What happens if you place 3 three 

sticks here?)

21: Vidya Expand pannum koncham. (It will expand a little bit)

22: Rima: So ithu koncham viriyum, ippadi aakum. (This will open out a bit, It will become like this)
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23: J: Ithum viriyum, ithum viriyum. So 3 sticks, 3 sticks, 3 sticks. 3 sticks, 3 sticks na, Similar figure. So 

this is different from all the rest. (This is open out and this will open out).

In this conversation, students offer two ways of making Shape III similar to the rest, namely removing a  

stick each from the triangular part, or adding a stick each to the square part, both actions in the real world.  

To my question in turn 20, where I expected a response that expresses why the modified shape is similar 

to the rest, perhaps in terms of the proportions involved, they respond that the shape “expands” or “opens 

up”  in  some parts.  Scaling  proportionally  does  not  get  talked  about.  Thus  these  students  engage  in 

routines that produce a narrative about an action in the real world and not an endorsable fact about the 

shapes.  The purpose of  the action is  however  to  articulate  the fact,  for  which they do not  have the 

language. Another example of an action in the real-world meant to articulate a fact can be seen when a  

student suggested that they measure the side-lengths of the matchstick triangle in Section 5.2.2, he was 

talking about the real-world triangle created with matchsticks and not the abstract triangle which Sfard  

(2008)  considers  a  discursive  object  that  constitutes  the  subject  of  mathematical  discussions.  The 

narrative that is produced is also about the real-world object. 

In summary, from the above analysis of student talk and writing on transformations, it can be seen that 

students are aware of transformations, but do not verbalise it. These examples underline the need to listen 

to the mathematics implicit in student conversations, though the surface features may not indicate it. 

5.3.3 Students’ mathematical talk vis-a -vis scholars’ characterisations

In this section, I analyse student talk related to transformation of solutions of the Magic triangle puzzle  

and transformations of geometric shapes, including rotations, reflections and scaling. In the first instance, 

rotation and reflection were articulated as a realignment of numbers preserving a certain order and the  

side-sum. In the second instance, it was seen that while students have a grasp of transformations, they  

used everyday language and terms like “facing” a particular side, “opposite” and “expand” to express 

their ideas. The awareness of proportionality came through in the way they say they would modify the  

shape to make it similar to the rest. These can be considered as actions on “imagined objects” if not real  

objects and are everyday routines in Sfard’s terms. In these examples, students came up with deductively  

endorsable (as compared to endorsed) narratives, using words that are not objectified, mediators that are 

diagrammatic, operational reasoning and informal routines on imagined objects. Thus the talk seen in the  

contexts of this study differs widely from Sfard’s (2008) characterisation of mathematical discourse.

Students  drew on  multiple  resources  -  like  oral  and  written  text,  diagrams,  gestures,  everyday  and 

mathematical languages, Tamil and English - to communicate their ideas and the discourse was embedded 
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in mathematical practices as suggested by Moschkovich (2015a). They were seen to be engaging in the 

mathematical practice of defining - or coming up with a definition of what they mean by “same solutions” 

or  “same  shape”  and  the  operation  of  classifying  solutions  and  shapes  according  to  this  definition.  

Different  students  characterised  “same  shape”  differently  and  saw  that  these  lead  to  different  

classifications, and raised questions on why one should be preferable to another. Though the group did  

not go through the process of evaluating these definitions and their consequences, and choosing between  

them, there was a felt  need for a shared definition.  However the features such as precision,  brevity,  

deductive reasoning which Moschkovich identifies as markers of mathematical discourse are not very 

prominent in student talk seen here.

Issues stemming from not being comfortable enough with English are prevalent in the written work. I  

pointed to some of the issues like use of pronouns (it, they) without specifying referents. Others include 

tense mismatch, agreement issues and issues of sentence construction and punctuation. I acknowledge 

these language-level issues and do not analyse them.

5.3.4 Features of mathematical talk

Drawing on the analysis in the preceding sections, I now highlight the distinguishing features of the talk  

that I encountered in the course of this study. 

Code-mixing: The language used by both the teacher and students was a mixture of Tamil and English,  

sometimes  switching  between  both  languages  within  the  same  sentence.  More  often  than  not,  

mathematical terms like triangle, diagonal, pentagon, congruent, etc., were retained in English and the  

rest in Tamil. 

Interaction drawing on multiple modes: Students  drew on multiple  modes to  communicate  -  speech, 

writing, diagrams, gestures, etc., with talk being the preferred mode. There was very little writing seen  

other than when insisted upon. The writing that was seen was informal. I noted students resorting to  

gestures  and  pointing.  For  example,  turns  4  and  22  in  the  excerpt  shared  in  Section  5.3.2  were  

accompanied by gestures and almost all turns involved pointing to the figure at hand. That Shape III is not 

identically proportioned as the other shapes of the set of shapes can be conveyed through words alone, but  

not  having the language - mathematical  or  otherwise - to convey notions of proportionality, students  

resorted to pointing and gesturing and managed to get across their point. Figure 5.9 is an instance of  

usage of diagrams to make a point.  Similarly the turns of conversation shared in Section 5.3.1 were  

accompanied  by  frequent  pointing  to  the  board  and  gesturing  as  well.  The  word-use  in  these 

conversations is not “reified” as in Sfard’s (2008) characterisation.
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Lack  of  precision: Precision  and  brevity  are  two  key  features  of  mathematical  discourse  that 

Moschkovich  (2015a) marks, but were missing in these conversations. I pointed to some instances of  

ambiguity and lack of precision in the preceding analysis. For example, a student listed out the following 

features should be the same for two shapes to be the same: angle, size, what the diagram looks like, and  

added length, breath, volume and everything. “Size” is a layman’s concept that cannot be captured in 

mathematics by a single or unique measure. Similarly, “what the diagram looks like” and “everything” is  

vague as well.  Words like “bigger”, “greater” were used when the intention was to compare lengths.  

These words convey the intended meaning in everyday conversations, but the word “longer” may be more  

appropriate in a mathematical context. The idea of superposition to define sameness was conspicuous by  

absence. 

Informal  expression  :  The  conversation  was  informal,  with  some  mathematical  terms  like  square, 

diagonal, etc., and symbolism being absent. They frequently drew on the everyday register to express  

themselves.  For  example,  my expectation  when  I  asked the  question  in  turn  20  in  the  conversation 

analysed in Section 5.3.2 was that they would respond in terms of the shape becoming proportional to the  

remaining ones in the set. But they talked of the shape “expanding” and “opening out”. In the first 2 turns  

of the conversation analysed in Section 5.2.2, they conveyed the idea that the length of the diagonal is less 

than 2 in terms of there not being enough space (“idam pathale”) to accommodate 2 sticks, very much 

tied to the physicality of the context. They also fumbled for words to express themselves and came up  

with self-created words. The word “semicular” is derived from “similar” in an attempt to internalise and 

use the teacher suggested terminology. 

One aspect  of  the “insisted-upon-written-work” that  was striking is  that  it  resembled talk more than 

writing. One would expect more formal language and well-formed sentences in writing, something that is 

distanced from the immediate context. Student responses to the worksheet problems on the other hand 

were written in conversational style - as they would talk to the teacher. For example, consider phrases 

“...is not at all perfect triangle…” (Figure 5.10 (c)) or “... is not correct. Why means in I set…”(Figure  

5.10 (d)). The construct “why means” might possibly be a word by word translation from the Tamil “ en 

na” for “because”. I also found two examples, one where the writing included a couple of phrases written  

in Tamil and another where a sentence was interspersed with a few transliterated Tamil words. In terms of  

structure, tone and word-use, the writing was more like talk than writing (written talk!). The spontaneous 

written work that they did was often on impermanent surfaces (Figure 5.5 on classroom floor) and seemed 

more to aid thinking than expressing organised thought for others. There was very little text seen and it  

was not well-organised.
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A focus on how the discourse differs from the expected characteristics of mathematical discourse may 

lead to a deficit perspective that fails to acknowledge the mathematical in such discourses. Though the  

discourse itself deviates from what is considered mathematical discourse in literature, there are “family  

resemblances”  it  shares  with  mathematical  discourses  and definitely  show elements  of  mathematical 

thinking, though expressed in divergent ways. This brings home the need for more flexible acceptability  

criteria  for  mathematical  discourse  that  focuses  on  the  resemblances  that  they  bear  to  mathematical  

discourse. I take this up in Section 5.5.

5.4 Language limitations that hinder mathematical thinking

This  study  corroborates  the  findings  of  other  scholars  (Barwell,  2016;  Bose  &  Choudhury,  2010; 

Moschkovich, 2008; Setati, 2001) that the simultaneous presence of the home language and the school 

language, formal and informal mathematical language supports students in expressing mathematical ideas 

meaningfully. The instances described in the previous sections exemplify how students use a mix of  

mathematical and everyday language, LoLT and home language, spoken and written language and means 

such as diagrams and gestures to make a mathematical point. However we also have instances where  

language limitations  have been a hindrance to  further  progress.  Our  observation has  been that  while 

students may be able to solve the problem presented as the starting point for the exploration, extensions  

and generalisation of the problem are easier with formalisation. 

One  instance  where  this  comes  out  strongly  is  the  Magic  triangle  exploration.  Students  solved  the 

problem,  looked  for  patterns  in  solutions,  and  came  up  with  some  transformations  that  give  other 

solutions  or  preserve  solutions,  all  in  informal  terms.  When  different  sets  of  numbers  were  used, 

especially  larger  numbers,  balancing  the  side-sums  became  harder  for  students  and  brute-force 

approaches were not very effective. Students need to get a sense of the structure of the problem and 

formalisation helps in this. This is more so when polygons with more sides, or more numbers per side are  

considered. Even in the case of square, finding all 8 solutions using brute force can be time consuming if  

not challenging. The formal approach to the solution explained in Section 3.6 is extendable to all these  

cases and supports extensions and variations of the initial problem. Based on our implementations of this 

exploration in summer camps, talent nurture camps and in some teacher workshops, our observation has  

been  that  an  algebraic  approach  to  the  solution  is  crucial  for  extensions  of  the  task.  In  the 

implementations in School 1 and 2 discussed here, neither group came up with the algebraic solution and 

both  groups  had  difficulty  with  algebraic  manipulation.  Consequently,  the  student  engagement  with 

extensions and generalisations of the problem seen elsewhere, was minimal here. I did some explicit  

teaching,  explaining the algebraic  solution to  both the groups.  After  this,  students  in  School  2  tried 

solving the problem for a  square and a Z shape.  In School 1,  this  explicit  teaching was done when 
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students’ frustration levels were high and perhaps because of this, they did not build further on this. 

In the instance where students tried to prove that a matchstick diagonal cannot be accommodated in a unit  

square (discussed in Section 5.2.2), the student Maariya was taken aback by my question of how much 

bigger  and  does  not  immediately  respond  to  the  question.  The  language  necessary  to  express  a 

multiplicative  relationship  could  have  been  the  stumbling  block.  We  also  noted  the  difficulty  in 

expressing the scaling transformation in multiplicative terms in the excerpts shared in Section 5.3.2. The  

relation between the side-length and the diagonal of the square was expressed in less precise terms as “not 

equal”  and “greater”.  Being able  to  express  it  multiplicatively would have made the solution to  the  

problem obvious and allowed for  generalisation  as  well.  This  is  an instance  where  less  precise  and 

informal language hindered progress.

On a similar note, Pythagoras theorem was mentioned when the students argued for the impossibility of  

the diagonal  of a unit square,  but was not articulated precisely or in symbolic form. Even when the  

symbolic  form was  mentioned in  the  context  of  rectangles  for  which  diagonals  could  be  fitted,  the  

students did not clarify what the symbols meant. Their statement that the diagonals could be fitted only  

for those rectangles for which a2 + b2 = c2 indicates an incomplete understanding of the equation and the 

range of possible values the variables  a, b, and c could take. Having mentioned Pythagoras theorem in 

one specific case, the realisation that the same holds for another specific case (that of square of side 2) 

was not immediately obvious to them. When looking for squares within which a matchstick diagonal  

could be fitted,  their  approach was to  examine specific  cases.  No amount  of trying out  will  yield a  

positive example here, but not being able to find an example does not prove its impossibility and further 

progress in the problem is blocked. Had they formalised the problem as for a given x, finding y such that 

2x
2 =  y2 the general solution would have been within reach. The lack of formalisation proved to be a 

stumbling block to solving the problem. I have had similar observations in other explorations as well, and 

infer that while informal language helps to get started on an exploration, lack of formal language may 

hinder progress beyond the initial stages.

More  importantly,  formal  mathematical  language  is  also  tied  to  questions  of  access.  While  formal  

mathematical  language  functions  as  a  deterrent  for  many  students  to  learn  mathematics,  it  is  also  

empowering by providing the skills valued in a technological society to obtain a good position in the 

labour market  (Skovsmose, 2011). Several scholars who have highlighted the need to view students’  

language  as  a  resource  rather  than  as  a  problem  have  critiqued  the  tendency  to  view  progress  as  

movement from the informal to formal academic talk, and suggested that a rigid distinction between them 

is neither necessary nor productive (Barwell, 2016; Moschkovich, 2000; Planas & Setati-Phakeng, 2014). 
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While informal language helps sense-making and provides epistemological access, formal mathematical  

language is essential for communication with the larger community of mathematics, for opportunities for 

higher education and the prospects that it opens up. Thus not providing students opportunities to learn 

more formal mathematical language will also disenfranchise them in the long run by restricting access to 

social goods such as higher education and employment (Barwell et al., 2016; Setati et al., 2008). 

Insisting  on  the  highly  formalised  mathematical  language  makes  mathematics  inaccessible  to  many 

learners.  While  accepting  and  encouraging  informal  mathematical  language  improves  access,  not  

providing them sufficient opportunities to learn more formal mathematical languages will eventually deny 

these learners access to higher educational and professional opportunities. Thus there is a tension between 

the formal mathematical language and informal language in teaching-learning of mathematics. 

5.5 What counts as mathematical discourse?

To address this tension between the formal and informal in educational contexts, I look to the practice of  

research mathematics, which on the one hand insists on formal communication as a necessary condition 

for  acceptability  of  assertions,  and  allows  for  many  different  levels  of  formalism  on  the  other.  

Formalisation is important in the practice of research mathematicians in catching contradictions as they 

arise and building coherence. As discussed in detail in Section 5.5.1 below, mathematicians also take 

advantage of the freedom afforded by the informal during the process of discovery, keeping formalisation  

in  sight  by  insisting  on  formalsability.  Mueller-Hill  (2013) identifies  formalisability  as  one  of  the 

epistemic  features  of  proofs  in  research  mathematics.  Being  mindful  of  the  epistemic  features  of  

mathematics while being accepting of student contributions, I propose “coherent formalisability” as an 

acceptability criterion for mathematical discourses (Jayasree et al., 2023). There are two components to  

the  criterion  I  propose  here:  that  of  formalisability,  and  that  of  coherence.  Informal  discourse  is  

formalisable if, given sufficient additional mathematical resources as support, it can be restated in formal  

terms. However, such a criterion could be trivial at the level of individual statements or assertions; hence  

the qualifier of coherence, that binds statements together into a whole. I describe these components and 

present an illustration of what the criteria implies in some detail below.

5.5.1 From “formal” to “formalisable”

Formal  communication  is  considered  a  necessary  condition  for  the  acceptability  of  mathematical 

assertions in the practice of research mathematics14.  However,  there are many levels of formalism in 

mathematical communication: a machine-checked proof in a formalised theory represents one extreme of 

14. The observations on mathematical practice made in this section draw on the experience of the research 
mathematician in the collaboration.
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formalisation;  a  Bourbaki-style  rigorous  definition  –  proposition  –  lemma  –  theorem  exposition  is 

formalised  but  yet  not  as  definitive  as  the  machine  checked proof;  research  papers  in  mathematical 

journals,  while  striving  for  rigour,  often  admit  more  informal  discourse  than  the  Bourbaki  style 

authoritative text; graduate and undergraduate textbooks are even more informal; seminars and classroom 

lectures are far more informal. Yet, all these would be considered formal in comparison to the language 

employed by mathematicians during discussions and discovery when pictures, half-formed ideas and ill-

defined terms often dominate discourse. Thus, there is no single mathematical language that can lay a 

hegemonic claim to being “formal”.

There are many possible ways of formalising an informal notion or argument, and invariably there are 

cycles of progression in mathematical practice, where some particular formalisation is seen to be “wrong” 

or  “inappropriate” or  “unhelpful”.  This  does  not  mean that  a  formalism is  discarded and another  is 

chosen, but invariably, this is seen as signalling a need to proceed further in informal terms, strengthen 

some intuition and then attempt a reformulation. For instance, when an informal notion is formalised  

using a definition, using it in proofs may lead a researcher, after many false steps, to realise that the  

definition is too stringent and allows a much smaller class of structures to work with than the informal 

outline had originally assumed. At this stage, the researcher does not discard the definition, but typically 

harks back to the informal discourse and examines whether the problem is with the definition or the  

original  strategy.  This  process  may well  be  said  to  constitute  the  bulk of  time and energy spent  in 

mathematical research.

The  process  of  formalisation  and  mathematical  writing  is  geared  towards  making  apparent  any 

assumptions that may be inconsistent. While research mathematicians use pictures and highly ambiguous 

terminology and notation during discussion and discovery, they proceed to use a more formal language in 

writing definitions, assertions and proofs, mainly to discover possible inconsistencies, or possible gaps in 

proofs  (Hadamard, 1945). A question that naturally arises in such a scenario is this: if formalisation is 

essential,  why  do  mathematicians  privilege  informal  discourse,  going  back  to  it,  even  when  an  

inconsistency  (or  other  intellectual  obstacle)  is  encountered?  The  obvious  answer  is  that  informal 

discourse allows much greater room for false starts, loose statements, and working in a semi-confused 

state, which is necessary when the solution is unclear (and indeed when no solution may exist). A deeper  

answer is the confidence that mathematicians have, that the informal discourse they employ is not in itself 

the source of difficulties they encounter: that it is formalisable, and if there is an obstacle to proof, it is in 

the way that they have envisioned the structures they work with and the proof strategies they employ. 

Without such confidence, they would be extremely reluctant to hark back to informal terms, preferring to  

live with the stringency of the formal in order to ensure the safety of their approach.
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Mueller-Hill  (2013)  identifies  formalisability as  one  of  the  epistemic  features  of  proofs  in  research 

mathematics.  She goes  on to suggest  that  formalisability  of  discursive proving actions,  be seen as a  

metadiscursive rule, in the sense of Sfard (2008). With Mueller-Hill, I suggest that formalisability, with 

appropriate reinterpretation, is of relevance to mathematical discourse at school as well, allowing multiple 

levels  of  formal  discourse  and  maintaining  coherence.  I  propose  coherent  formalisability as  the 

delineating  feature  of  mathematical  discourses.  I  see  formalisability  and  coherence  as  the  “family  

resemblances” (Wittgenstein, 1953) that binds the informal discourses in these contexts to the discourses 

of research mathematics. 

When we consider students’ mathematical work in school, we have some similarity with such discourse 

and a marked contrast: they too do not see solutions in sight, and informal discourse helps them to try out  

strategies in a flexible manner. However, often the teacher (or the textbook) has one clear and formally 

expressed formulation at hand. Moreover, neither the teacher nor the students are sure whether difficulties  

encountered are due to the informal discourse employed or due to other reasons. It is precisely in this  

context that our suggested criterion of formalisable informal discourse makes sense: it mimics the process 

internalised by mathematicians, providing an external certification of formalisability that sustains this  

process.

5.5.2 Coherence

The foregoing narrative places consistency at the centre of formalising mathematical discourse, and this is 

indeed  a  fundamental  requirement  in  the  development  of  mathematics.  However,  in  the  context  of  

students’ work, I suggest a weaker requirement, that of coherence. While consistency is the absence of 

logical  contradictions,  coherence  is  meaningfulness,  manifested  in  consistency  of  construction, 

representation, etc. Coherent discourse may lead to propositional inconsistencies but yet contain sufficient  

structure to make it easy to detect inconsistencies when they arise. When mathematicians work, their  

training is expected to ensure such coherence, and hence the more stringent criterion of consistency is  

demanded. In students’ work, coherence cannot be assumed, but needs to be established.

By coherence, I mean that formalisation of disparate elements hangs together as a meaningful whole. The 

classroom  discourse  includes  many  parts  pertaining  to  definitions,  visualisations,  representations, 

conjectures, exemplification, providing counterexamples, justification and refutation, etc. When some of 

these are supplied by students, it is likely that their meanings do not mesh correctly. For instance, students  

may choose to represent quantities by integers, and then divide them in context, without realising that 

division by zero may lead to meaningless terms. Even if this is fixed, they may well proceed with integer  

operations without realising that they should now be working with rational numbers. The criterion of 
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coherence  is  to  principally  form  a  unified  whole  without  internal  inconsistencies  and  logical  

contradictions, while also allowing for inconsistencies to build meaningfully so that they can be detected 

easily and corrected, resulting in learning.

5.5.3 Formalisability

Mueller-Hill  (2013)  defines  a  formalisable  proof  as  “a  proof  that  can  be  transformed into  a  formal 

derivation in a consistent axiom system”. The transformation itself could happen in wide ranging ways –  

from an “independent formal derivation in a consistent axiom system” to “being translatable step by step 

into a formal proof” and other variations in between.

I reinterpret formalisability as the potential of a section of discourse to be mapped to a formal one by  

supplying missing terminology, definitions and reasoning, in a uniform manner. Aiming for something in 

between the extremes of an existence of an independent formalisation and a step by step translation to a 

formalisation, I expect some structural similarity to a formal discourse, though not all elements of the  

structure may be present explicitly. It is possible that there are multiple ways to augment the discourse  

and map it onto a formal one. Thus, the conversation is a template, which when mapped in such a way  

that the structure is preserved, yields formal discourse. Such a mapping is not unique. 

The  proposed  criterion  applies  to  the  set  of  utterances  that  arise  in  the  course  of  a  mathematical 

exploration and is theoretical. Hence it should be seen as certification of formalisability by an abstract  

observer who has access to all the relevant linguistic and mathematical resources required to make such a 

formalisation. It is not essential that such capability be evident in the teacher in the classroom context, but  

I expect that recognition of the criterion would make teachers more reflective and prepare them better to  

handle mathematical discourse in the classroom. I consider coherently formalisable discourse as a stage in 

the transition to more formal discourses and opens up possibilities to work with student contributions not  

being bound by the rigidities of formal school mathematics. 

5.5.4 What does coherent formalisability look like?

We now look at the different arguments that students came up with to convince themselves and others  

that side-sums 8 and less are not possible as are side-sums 12 and above. 

1) Maran argued as  “Eppidiyum ethachi oru circle la 6 use panniye aakanum. 6 use panninalum inga 

motham munnu circle irukku. Appo randu onnu vantha than ithu vanthu 8 aakum.”  (6 has to be used in 

one of the circles in any case. If we use 6, there are three circles on that side altogether. So we can get a  

sum of 8 only if we have two ones). 7 was also eliminated using a similar argument and numbers 1–6 
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were eliminated right away, 6 being one of the numbers used, thus establishing 9 as a lower bound.

Maran’s argument expressed in informal language with no symbolic mediators can be mapped step by 

step on to the following formalisation: 

Considering the problem as finding three subsets A, B, C of S = {1, 2, 3, 4, 5, 6} such that each 

has three distinct elements, their union is S and pairwise intersections are distinct singletons and 

the sum of the elements in all subsets are equal, proof 2 can be translated as

6  S,⇥

6  at least one of A, B, C, say A⇥

A has two distinct elements other than 6, ie, A = {a, b, 6} where a,b  S⇥

If there is an arrangement with side-sum equal to 8, a + b + 6 = 8

This is not possible unless a = b = 1 

Thus, there exists at least one formalisation that is coherent and consistent. Note that the intention here is  

to point to one possible formalisation. This is tied to a particular set of numbers and to the particular side-

sum 8. It needs to be modified appropriately to cover the general case.

2) Krithi’s proof - attempt: Trying to come up with a solution whose side sum is 8, Krithi saw that 5 + 2 + 

1 is one way of making 8, and on a diagram wrote these along one side of the triangle as shown in Figure  

5.12. She then tried out possibilities for the number that could be in the circle marked X, and saw that  

whatever number she writes there the side sum exceeds 8. Given the condition that the numbers have to 

be distinct, the only options available to her are 3, 4 and 6. Of these, she immediately ruled out 4 and 6, as  

the side-sum obviously exceeds 8. She ruled out 3 as well, for there has to be a (non-zero) third number 

on the side as well, which would make the side-sum exceed 8. Having convinced herself that none of the 

available numbers fit in in the position marked X, she concluded that it is not possible to get a side-sum 8.

The proof is incomplete in that it does not exhaustively consider the ways for forming a sum of 8 using 

three distinct numbers from 1 to 6, and their possible arrangements along a side, and rule out all of them. 

5 + 1 + 2 is but one way, which is being ruled out by Krithi. If one probes deeper into what the underlying  

“proof scheme” that Krithi might have adopted, ‘look for combinations of numbers that make a desired  

side-sum’ seems likely. Having found one such combination ( 5, 2, 1) , she looks for another one that 

includes  5  and  notes  that  such  a  combination  does  not  exist.  What  she  missed  out  is  exhaustively 

considering  all  such  combinations.  So  if  we  modify  her  proof  scheme  as  “look  for  all  possible 

combinations of numbers that make a desired side-sum”, her proof scheme and argument would have  
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been sufficient to prove that 8 and numbers less than 8 cannot be the side sum. Krithi does use the scheme  

in a limited way when she exhaustively ruled out all possibilities for the position X. Thus by augmenting  

her proof scheme to include all possible combinations and arrangements of numbers along a side, her 

proof attempt is coherently formalisable. 

Figure 5.12: Magic triangle: 8 

cannot be the side-sum

3) We now look at how V2’s argument (see Section 5.2.1, S - 5 and S - 6) that the maximum side-sum is  

obtained by placing the larger of the three numbers at the vertices of the triangle and the minimum side-

sum by placing the smaller of the three numbers at the vertices and placing the remaining numbers in  

such a way that the side-sums are balanced can be formalised.

Assuming the numbers to be a, a+ 1, ... a + 5, making explicit the implicit definition of what V2 called 

“highest” numbers as {a + 3,  a + 4,  a+ 5}, and placing these numbers at the corners and subsequent 

placing of the remaining numbers to balance the side-sums as articulated by V2, would give configuration 

A (Figure5.13), with the side-sums 3a + 9.  Similarly,  appropriately defining and placing the smaller 

numbers at the corner would give a side-sum of 3a + 6 as in configuration B in Figure 5.13. 

Taking this further, Krithi argued that V2’s process guarantees that each side has 2 of the larger numbers  

and one of the smaller when the larger numbers are at the vertex, maximising the possible side-sum. The  

move of explicitly symbolising the 6 consecutive numbers as a,  a + 1, ...  a + 5, that might happen as a 

matter  of  course  in  a  context  where  students  were  more  fluent  in  algebraic  manipulation,  remained 

implicit  here.  With  the  added  definitions  for  the  ill-defined  term “highest  numbers”,  V2’s  intuitive  

algorithm and Krithi’s argument can be formalised. The nature and extent of augmentation required in  

each proof is different and is an indication of the distance from the formal proof. 
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Figure 5.13: Magic triangle: Maximum and minimum side-sums - generalisation

All three proof attempts give a sense of “understanding and conviction” and the proof production seems 

to be led by a “key idea”  (Raman, 2003, p. 323). A key idea, according to Raman, is a hueristic idea 

which one can map to a formal proof with appropriate sense of rigor. We now look at an example of  

another proof attempt to understand what a proving action that is not coherently formalisable looks like.

4) Student Dheer argued that 6, 5 and 2 add up to 13. The remaining numbers (1, 3 and 4) sum up to only 

8 and hence a sum of 13 is not possible.

The proof seems to draw on the intuition that “large numbers” need to be used to make a sum of 13 and  

having used up 6 and 5 to form a sum of 13 on one of the sides, there may not be enough large numbers to 

draw on for the subsequent sides. Dheer may have come to this argument based on his observations of  

trying out particular combinations of numbers that form a target side-sum, here 13. Also, there is an 

unstated assumption that the numbers remaining after the target side-sum is obtained on one side, should  

also have a sum at least equal to the required sum. The proof scheme underlying this proof could be spelt  

out as “add the remaining numbers and check that their sum is not less than the required side-sum”.  

However, if this proof scheme is extended to other side-sums and combinations of numbers, it leads to a 

contradiction. If we choose 6, 5, 1 as the initial triplet that forms a side-sum 12, the remaining three 

numbers, namely 2, 3, 4 add up to 9 which is less than 12. Yet it is possible to find an arrangement that  

has side-sums 12. Thus the proof scheme in this case does not yield a valid proof.

In  the above examples  I  examined the coherent  formalisability  of  proving  actions  in  the  context  of  

explorations. I further suggest that the criterion is applicable in curricular contexts (see Section 6.5.2) as 

well  as in the use of mathematics in everyday life.  In a curricular  context,  there is an already given 

formalisation in the textbook that shapes conversation and guides discourse, perhaps limiting freedom in 
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the process. Algorithms encountered “on the street” have an informal basis, formalisable over domains of 

limited validity. I also suggest that coherence and formalisability apply to a wider range of elements such  

as definitions, representations, algorithms, etc. For example, the many definitions of “same shapes” that  

we saw in Section 5.3.2 are all formalisable. But only one where the number and length of units per side,  

and  angles  are  preserved coheres  with  the  definition  of  congruence  in  school  geometry.  With  other  

definitions  it  is  possible  to  maintain coherence within the domain of  the delineated exploration,  but  

requires  the teacher  to  watch out  for  developing incoherence as  students  explore  further  beyond the  

delineated  boundaries.  In  the  next  chapter,  I  examine  what  coherent  formalisability  as  acceptability 

criterion for mathematical discourses entails for the teacher. 

5.6 Summary

To summarise, in this chapter I described students’ engagement with mathematical explorations, both in 

terms  of  the  thinking  and  reasoning  seen  and  in  terms  of  the  ways  of  communication  adopted  to  

communicate these. In the multiple instances described, we saw students engaging with operations of 

mathematical thinking that Burton (1984) identifies - looking for similarities and differences, classifying, 

making correspondences, studying relationships, experimenting, recognising and continuing patterns, etc. 

We  also  saw  them  engage  with  the  processes  of  mathematical  thinking  like  abstracting,  defining, 

conjecturing and convincing, generalising and specialising, etc. They used already found results to find  

further results as they solved problems, asked questions and found things out for themselves, rather than 

follow taught methods. The kind of thinking and sense making and the intense engagement seen with the 

explorations  establish  the  feasibility  of  mathematical  explorations  in  marginalised  contexts  and  the 

potential of exploratory tasks to enable mathematical thinking. 

The ways in which students communicated their mathematics was different from what one would expect 

in a school context. Most of the mathematics was done orally and communicated with minimal use of 

symbols and formalism. I noted a reluctance to write in a presentable fashion. This underlines the need to 

privilege  talk  as  a  means  to  express  and  communicate  mathematics,  especially  in  contexts  where  

insistence on formal writing may hinder participation. The talk that students engaged in differed from 

what literature describes as mathematical discourse - especially in the extent of objectification seen in  

word use, the reliance on real-word objects and non-symbolic mediators to make a point, narratives being 

endorsed on the basis of examples seen (inductive means as different from deductive means that is the  

norm in mathematics)  or  practical  action.  The nature  of  talk used to  communicate  mathematics  was 

marked by use of hybrid languages - Tamil and English, home language and school language, formal and 

informal mathematical language - and other resources like diagrams, gestures and unstructured writing.  
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The talk  was  imprecise  and  vague  at  times  and included  part  sentences  and  phrases.  It  was  highly 

contextualised by use of self-created and reappropriated words and pointing gestures.

Given the high levels of student engagement seen and the richness of mathematics discussed, my study 

underlines the need to be accepting of this “unconventional” means of communicating mathematics. At  

the same time,  the study also points to the limiting nature of such communication in that  it  hinders  

progress in explorations to an extent and as attested to by the literature eventually leads to limiting access  

to educational and professional opportunities. This creates a tension between being accepting of students’  

mathematics and ways of communicating it and insisting on the disciplinary norms. 

I looked to the practice of research mathematicians who balance the need for flexibility during moments  

of discovery with the need for rigour to enable spotting any developing inconsistencies and gaps. Echoing 

the criterion of formalisability  that  they use as guiding principle  to  achieve this  balance,  I  proposed 

coherent formalisability as acceptability criterion for mathematical discourse in educational contexts as  

well.  This criterion focuses on the core aspect of  formalisability and is accommodating of the many  

“deviations” seen in students’ ways of communicating mathematics. This enables teachers to take a non-

deficit view of students’ languages. I look at what this entails for the teacher in the next chapter. 
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6 Mathematical explorations and “talk” at the margins - What does 
it entail for the teacher?

In the last chapter we examined mathematical thinking as seen at the margins and the means students 

adopt to communicate it.  Keeping in view the prevalence of informal means through which students  

communicate  mathematics and the role and importance accorded to  the formal in different  facets of  

mathematics  -  in  school  mathematics,  in  the  work  of  the  research  mathematicians  and as  a  part  of 

prevailing culture - I suggested an acceptability criterion for student mathematical discourses. Loosening  

the tight grip of the formal in school mathematics, I suggested that “formalisability” and coherence are 

sufficient  criteria for acceptability of mathematical  discourses.  In Chapter 4,  I  posited flexibility and  

accessibility as key guiding principles that support mathematical thinking at the margins and looked at  

task features that make tasks flexible and accessible in these contexts. Together these chapters argue for  

flexible boundaries for the mathematics that may be taken up in the classroom and admissible ways of  

talking mathematics. This has implications for the teacher and presents multiple challenges. I mark some 

key differences for the teacher in this respect from typical classroom teaching. 

A) Unlike in a curricular situation, where there are well-defined boundaries to the mathematics that the  

teacher is likely to encounter or is expected to deal with, explorations entail that the teacher needs to be  

prepared to go beyond the prescribed curriculum, sometimes to mathematics she may not have learnt as 

part of her institutionalised mathematics learning. 

 B) While contingent situations where the teacher has to handle an unexpected student response is a  

characteristic of any classroom teaching, I suggest that in an exploratory context the teacher is more likely 

to encounter contingent situations - stemming from both the mathematics that students come up with and 

the ways that they talk about it. 

C) In a curricular context, there is a privileged mathematical discourse, the discourse of the textbook, that 

guides  the  classroom discourse  and  implicitly  functions  as  a  norm to  be  followed.  Having  a  more 

relaxed/flexible acceptability criterion in place, and in a culturally diverse classroom, a teacher is likely to 

encounter  ways of  communicating mathematics  that  are  alien to  hers.  Attending to,  interpreting and 

responding  to  mathematics  expressed  in  differing  ways  without  taking  a  deficit  perspective  can  be  

challenging. 

Thus I suggest that teachers face additional demands in terms of the content knowledge required; noticing  

the mathematics in student contributions, and interpreting these even when articulated in unfamiliar ways;  

and in resisting and countering the influence of pervasive deficit discourses. In this chapter, I elaborate on 
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these  additional  challenges  that  facilitating  an  exploration  at  the  margins  entails  and  suggest  some 

pointers to mitigate these challenges. 

This study did not include a deliberately designed methodology aimed at answering questions on the  

implications for the teacher. However there were aspects of the study that threw light on these questions. 

The active collaboration with a practising mathematician and an educator that guided my interactions in  

the  class  may not  be available  to  a  typical  teacher  setting out  to  do explorations  with  marginalised 

students. Similarly the time and effort I could spend in working through the tasks that I proposed to do  

with students as an explorer myself, may not be feasible for all teachers. These factors together with the 

opportunity to return to the “data” and reflect on my experiences made it possible for me to become 

aware of aspects that supported me in my understanding and others that may have posed hindrances. For  

e.g., an abiding interest in recreational maths, puzzles and reading popular mathematics helped in finding  

starting points that could pan out into explorations. Prior teaching experience helped in establishing a  

relationship with the students. Being from a different class, caste and region from the students I interacted 

with and not being fluent enough in their dialect posed some challenges. However, the experience of  

having taught students across the board and the developing familiarity with the students that comes with  

long term engagement helped mitigate some of these challenges. Drawing these reflections together, in 

this chapter I attempt to lay out pointers for a teacher hoping to engage students with explorations.

The basis for this chapter is my experience of facilitating explorations in a marginalised context. The  

struggles that I experienced, the struggles and triumphs of the students that stood out for me in the the 

course of their engagement, the discussions I had with the mathematician of these and the day-to-day  

progress or lack of it of the class, the course corrections I did based on these discussions, and the records  

maintained of these discussions in the teacher diary and email exchanges form the data for the discussions  

in this chapter. These are also shaped by the mathematician's rich experience of facilitating explorations 

with students, especially those at the margins and my facilitation of explorations in places other than the  

project schools, not necessarily at the margins. As discussed in Section 3.7, the teacher diary and the 

discussion notes maintained were revisited multiple times, discussed within the team considering alternate 

perspectives and interpretations till a consensus was reached among the team members. In addition, I also  

draw on relevant literature around teacher support in the reform teaching context; knowledge demands for  

mathematics  teaching;  and  noticing  and  listening  to  children’s  mathematics  and  extend  these  to  the 

context of explorations, to draw some implications for the teacher facilitating explorations at the margins. 

In  the following section,  I  elaborate  on the challenges  that  a  teacher  is  likely to  face in  facilitating 

explorations at the margins, based on my experience of doing so. I examine challenges stemming from 
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demands on content knowledge, and those on the need for responsiveness in class especially when the 

language  and  mathematics  may  border  on  the  unfamiliar.  In  Section  6.2,  drawing  on  the  ideas  of  

Hypothetical Learning Trajectories (Simon, 1995) and Local Instruction Theories (Gravemeijer, 2004), I 

propose guidemaps prepared by practising mathematicians or “seasoned explorers” as teacher support for 

explorations. In Section 6.3, I draw on Mason (2015) and Davis (1994, 1997) to highlight the importance 

of responding and listening to students in-the-moment, with the intention of understanding and building 

on student contributions, and with a willingness to question our own biases that shape our perceptions and 

actions. In Section 6.4, building on literature on strength-based and anti-deficit framing to disrupt deficit  

discourses,  I  suggest  reframing  perceived  “gaps”  as  “distances”  to  be  traversed  and  illustrate  how 

coherent  formalisability  could  be  an  indicator  of  potential  distance.  In  Section  6.5,  I  describe  what 

mathematical  engagement  could  look  like  in  a  curricular  context.  I  also  illustrate  the  possibility  of  

noticing potential distances not just  in exploratory sessions, but in curricular  context  as well and the 

possibility of traversing the distance between unfamiliar and familiar mathematics. 

6.1 Challenges that explorations bring 

In this section I draw on my experiences of the challenges in designing and implementing mathematical 

explorations with students and my reflections on how I navigated these challenges.  I  focus on those  

challenges that are likely to be faced by a typical teacher seeking to implement such explorations in  

marginal settings.

6.1.1 Absence of ready-to-use material comparable to the textbook in a curricular context

One of the first challenges that I faced as I started out to do explorations is choosing an appropriate task.  

In  Chapter  4,  I  discussed  several  features  that  make  a  task  appropriate  as  a  starting  point  for  an 

exploration. Besides being aware of these features, one also needs to have knowledge of sources where 

material  for  designing  explorations  may  be  found.  However,  there  is  no  equivalent  to  a  “standard 

textbook” for explorations or an “exploration-bank” that the teacher could look into or guide herself by in  

the Indian context.

Other than my primary source of task suggestions from the research mathematician in the research team,  

the  sources  that  I  drew  on  were  a)  Task  collections  brought  out  by  Association  of  Teachers  of  

Mathematics (ATM) of the like Points of Departure (Hardy et al., 2007), Starting Points (Banwell et al., 

1972),  b)  Popular mathematics articles and puzzle collections of Robert  Kaplan,  Ian Stewart,  Martin 

Gardner, etc., c) Newspaper and e-zine columns of Alex Bellos (The Guardian), Dan Finkel (The Hindu),  

Pradeep Mutalik (Quanta), and d) rarely, books like those of Bearden (2016) and Sally and Sally (2003).  

Each of these sources require further work of a different nature to adapt the available content to a format  
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usable in class. The popular mathematics articles need to be framed as tasks or activities that students 

could engage in. The newspaper columns on the other hand come with a built-in task framing that may be 

usable with some changes and they also give solutions. 

The ATM collections offer a rich collection of usable tasks, but are limited to a problem statement and a  

few suggestions for directions in which the exploration could take off. A typical page from the collection 

Points of Departure is as shown in Figure 6.1. 

           

Figure 6.1: Points of departure - Examples (Reproduced with permission)

15

As a teacher intending to use these tasks in my class, I had to engage with the task as an explorer myself,  

solve the task, think through different approaches students might take and the possible branching points, 

the kind of nudges or hints I could give without giving away the solution and point to further explorable 

questions. There is no “solution booklet” where I could look up the solution. Some of these tasks needed  

modification before they could be used in the class. These include making the task easier or more difficult  

depending on the students who would be working on it, contextualising it if necessary, or spelling out  

goals more clearly. I have used modified versions of tasks 5 and 6 shown in Figure 6.1. I modified Task 5  

by  suggesting  some  examples  of  number  patterns  that  could  be  investigated  -  how  the  numbers 

change/grow as they move along horizontal, vertical or diagonal lines, row and column totals in smaller 

squares drawn on the grid in different places and how they vary and so on. Task 6 in the figure was the  

15. Thanks to ATM for permission to reproduce image. 
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inspiration for the “Partitions and cells” task discussed in Section 4.2.1. Instead of counting squares of all  

dimensions as intended by the version here, I started off with a simpler version that asked students to  

count only unit squares. With this starting point, one of my implementations further restricted the task to  

square grids and their generalisation, whereas another implementation explored rectangular grids as well, 

and focussed on questions of optimality as seen in Section 4.2.1. (What is the smallest number of lines 

that could make a given number of squares, or what is the maximum number of squares that could be  

made with a given number of lines etc.). The ATM collections offer a rich variety of tasks, but they are  

limited to points of departure or starting points as the titles indicate. This leaves a lot to be done by the 

teacher, including solving the task, and adapting it to her class.

Since explorations and “investigatory writing” are part of the regular school assessments in the UK, I 

found some teacher support material developed in the UK context. The series of 8 booklets by Midland 

Examining Group, Shell Centre for Mathematics Education (Maddern & Crust, 1989) give topic specific 

investigatory tasks (from such topics as practical geometry, pure mathematics, statistics and probability,  

etc.) and one task in each booklet is presented in a ready to use form, including detailed teacher notes  

including possible task variations, a case study describing a teacher’s reflection on doing the task with  

students, and samples of student work which demonstrate achievement at different levels. Each booklet 

also has six alternative tasks, with a student version of the task and brief teacher notes, which include 

pointers to the role of the teacher, but the task solution is absent.  While this is definitely a valuable  

resource, it is still insufficient given that detailed notes are present only for one task of seven, and the  

teacher still has to work through the solutions of all tasks. The other sources of tasks mentioned like 

newspaper or e-zine columns or popular maths articles also require content knowledge beyond the school 

curriculum, knowledge of practices of mathematics and considerable work on the part of the teacher to 

adapt it into a task usable in the classroom. 

6.1.2 Demands on content knowledge and practices of mathematics

Given  the  potential  to  branch  out  into  multiple  trajectories,  possibly  onto  different  domains  of  

mathematics,  and  the  salience  of  practices  in  an  exploration,  mathematical  content  knowledge  and 

knowledge of practices become crucial to facilitate an exploration. Explorations place intense demands on  

what  has  been theorised in  literature  as  Subject  Matter  Knowledge (SMK) and Pedagogical  Content  

Knowledge (PCK) (Ball et al., 2008; Carrillo-Yañez et al., 2018; Shulman, 1986). The practice-focus also 

calls  on  the  teacher  to  demonstrate  “mathematical  modes  of  seeking,  using  and  exemplifying 

understanding” and to “enact mathematics” (Watson & Barton, 2011) as a mathematician.

An  exploration  admits  of  multiple  trajectories,  multiple  approaches,  and  affordances  to  function  at 
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multiple levels of formalisation. Some of the trajectories may lead to “trivial” or “obvious” results while 

others may require specific content knowledge and working through. Some of these may be easy starting  

points,  especially at the margins while others may lead to yet unsolved problems. Being sensitive to  

potential trajectories and their difficulty levels calls for deep content knowledge which the teacher may 

not have access to. In a curricular context where the teacher may be teaching something which she has 

taught multiple times, and may have herself learnt she may have the required content knowledge. But this  

may not be so in the case of explorations where she may be on unfamiliar ground. Deciding which of  

these trajectories  would be  appropriate  for  a  group of  students  calls  for  Knowledge of  Content  and  

Students (KCS) in Ball et al.’s (2008) classification. For example, in the Matchstick geometry exploration 

discussed in Section 5.2.2, the question being investigated was whether certain lengths - like the diagonal  

of a unit square - are “constructible” with the allowed steps of construction, namely laying unit-lengths 

end to  end.  The  natural  extension,  asking  what  lengths  are  constructible  with  the  straight-edge  and 

compass  constructions,  involves  non-trivial  mathematics.  Similarly  replicating  some  shapes  like  a 

rhombus brought  forth the question of how one would ensure that  the angles are  congruent  without  

measuring and further onto what angles are constructible in matchstick geometry and still further to the 

corresponding extension to Euclidean geometry. I, as the facilitator, did not have a satisfactory answer  

then (or now) and being aware of the difficulties involved, did not explore this track with the students. 

Similarly, the final task of the exploration, on describability of shapes (see Section 5.1.2) also soon led to 

mathematics which I did not know. Being unfamiliar terrain for me, integer geometry and properties of 

rectilinear  polygons  were  two  other  potential  trajectories  which  I  read  and  explored  for  myself  in 

preparation for this exploration. This equipped me to anchor additional trajectories. This preparatory work 

was  helpful  when  the  exploration  evolved  to  include  the  trajectory  of  rectilinear  polygons  in  an  

implementation outside the project schools.

The  multiplicity  of  approaches  and  the  levels  of  formalisation  possible  also  place  demands  on  the  

teacher’s content knowledge. The teacher may have one or at best a few approaches to solve a problem 

and the student might come up with one, which is different and draws on a different content domain 

which is unfamiliar to the teacher. In addition, this may be expressed in informal terms, making it that  

much harder for the teacher to interpret and respond to the student contribution. For example, in the  

Leapfrogs exploration, my preferred method of solution was an algebraic approach, but a student came up 

with  a  graph theoretic  formulation  discussed  later  in  this  chapter  in Section  6.1.3.  In  the  Polygons 

exploration a student came up with what may be called “canonical constructions” to solve the problem,  

which was not part of the three or four solution approaches that I had anticipated (see Section 3.6). Both  

these  approaches  were  not  familiar  to  me,  and  hence  went  unnoticed.  The  mathematician  who was  

observing these classes drew my attention to these approaches, which I missed on my own. 
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Mathematical practices are central to an exploration and an important goal of explorations is to create 

opportunities for students to engage in these practices. Different tasks may privilege different practices -  

while  coming up with an appropriate  representation may be key to  one task,  another  may hinge on  

visualisation. Being question driven, coming up with mathematically significant questions, clarifying and 

reframing a vaguely framed question spelling out assumptions and conditions under which solution is 

sought are all valued practices in explorations. These may be relatively unfamiliar to the teacher given the  

focus on answers in the curricular context. The teacher needs to be aware of the expected/anticipated  

practices and be alert to the practices being engaged in by the students so as to draw attention to these  

practices and enable students to internalise them. These call for what Carillo-Yanez et al. (2018) call  

Knowledge of Structure of Mathematics (KSM) and Knowledge of Practices of mathematics.

As discussed in the previous chapter, in the course of a mathematical exploration, students will need to 

engage  in  such  practices  as  conjecturing,  justifying,  refuting  (may  be  through  a  counterexample),  

defining,  exemplifying,  generalising  and  specialising,  drawing  analogies  or  connections,  optimising, 

recognising  and backtracking  from unproductive  approaches  and  dead ends,  etc.,  as  they  engage  in  

explorations.  Students  may come up with  a  variety of  conjectures  -  evidently false/true conjectures,  

plausible  conjectures,  some that  may need to  be restated for  more specific/general  domains  etc.  For  

example, among the claims/conjectures discussed in Section 5.2.1, S - 1 (that the Magic triangle puzzle 

has only three solutions) is false, S - 2, (that larger the numbers used in the triangle, fewer the number of  

solutions) looks plausible and S - 3 ( for a given set of numbers in the Magic triangle, the side-sums for 

different configurations are consecutive numbers) is true only in the specific case when the numbers used 

in the Magic triangle are consecutive numbers.  In the instance described,  this  was taken for granted 

because the group had not considered the possibility of filling in the triangle with other numbers. The 

teacher has to respond depending on the nature of the conjecture - some may require being ready with a  

counter example, some may need to be tested for extreme examples and the teacher may need to suggest 

such examples that could potentially add credence to or disprove a conjecture; the obviously true ones  

may need to be proved and so on. For example, in Section 4.2.2, we saw students conjecturing about the  

optimal number of questions and a strategy that will allow them to guess the partition in the Guess the  

colour exploration. I had to evaluate the strategy and produce a counterexample that would point to the  

situation where the suggested strategy would not work. As noted in the section, students themselves were 

doing this leading to the statement that “there was a hole in his strategy”. Similarly students may come up 

with a definition that differs from the one the teacher has encountered priorly and she needs to be able to 

anticipate the implications of working with an alternate definition. We saw an example of this in Section  

5.3.2 where students came up with different definitions for “same shapes”. The teacher may also need to 

make a reasoned - choice between competing definitions, representations or strategies and needs to be  
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able to spell  out her rationale for the benefit  of students.  That is,  the teacher needs to function as a  

mathematician,  mediating  between  school  mathematical  experiences  and  disciplinary  experiences 

(Watson & Barton, 2011), which is a challenge to the teacher. 

6.1.3 Need to recognise and respond to mathematics in students' contributions 

Students are engaged in the process of discovering things for themselves as they engage in explorations. 

As we saw in Section 5.3.4 students use multiple languages, draw on multiple modalities like visual, oral, 

written, gestural, use informal ways which may be vague or imprecise to express themselves. The teacher  

needs to listen for and understand the mathematics communicated through such means.  For example 

when  a  student,  Sneha,  offered  a  phrase  “moodamudiyathu  miss”  (it  cannot  be  closed)  by  way  of 

explanation that there cannot be two right angles in a triangle, I had to interpret this as: “A figure that has  

3 straight  sides  and two right  angles  cannot  form a  closed shape and hence  is  not  a  triangle.”  The  

accompanying gesture of moving her hands up and down, palms facing each other and parallel to each  

other helped me see what she meant - that when there are two right angles, the two sides of the triangle  

will be parallel to each other and would not meet (close) to form a triangle. I was discussing this question  

in the context of the Polygons exploration and was expecting that they would use the angle sum property 

of  a  triangle  to  prove  this,  so that  I  could  generalise  to  the case of  other  polygons.  While  Sneha’s  

argument made sense to me, it didn’t meet my expectations, nor did I immediately recognise the inherent  

mathematics.  With later  reflection and discussions in  the research team I  realised that  what  initially  

appeared to be an intuitive argument was actually an articulation of Euclid’s fifth postulate. 

When the student’s approach to a problem is different from that of the teacher and perhaps one she may  

not be familiar with, making sense of an incomplete articulation can be challenging. I illustrate this with 

an example where as  the teacher,  my own mathematical  knowledge was inadequate  to  interpret  and 

respond to students’ mathematics. In the course of the Leapfrogs exploration (see Section 3.6, and Section 

6.2.4)  with  3  tokens  per  side,  a  student  argued for  the  minimality  of  15  moves  by  considering  the  

possibilities available to her at each step, and eliminating the ones that lead to wasteful moves. That is, if 

there are 3 moves that she could make from a given state of the game, and the first two possibilities 

effected the required transposition in 16 and 17 moves, say, and the third one in 15 moves, she would 

choose  the  third  option.  She  says  “So  after  trying  out  the  whole  thing,  If  suppose  there  are  three 

possibilities, and for the first possibility I try out, get 16, second I get 17 and third I get 15, then I try out  

the 15 one. So like according to me 15 one is the best possibility.” 

To me this student's explanation sounded like a trial and error method, where she tried out the available  

moves at each stage, carried them through and chose the one that gave the minimum number of moves.  
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Had this been the case, an exhaustive trial of the possibilities would be needed to establish optimality. But 

the mathematician who was observing this session, could see her explanation leading to the formalisation 

of the situation as a graph,  with each vertex representing possible states and each edge representing  

possible moves. In this formalisation, the problem transforms to one of finding the shortest path between 

the initial and final states. The existence of a unique best move at each step is the necessary condition for  

the existence of the shortest  path and he drew the attention of the class to this through clarificatory  

questions to the student. Recognising the larger mathematical idea in the student’s argument, identifying 

the element that she was perhaps leaving implicit (existence of a unique best move at each stage) and  

explicating it through questions requires a depth of content knowledge that comes from deep immersion  

in the discipline. 

I also relate a similar episode when the mathematician was interacting with a classroom very similar to 

the one that was part of this study. Responding to the question “How many right angles can a polygon 

have?”,  a  student  Muthu  replied:  “naalu  thadava  suthuna  thiruppi  angiyethaan  varanum.  naduvule 

ethana thadava venumnalum veliye poyittu varalam”. (If you turn four times you are back where you 

started, but in between you can go out and come in any number of times). Muthu is grappling with an  

intuitive  picture  of  convexity  and  convex  hull  of  points.  His  reference  to  exit  and  re-entry  is  the  

consideration of non-convex polygonal shapes. The coherent interpretation of Muthu’s utterance is the 

assertion that the sum of exterior angles of a convex n-gon is 360 degrees, which is 4 right angles, and  

any traversal must complete the cycle on the fourth, whereas arbitrarily many zig-zags can be inserted in  

between in the non-convex case. Thus Muthu is making a complex assertion about linear traversals of  

convex and concave polygons,  with clear mathematical  thought underlying the intuition,  while being 

entirely informal.  In this case,  the facilitator being a  researcher  trained in  geometric  algorithms was  

familiar with traversals as legitimate means of constructing induced n-gons, and could therefore perceive 

Muthu’s strategy which was constructive rather than analytical.

Apart from mathematical difficulties in recognising the formalisation implied in an informal expression 

and providing appropriate support for a more mathematical articulation illustrated above, the informal 

language that students use could prove to be a challenge as well. In a classroom in a marginalised context,  

where  there  is  “tension”  between  the  home  language  and  the  LoLT,  privileging  talk  over  written 

mathematics  and  having  a  flexible  acceptability  criterion  of  coherent  formalisability  for  students 

mathematical talk exacerbates the mathematical challenges discussed above and brings challenges that are 

specific to such contexts. We now look at the additional challenges posed by informal language use at the  

margins. 
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6.1.4 Listening and responding at the margins 

The difficulty in listening, understanding and responding to students’ mathematics is well acknowledged 

in literature. “Listening effectively and responding to children’s mathematical thinking is surprisingly 

hard work. Research indicates that  years, not  months, are required to develop the personal resources  

needed to teach in ways that incorporate responsive listening” (Empson & Jacobs, 2008). Listening is at  

the core of using students' mathematics productively, but teachers may be unprepared to hear and see  

things the way students do. They may not have seen students solving problems in a similar way, nor  

would  they  have  solved  it  in  this  fashion  themselves.  This  poses  challenges  to  listening.  “Use  of  

children’s mathematics in teaching is a specialised skill and, for most teachers, requires a significant shift  

in  how they  conceptualise  their  role” (Empson & Jacobs,  2008,  p.  259).  This  is  more  so  when the 

teacher’s  socio-economic  and  mathematical  background  differs  from  that  of  students.  Non-standard 

terminology  that  students  use,  incomplete  or  inappropriate  articulation,  unstated  assumptions  and 

intentional hedging and vagueness that students bring in when they are uncertain, all pose challenges in 

terms of language. 

Students may use self-created terminology when they are not aware of the standard term for a concept,  

reinterpret terms or when not aware of the “standard” definition of a concept redefine them in their own 

ways. We saw numerous examples for such usage in the previous chapters - For example students use of 

“standing  and  sleeping”  for  “horizontal  and  vertical”,  reinterpreting  “polygons”  to  include  self 

intersecting shapes, (Section 4.2.1), use of the word “half-double” for one-and-a-half in Section 5.2.2, use 

of the word “tiruppal” for rotation, without being specific about what is being rotated, “ulta” or opposite 

for mirror image in Section 5.3.1,  different  students using the word “same” to mean different  things 

including similarity and congruence in Section 5.3.2, etc.

Terminology apart, the way the student articulates her insight/finding with missing words and dietetics 

whose referents are not  clear may make it  difficult for the teacher to understand what the student is  

saying.  For  example,  in  the  Magic  triangle  exploration,  here  is  how a  student  Sumi  articulated  the 

transformation of moving the numbers around by one position (Section 4.2.3, Figure 4.9 (b)) to give a 

new solution.

Sumi: Inthe numbers vanthu lineaa ippidi exchange pannite vantha puthussu puthussa varuthu  {If these 

numbers are exchanged in a line like this new new < > are coming}

About a minute later she re-words this as

Sumi: Numberse appadiye rotate pannitte vantha puthu puthu solution varuthu (If we go on rotating the 
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numbers like that, new new solutions are coming}

The student is using “lineaa exchange” to mean shifting position by one space and “rotating the numbers” 

refers to the cyclic nature of the move. The second articulation captures the transformation better, and 

clarifies that the noun that the adjective “new new” qualifies is a solution, but is still not a clear and  

precise articulation. When pushed for further clarification, the student chose to explain what she means 

through an example rather than articulate it in clearer terms. The class and I had to make sense of what  

this student was saying based on the example and contextual cues. 

Sumi,  exploring transformations further,  suggested interchanging the numbers  in  the inner  and outer  

triangles as another transformation that might give a different solution. She articulated this tentatively as  

“Intha  threeyum intha  threeyum interchange  panninna  …” (if  we  interchange  these  three  and  these 

three…), pointing to her notebook. 

Swapping the numbers along the median as shown in Figure 4.9 (a), Section 4.2.3 does indeed amount to  

interchange numbers in the inner and outer triangles with some rearrangement as can be seen from Figure  

6.2.

             

Figure 6.2: Magic triangle: Interchanging the inner 

and outer triangles

Fixated in my way of thinking of this as a median swap, I could not connect to this student's articulation,  

nor make sense of it until much later while listening to the recording and reflecting on the class. My  

immediate response to the student was to ask her to clarify her statement further - which three and what  

she means by interchange. Not being able to add to what she already said, she did not pursue the idea, and  

I missed an opportunity to nudge this student to a clearer articulation. Perhaps my push for clarification 
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was not the appropriate response in the situation. In attending to the form of speech, perhaps I lost sight of 

the student’s conceptual focus. 

Issues  of  comprehension  apart,  the  teacher  needs  to  be  wary  of  her  own  preconceived  ideas  and  

judgements coming in the way of hearing what students say. Often what we “hear” is dependent on what  

we “listen for”, or what we are anticipating. Guided by the textbook discourse there is a certain way of  

talking that  the teacher expects  from the students in a  mathematics class.  What  the teacher  hears  in  

imprecisely and incompletely articulated student formulations may deviate from her expectations and 

therefore lead to a deficit perspective of students. Listening becomes that much harder when what one 

hears is unlike what one is tuned to and expects in such situations. Also language carries markers of class, 

caste, community, region. In a situation where the teacher’s socio-cultural background differs markedly  

from that of students, the teacher needs to be sensitive to her own biases coming from her background and 

where she is listening from (Davis, 1994). Listening from the position of authority or of the custodian of 

formal mathematics may only lead to further marginalisation. 

6.1.5 Absence of prescribed assessment criteria

Yet another challenge that the teacher faces is the lack of prescribed assessment criteria.  Assessment  

criteria give the teacher a sense of what is to be valued and encouraged in a class. Traditional assessments 

privilege the correct answer and consequently obtaining the right answer becomes central to teaching-

learning as well. In the case of an exploration, there is no specified solution or defined end point to be  

reached, there could be multiple trajectories and a solution arrived at could give rise to more questions.  

This gives rise to the question if some trajectories/questions are to be privileged over others and the basis 

on which such decisions could be taken. Similarly in the case of individual students, there is an implicit  

sense of the nature of mathematical engagement that is valued, but there is no clearly articulated criteria  

that defines “progress”. A teacher who is used to externally defined curriculum, assessment formats and  

rubrics for evaluation, may find this absence of criteria confusing and may feel the need to have some  

sense of direction. 

Given this lack of well-defined criteria and limited life-span of an exploration in a class, we felt the need  

to define some points of conclusion in an exploration which we would expect every student in the class to  

reach.  For  example,  in  the case of  the Magic triangle  exploration,  we had defined,  finding the four 

solutions and coming up with an argument that there are no more solutions as such a point of conclusion 

where we expected every student to reach. From this point,  we expected interested students to move 

ahead and explore further on their own, seeking help when needed. Similarly in the case of Leapfrogs, we  

had minimally expected every student to find one way of making the transposition and be able to repeat 
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the set of moves. These benchmarks are very much context dependent and need to be defined by the 

teacher and standardised assessment criteria may not help. 

 Beyond defining such “must reach benchmarks”, we had a sense of “richness” of an exploration in some 

implementations  compared to  others  (gauged by such factors  as  the multiplicity  of  approaches seen, 

questions raised, insights offered, etc.), without having a clear articulation of what made those sessions  

rich. For example, how does one compare a session in which students investigate multiple conditions 

under  which the Magic triangle  puzzle  could have a  solution,  without  reaching any conclusion with 

another  where  they  use  methods  of  algebra  to  investigate  the  extensions  and  generalisations  of  the 

problem? Without a clear articulation of what needs to be valued in a session, what “progress” of an 

exploration means, the teacher may find it difficult to choose between the multiple trajectories that open 

up in her class. 

The end goal of explorations is that students become better explorers, but what it means to be a better 

explorer is open to interpretation. In addition to arriving at expected answers or intermediate landmark 

points, there are other equally important aspects that need to be taken into account. Posing pertinent and  

fruitful questions are crucial to further advancing an exploration. Elegant solution approaches and those  

approaches  that  open  up  further  questions  and  opportunities  for  extensions  and  generalisations  are 

preferred to brute force solutions. Also, the goal itself is a long-term goal. So it is difficult to gauge, in the 

course of one or a few explorations, if the student has moved towards the desired goal or not. The very 

first exploratory task a student engages may very well be tightly scaffolded or largely teacher led, but 

what matters is how much of the ways of thinking and practices that were suggested to solve the problem 

has been internalised by the student and available to draw on at a later stage. One needs to have markers  

for the stages in the progression of mathematical thinking of the student as also for the progress of an 

exploration itself. These need to be abstracted from multiple explorations which may have very different  

surface features. This study highlighted the need for such criteria and the complexity involved in coming  

up with them. While we did see some indicators of students “becoming better explorers” like their coming 

up with task variations  and thinking of  generalisations  without  being prompted,  critically  evaluating 

others’  contributions and responding to them, etc.,  and marked some elements that  made for a “rich  

implementation” the task of clarifying and articulating these criteria is not addressed in this thesis and  

remains to be taken up in our future work.

Having identified some challenges that explorations bring, some that specifically stem from language-use 

at  the  margins  I  now look at  ways  of  supporting  the  teacher  to  overcome these  challenges.  In  the  

following section, I propose guidemaps as reference material to support teachers to meet the demands on  
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mathematical content knowledge and in the subsequent section provide some pointers to listening and 

responding to students' mathematics and language in marginalised contexts. 

6.2 Guidemaps as teacher support for explorations

In the previous section, we discussed the challenges in designing an exploratory task or adapting available  

material to be used in a class. We also noted the increased demands on content knowledge posed by the  

likelihood of  an exploration progressing to  content  domains  unfamiliar  to  the teacher  and illustrated 

through instances where, as the teacher, my content knowledge was inadequate to interpret and respond to 

students’ mathematics. I considered the possibility of a guidemap that lays out possible trajectories in an 

exploration  and  the  relevant  content  knowledge  and  asked  what  features  should  such  a  guidemap 

incorporate so as to help the teacher facilitate explorations. First we look at the appropriateness of a well  

chalked-out  plan  similar  to  the  many  “extended  tasks”  available  online,  as  teacher  support  for  

explorations. 

6.2.1 What a well-chalked out plan misses out

Figure 6.3 shows a series of guided prompts for the Leapfrogs exploration, that could be used “as is” in  

class. The prompts incorporate a trajectory of solving the task out for a particular small number, trying 

out  for larger numbers and generalising and further suggesting variations.  I developed these prompts 

modelling them on those for similar tasks that I found elsewhere  (Burkhardt, 2009, pp. 10, Figure 3), 

which offer a plan for a teacher to follow. Similar plans are available for many tasks.

While providing a starting point, a path to generalisation and suggesting other possibilities to explore, the 

design follows the Data-Patterns-Generalise (DPG) structure. Scholars have found that the DPG structure 

limits expectations about student work and the richness of mathematics that could be derived from a task 

(Blanc, 1997; Hewitt, 1994; Morgan, 1997). Morgan (1997) draws attention to the tendency of such tasks 

to  “stereotype  investigations”  to  the  DPG  structure,  which  she  describes  as  problems  that  involve  

“generating numerical data from several examples arising from the given starting point, spotting a pattern  

in this numerical data and forming a generalised description of the pattern, preferably using algebraic  

symbols to express the relationship between the variables. (p57) “Hewitt (1994) also marks the tendency  

of such task formulations to focus on spotting number patterns and extending them, often disregarding the 

mathematical situation they came from. According to Hewitt,  it is important to stay with a particular  

situation and learn about the mathematics inherent in it rather than “learning about numbers in a table” (p 

51) and ask different questions of different situations, rather than focus on generalisation alone. From this  

perspective, exploring questions as what if the blank space were at the end instead of the centre? What if  

we allow jumping over more than one token? What if the arrangement were circular instead of linear?  
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may be more rewarding than generalising the Leapfrogs problem to larger numbers (and for any number)  

of tokens. The task design should ideally provide some pointers in this direction. 

Figure 6.3: Leapfrogs: A plan
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Representing and recording each move is  crucial  to solving the problem. The plan above suggests a  

representation and that way makes it easier for the teacher and students. We have seen students coming 

up with different representations, making it necessary for the teacher to discuss and choose between these 

representations. Though demanding on the teacher, this is an important practice of doing mathematics and 

the task offers an opportunity to engage in this practice. But in privileging a particular representation  

without discussing other possibilities, the design takes away the flexibility that we intend explorations to  

bring. 

Though suggesting a generalisation through small numbers to larger numbers on to thinking about “any 

number” and on to an expression that gives the number of moves for any number, the task formulation 

does not give a hint as to how a student might solve this task. We have seen students pass through some 

“stages” before they arrive at the minimum number of moves to make this interchange. They usually start 

by moving the tokens around until they chance upon a way to make the interchange. They need to “get a 

sense  of  the  sequence  of  moves”  (Mason,  1989)  before  they  can  try  to  optimise  the  sequence.  So 

repeating the sequence of moves and if possible articulating any strategy they may have to make the  

moves becomes important. Very often we have seen students getting a sense of when they are making  

redundant moves – marked by arriving at a configuration where two adjacent tokens are of the same 

colour, and avoiding this situation by choosing an appropriate move. These insights are derived from 

observing multiple groups of students engaging with the task. In a curricular context, the teacher may be 

teaching something which she has taught multiple times, or at least learnt herself, and can anticipate such 

trajectories. It is unlikely that she would have engaged with explorations sufficiently frequently to come 

to know these oft taken approaches and milestones on the path to the solution. However, knowing these 

stages will help the teacher be better prepared and provide appropriate scaffolding to students struggling 

with  the task  -  for  example asking them to repeat  a  series  of  moves through which they  made  the  

interchange, asking them to record the moves as a means of doing this, studying these to see if some  

moves  are  redundant,  drawing  attention  to  backtracking  moves  that  they  make  and  the  particular  

configurations that necessitate such moves and so on. So I suggest that the teacher needs to have much 

more than a series of guiding prompts to enable her to facilitate an exploration in the class. She needs to  

know the rationale for those prompts, what she could possibly do if the suggested prompts don’t work and 

how she could customise the tasks if she needs to and pointers to how the task might evolve in the class.  

Thus, supporting students to explore mathematics cannot happen through a scripted sequence of prompts. 

Drawing on Simon (1995) and Gravemeijer (2004) I suggest guidemaps prepared by mathematicians, 

seasoned explorers who are familiar with the lay of the land, as means of teacher support for explorations. 
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6.2.2 Hypothetical  Learning  Trajectories  and  Local  Instruction  Theories  as  teacher  support  in 

reform teaching contexts 

Simon (1995) suggested the idea of Hypothetical Learning Trajectories (HLT) that involves anticipating 

how student thinking might develop and envisioning activities that help them develop the mathematical 

insights one is aiming for. Gravemeijer (2004) suggests Local Instruction Theories (LIT) conceptualised 

and experimentally verified by educators as the framework of reference to base their HLTs on. Similarly  

responding to student mathematical thinking in the context of explorations requires the teacher to think  

through or be aware of the potential trajectories along which an exploration could evolve. I suggest that  

guidemaps for explorations prepared by research mathematicians and maths educators can function as  

reference points for developing “hypothetical exploratory trajectories” (HETs).

Simon suggests that despite the idiosyncrasies of the learning paths of individual students, the students of  

the  same  class  demonstrate  an  “expected  tendency”  to  follow  similar  paths.  This  assumes  that  an 

individual’s learning has some regularity to it and hence many students of the same class can benefit from 

the same mathematical task. The HLT characterises this “expected tendency” and provides the teacher  

with a reason for choosing a particular instructional design. Drawing on her mathematical knowledge and  

knowledge of students, the teacher hypothesises such a path by which learning might proceed. Coming up 

with an HLT also involves designing learning tasks and activities grounded in what students know, and  

being able to provoke the kind of thinking that would lead to the desired learning for them. Thus, the 

generation  of  a  HLT prior  to  classroom instruction is  the process  by which  the teacher  plans  for  a 

classroom activity. 

As  pointed  out  in  Section  6.2.1,  we  have  observed  that  in  spite  of  the  inherent  flexibility,  most  

explorations  also  have  an  “expected  path”  of  evolution,  branching  out  in  different  directions  with 

different groups of students. This makes it possible to extend the notion of HLTs to explorations as well.  

However, unlike the HLT for a particular class in the curricular context, for which the teacher chooses a  

well-defined goal which directs the design of the learning tasks, an exploratory trajectory has multiple  

goals and corresponding branching trajectories, which the students choose to pursue and for which the  

teacher  needs  to  provide  the  necessary  support.  I  term  these  potential  trajectories  “hypothetical 

exploratory trajectories” (HETs)

The teacher observes and communicates with students as they engage with the planned activities and uses  

the understanding derived from this to adapt the initial plan to the emerging student conceptions. This  

would call for a knowledge of the way students’ thought process related to a particular concept evolves, 

the stages in this evolution and means or prompts to enable movement between these stages, in addition 
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to understanding student thinking itself. Gravemeijer (2004) argues that it is unfair to expect teachers to 

invent hypothetical learning trajectories without any support and proposes externally developed “Local 

Instruction Theories” (LIT) as support for teachers in coming up with HLTs. He uses the term HLT for 

planning of instructional activities in a given classroom on a day-to-day basis, and the term LIT to refer to  

the description of, and rationale for the envisioned learning route as it relates to a set of instructional  

activities for a specific topic. As opposed to providing the teacher with pre-designed learning activities 

which do not give much room for responsiveness to students, externally conceptualised LITs offer the 

teacher  the  knowledge  base  required  to  come  up  with  her  own  plan  of  well-  reasoned  activities  

appropriate for her class and to adapt these, factoring in student responses. 

An LIT consists of a conjectured learning path and possible means of supporting movement along this  

path. It spells out a sequence of stages or milestones in terms of the key insights in understanding a  

mathematical idea, a series of instructional activities to progress along these stages and the role of the 

teacher in facilitating these (Gravemeijer, 2004). It is intended to help the teacher envision the thinking 

and learning students might engage in as they participate in the instructional activities. Analogous to LITs 

in  the curricular  context,  I  suggest  guidemaps for  explorations  incorporating these very features  and 

functions. 

Using a travel metaphor, an LIT can be considered a “travel plan” that specifies the starting and ending  

point with possible route(s) between them with major milestones along the route marked and the means of  

travelling  between  them.  The  teacher  has  to  transpose  this  into  an  actual  “journey”,  by  choosing 

appropriate means of travel (instructional activity) along a route which may deviate from the mapped out  

routes. But the expectation is that having the map in hand, with the milestones marked and suggested  

means of travelling between them, the teacher would be able to choose an appropriate path between the 

endpoints  through  alternate  means  if  required.  By  providing  an  externally  prepared  travel  plan  or  

guidemap of the terrain of a specific topic, an LIT supports the teacher in adapting her teaching to the  

current and evolving understanding of her students and at the same time planning instructional activities  

in advance, thereby addressing the need to “plan on-the-fly”.

Anticipating students’ thinking around an exploration and customising it to a particular group of students,  

taking  into  account  their  mathematical  background  requires  the  teacher  to  be  aware  of  the  various 

possibilities and what it takes to follow the various trajectories , more so because there are no curricular  

reference points  or  benchmarks.  Analogous to  the LITs,  I  propose externally prepared guidemaps as  

support for teachers to come up with hypothetical exploratory trajectories (HETs analogous to HLTs) and 

ways to provide appropriate scaffolding as students take these trajectories. I look at what elements the 
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guidemap needs to have to enable the teacher to come up with HETs for her class. Guidemaps need to  

minimally include the pre-requisite content knowledge to engage with an exploration, potential directions 

an exploration could take off in and the stages of progress in each of these and the mathematical practices  

that the exploration calls for. 

6.2.3 Elements of guidemaps 

Useful Prerequisites: One of the task features we identified to make the task accessible at the margins 

was limiting prerequisite content knowledge. Nevertheless, some explorations might build on a particular 

theorem or a procedure or familiarity with a certain representation. Some of these may be crucial even to  

get started on the exploration, while others may help progress in the exploration. For example, the Magic 

triangle exploration requires no special prior knowledge to get started. However progress is constrained  

by a facility for algebraisation. The Polygons exploration crucially depends on knowing the angle sum 

property of polygons and there is very little that can be done on this exploration without this. Knowledge 

of factors, multiples and highest common factors helps in working on the Clapping game exploration, but 

one can engage with the exploration even without knowing these concepts and build them as needed. It  

may be possible to side-step some requirement by simply pursuing an alternate approach to the problem 

or reframing it alternately. For example, the need for an algebraic formalisation to prove the existence of 

four  and  only  four  solutions  for  the  Magic  triangle  problem  can  be  side-stepped  through  proof  by 

systematic and exhaustive counting or other proof strategies. The guidemap needs to spell out the prior 

knowledge  required  to  engage  with  an  exploration,  and  ways  of  side-stepping  the  need  for  some 

knowledge if this becomes necessary.

Also, one needs to be aware that the “prior-knowledge required” need not be a make or break requirement  

in the case of explorations. For example, the Polygons exploration could start with trying to arrive at 

angle sum property, or if the requirement is just to use the theorem, it may very well be “looked up” or  

even “handed down” to the students depending on the centrality of the theorem to the exploration at hand 

and the mathematical maturity of the students. Also unlike in a curricular case where every child needs to 

have the necessary prior knowledge in an exploratory context it suffices if one child knows the result and 

together the group can draw on this knowledge to solve the problem. Thus in an exploratory context,  

recognizing what theorem or procedure needs to be drawn on and where or how to obtain and use it is  

more important than knowing the theorem itself.

Key  Insights: Almost  every  exploration  relies  on  a  moment  of  key  insight  at  which  the  explorer 

experiences a transition from being muddled to being able to see a route to the goal. This might be a  

glimpse of the underlying structure of the problem, a particular representation/ formalisation that will aid 
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arriving at a solution or a particular theorem which could be applied. For example, the key to the Magic  

triangle exploration is the particular formalisation of the numbers suggested in Section 3.6, that leads to a 

generalisable relation between the corner-sum and side-sums. For the Leapfrogs exploration recognising 

redundant moves and ways of eliminating them is the turning point that leads to the solution. These key 

insights may not occur to students as a matter of course. In such cases, the teacher should be able to 

provide clues or nudges that lead students on to these insights unobtrusively. It is also important to do it at  

the right time, when students have tried out multiple things unsuccessfully, but are not yet frustrated 

enough to give up. 

Landmark points: Other than the key insight that points to the goal, there could be other landmark points  

from which further branching is possible. Even with all the variations possible, we have seen some well  

marked trajectories lined with a series of realisations that come up repeatedly in re-runs of an exploration.  

These are like the “stages” or milestones described by an LIT in understanding a concept. Some of these 

may be helpful insights which lead on to the solution, while some may be misleading conclusions arrived 

at without sufficient thought and some may be potential branch points. Such points would also be termed 

landmark  points  and  knowing  these  in  advance  helps  the  teacher  provide  helpful  nudges  or  course 

corrections as need be.

In the Clapping game exploration, one of the first conjectures that come up is that not everyone claps only 

when the interval at which clapping happens is a factor of the number of persons in the circle. Knowing 

that this incorrect conjecture is likely to arise, the teacher can be ready with a counterexample that can  

refute this, and ask the class how they would modify the conjecture in the light of this example. In the  

Magic triangle exploration, the realisation that there are 4 and only 4 solutions is a landmark point from 

which the exploration could branch off into multiple directions. It is a significant step in the progress of 

the exploration. Having found the four solutions, one could look at transformations of solutions - what 

transformations lead to other solutions and what ones lead to non-solutions, or proof that there exist four 

and only four solutions or examine patterns in solutions (say parity rules) or look for solutions with other  

sets of numbers etc.

Potential  and  Likely  Trajectories: As  pointed  to  earlier  multiple  trajectories  are  a  key  feature  of 

explorations. The multiple trajectories ensure that students with varying mathematical backgrounds may 

still  engage  with  the  exploration  at  their  own  level.  Some possible  variations  of  the  Magic  triangle 

exploration are discussed in Section 4.2.3. Some of the trajectories may require advanced mathematics 

and some of them may even be yet unsolved problems by the community of mathematicians. Pursuing 

such tracks may lead to frustration for students. The teacher may also want to plan for variations based on 
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perceived strengths and weaknesses of different students. So it would do well for the teacher to know the 

possibilities, and what it takes to engage with each of them and their appropriateness for her group of  

students.

Practices in focus:  As discussed in Section 6.1.5, the end goal  of  an exploration is  becoming better 

explorers and this calls for a shift of focus from content to practices and a deeper engagement with the  

practices of the discipline. Exploratory trajectories should commit to a variety of mathematical processes:  

reformulating  questions  to  make  them  clearer  and  thereby  easier  to  address;  experimentation  with 

approaches, notions, techniques; movement from performance of activity to prediction; observing and  

recording patterns; use of symbols; argumentation; and so on. The teacher needs to anticipate, observe 

and draw attention  to  the  practices  that  are  being  engaged in  to  enable  deeper  engagement.  So  the 

guidemap needs to spell out the practices to be anticipated in the course of an exploration.

Affordances of task specific choices: Many of the exploratory tasks are generalisable and any number 

could be the starting point in principle. However, the task specific choices - or the specific numbers or 

figures that are chosen to launch a task - need to be chosen with due consideration for the group of  

students and the affordances of specific numbers. For example, starting the Magic triangle exploration 

with a triangle makes it much more accessible than starting with a square or pentagon. While 3-5 tokens a 

side may be an optimal starting point for the Leapfrogs exploration, starting with 5 tokens a side gives the 

teacher an opportunity to draw attention to the heuristic of “solving a simpler problem as a first step to  

solve a complex problem”. But for students who are not used to the sustained effort required to solve a  

mathematical challenge starting with three or even two tokens a side may be a more accessible option  

than the five.  In the Clapping game exploration,  a number less than 10 in the circle may not  be an  

effective start as these numbers have a limited number of factors. 20 has many factors, is next to 19 a 

prime  and  21  with  fewer  factors.  These  properties  of  20  make  it  a  good  start  for  Clapping  game 

exploration compared to other numbers in the same range. The teacher needs to be made aware of these 

specifics so as to enable her to customise the task herself.

I  now  present  an  illustrative  guidemap  for  the  Leapfrogs  exploration  incorporating  these  elements.  

Thereby,  I hope to convey a sense of the level  of  detail  needed for the guidemap to function as an 

adequate support for the teacher. 

6.2.4 Illustrative guidemap for the Leapfrogs exploration

Overview: The starting  point  is  the game shown in  Figure  6.4.  The  possible  objectives  could be  a) 

minimise the number of moves to effect the interchange and come to an optimal sequence, b) Justify  
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optimality, c) Generalise the game to n tokens, d) vary the rules of movement and other parameters and 

analyse the resulting games.

Figure 6.4: Leapfrogs exploration

Useful  prerequisites:  Being a  game situation that  can be actually  played out  with tokens,  the game 

requires  no  specific  prior  mathematical  knowledge.  However,  facility  with  algebra  will  be  useful  if 

solving the general case.

Key Insights: Recognising redundant moves and the felt need to figure out ways of avoiding them is the 

key insight that points to a solution path. In this case tokens of the same colour coming in adjacent spots  

(other than in the initial or final configurations) is a pointer to redundant moves.

Landmark Points: The stages that we have usually observed as students engage with the problem are

- Making the transformation in whatever number of moves

- Repeating the transformation with the same moves

- Recognising situations that lead to “wasteful moves” and avoiding them

- Making the transformation in fewer number of moves

- Making the transformation in minimal number of moves

- Justifying optimality

- Generalisation

- Formal proof for optimality, expression for optimal moves in terms of the number of tokens

- Variations
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While this list is not a rigid sequence of steps and two (or more) steps could overlap, at least a few of 

these steps can be seen in nearly every run of this exploration. 

One also needs to make a judgement on how far along the sequence a given group of students would go  

and tailor the exploration accordingly. Students being able to make the transformation in the optimal 

number of moves with say 4 tokens-a-side; or students being able to make the transformation with any 

number of tokens-a-side optimally, without being able to articulate their strategy or the number of moves 

required; being able to inductively obtain the number of moves for any number of tokens, could all be  

reasonable stopping points depending on the background of students.

This exploration allows for use of physical  tokens and moving them around.  In this case, the act  of  

moving around these tokens may provide clues to a procedural solution to the generalised problem of  

interchanging any number of tokens as well. This can be leveraged by the teacher to nudge the students  

towards a solution. Perhaps, the repeated cycles of the movement is easily noticed or “felt” by students 

and we have had students sensing an error when the “rhythm” of this movement is broken. It is also  

possible that students are able to extend this “rhythmic” movement, extending the cycle when there are  

more tokens, without explicitly articulating what they are doing. (This was articulated by a student as  

“ma’am the hand knows”) The “physicality of the moves” could be a way to nudge a solution in case  

students are unable to come up with an optimal solution for the problem, with the teacher demonstrating a 

solution perhaps in quick succession and students repeating it later.

Repeating a sequence of moves and examining it for redundant moves is an essential step here. So, while  

it is good to start with physical tokens, one needs to move to some ways of representing/recording a  

move, which may either be teacher suggested, or student produced. If multiple representations come up  

one may need to evaluate the pros and cons and choose one to enable easy communication within the  

group. An appropriate representation also brings to light certain patterns in the moves, which eventually  

lead to a solution. Also representation allows one to move away from physical tokens and move towards a  

generalisation.

Possible Trajectories: The initial question only asks if an interchange is possible at all. But it begs other  

questions - If possible in how many moves? Can it be done differently? Can it be done in fewer moves? Is 

there an optimal number of moves and so on.

Variations of the game could be created in many ways

- changing the position of the blank space by perhaps having unequal tokens on either side of the 

blank space, or having the empty space at an extreme, 
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- Changing the rules of movement by say allowing for say jumping two tokens, swapping tokens,  

allowing placement of one token on another, or “wrap-around” movement from one extreme to  

another or disallowing sliding movement

- Arranging the tokens differently - like a circular arrangement, or a triangular arrangement

- Adding tokens of more colours 

- Making the tokens “distinguishable” 

While it may not be possible to “solve” many of these, even the exercise of coming up with a variation  

clearly  spelling  out  the  initial  configuration,  final  configuration  and  the  set  of  allowed  moves  is  a 

worthwhile exercise. Some analysis of these configurations could lead to statements like “given the rules 

of the game it is NOT possible to make the transformation, or configuration x,y,z will not arise” etc. 

At the other end of the spectrum, for a group of first-time explorers even finding the optimal sequence  

may be a challenge. With this group one track that could be taken up is to suggest a representation of the  

sequence of moves in terms of the slides and jumps in a sequence of say S and Js to get a sequence  

SJSJJSJJJSJJSJS of  moves  for  three  tokens.  Examining  these  sequences  for  1,  2,  and  3  tokens  and 

perhaps chunking them as S, JS, JJS, JJJ, SJJ, SJ, S breaking at points when a different colour token is  

moved could suggest some patterns which can be used to predict  and verify the sequences for more  

tokens. Also coming up with variations of the game is a task that is accessible to all and in our experience  

something that is greatly enjoyed as well. 

The expression for the optimal number of moves can be expressed in many forms - in closed form n( n + 

2) , or “one less than the next perfect square”, or “keep adding odd numbers” etc. Similarly there are  

multiple approaches to proving optimality as well. An algebraic approach could look at the “total shift in  

positions” that needs to happen and the total “jumps” that needs to happen (every token should jump over  

every token of the other colour and shift  position by (n + 1) positions) and use this to calculate the 

number  of  jumps  and  slides  and  arrive  at  the  number  of  moves.  Informal  arguments  centering  on 

maximising the number of jumps without allowing for redundant moves, or considering options available 

at each move and choosing the best available (one that does not lead to redundant moves in the next or  

subsequent turns) at each turn (search for an optional path across a graph) may also come up. There may 

be unstated assumptions - for example the existence of a unique best choice for each move above - which  

may need to be clarified/explicated and some which may be obvious. Whether to insist on proving these  

assumptions is a choice the teacher has to exercise in the context of her class, but those assumptions 

which are critical for the argument to hold should at least be made explicit.
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Practices in focus:  In addition to observing and articulating patterns, conjecturing, proving, justifying, 

predicting  and  verifying,  specialising  and  generalising,  etc.,  the  practices  that  are  salient  here  are 

optimisation and representation. 

Optimisation: The driving question of this exploration, “can it be done in fewer moves?” and the heuristic  

to  approach such problems,  “avoiding  wasteful  moves”  are  ideas  that  are  frequently  encountered  in  

mathematics.

Representation: Most probably, one needs to play the game a few times before hitting on an optimal 

solution. Also one might want to take a careful look at the sequence of moves that one has made, both to  

observe patterns and to avoid redundant moves. This means there has to be a way of recording the moves.  

The following representation of the position of tokens at every step of the game, where B stands for a 

Black token, W stands for a white token and O stands for the blank space, shows up some symmetries like 

the rows equidistant from the central row above and below it being mirror images of each other.

BBOWW

BOBWW

BWBOW

BWBWO

BWOWB

OWBWB

WOBWB

WWBOB

WWOBB 

One can also see a pattern in the way the blank space moves. Not all the patterns that are seen may be of 

significance. Labelling a slide as S and a jump as J, and representing the sequence of moves in a sequence  

of S and Js, as mentioned above makes visible other patterns. The representation chosen can help or  

hinder the solution in this case. Also by inviting students to come up with their own representations, the 

teacher can create an opportunity to talk of properties of a good representation and criteria for choosing 

between them. Figure 6.5 shows some representations that we have seen.
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Figure 6.5: Leapfrogs: Multiple representations

The first representation the student has represented the black and white tokens by shaded circles of the  

corresponding colour. The second representation is similar with the only difference that the tokens have 

been labelled - B for blue and G for green. The tokens are considered indistinguishable. Both these are  

visual representations. In the third representation the student had numbered the positions 1-6. The first 

move, 6 - 4 means that the token at position 6 moves to position 4. The next move 5 - 6 means that the 

token at position 5 moves to position 6 and so on. In the 4th representation, the student has labelled the  

places B1, B2, B3, G1, G2, G3 and the blank space W. In this representation B3-W means that the token 

at position B3 moves to position W. 

Affordances of task specific choices:  Five tokens to start with could be challenging, but allows one to 

draw attention to the heuristic of solving a simpler problem as a means to solve a complex one. For a 

group that is not used to figuring things out on their own, starting with 3 may be ideal. Starting with  

physical tokens to play with provides an easy entry point.

The features presented in the guidemap above could be expanded to offer more details. Also, I do not 

claim comprehensiveness in the features that have been listed as components of the guidemaps, nor do I  

claim that all of them are relevant for all explorations. Nevertheless, I do believe that having a grasp of 

these essential characteristics considerably eases the path of a teacher setting out on an exploration and  

addresses some of the challenges identified in Section 6.1. A collection of such guidemaps functions as a  

source and reference material for explorations. The mapping out of potential trajectories and practices in  

focus helps by equipping teachers with the required content knowledge. The identification of key insights,  

landmark points and the trajectories supports the teacher to anticipate student trajectories and be prepared 

with ways of responding to them. I intend to study the usefulness to, and resourcefulness of teachers to 

use these guidemaps effectively and a deeper analysis of the demands explorations place on the teacher in 

my future work. 

6.3 Listening and responding to students’ mathematics

Even if a teacher is sufficiently familiar with the exploration through her own preparatory explorations  
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and the study of guidemaps, an exploratory classroom is replete with contingent moments  (Rowland et 

al., 2015; Rowland & Zazkis, 2013). Responding to such contingencies requires something more than 

content knowledge acquired from formal courses in mathematics or gleaned from guidemaps. The teacher  

needs to listen to and respond to students' mathematics in-the-moment and this requires what Mason and  

Davis  (2013) call  “a  vital  connective  tissue  between  mathematical  awareness  and  in-the-moment 

pedagogy” so as to have a sensible pedagogical action come to mind in response to the mathematics 

noticed in a student contribution. In Section 6.3.1, I summarise relevant discussion from literature on  

what in-the-moment pedagogy entails and how teachers can be supported in this. 

The criterion of coherent formalisability widens the scope of the discourse that a teacher may admit in  

class, making it that much more challenging for her to notice and respond to students’ mathematics as  

seen in the examples described in Section 6.1.3. In Section 6.3.2, I discuss what is entailed in listening for  

and noticing  coherent  formalisability  and its  potential  violations  in  students’  mathematical  talk.  The 

teachers’ responsiveness in-the-moment depends on what she listens for and notices.  Being aware of  

potential violations of coherent formalisability, I hope will sensitise the teacher to listen for emerging  

incoherence in the discourse rather than for expected responses. This can also enrich the teacher’s own 

repertoire of learning trajectories by completion of student attempts.

6.3.1 In-the-moment pedagogy

Mason and Davis (2013) argue that the most important aspect of “mathematics needed for teaching” is  

what comes to mind moment-by-moment when teachers are planning or leading a lesson. The major  

factor influencing this is the scope and range of mathematical thinking a teacher has access to, and the  

repertoire of pedagogical strategies and didactic tactics that are available to her to come-to-mind in the  

moment.  Going  beyond  the  content  knowledge  that  comes  from  courses  in  formal  mathematics  or 

“specialised content  knowledge” needed for teaching and the knowledge that  is  available in-practice,  

Mason and Davis suggest that what matters the most is “knowing-to-act, that is, having knowing-how,  

perhaps informed by knowing why, come to mind” (p. 191). Responding in-the-moment involves being 

“with mathematics, in relation to mathematics” (p. 186, emphasis in original). They call this the teacher’s 

“mathematical being” since it orients awareness and is the basis for conscious and unconscious choices 

made by the teacher and allows her to be mathematical with and in front of their students. This is similar 

to Watson and Barton’s  (2011) identification of the need for the teacher to “enact mathematics” and 

“work as a mathematician”. 

Developing  the  “mathematical  being”  involves  teachers  nurturing  their  mathematical  awareness  and 

engaging in mathematical thinking for themselves and with like-minded colleagues. The teacher needs to 
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experience for herself and therefore be sensitised to the psychological and socio-cultural aspects of being  

a learner and doer of mathematics, and to what it is like to encounter epistemological and pedagogical 

obstacles. It also involves “knowing more deeply and richly in the sense of having possible actions –  

mathematical, pedagogic and didactic — come to mind when they are needed, whether when planning or  

in the midst of activity with students'' (Mason & Davis, 2013, p. 192). Rather than foreseeing what might 

happen, preparing for the unexpected involves having access to a rich collection of pedagogic actions 

together with a narrative for elaborating and justifying the choice in any particular situation. Developing a  

repertoire of such actions or practices embedded in personal experiences makes it possible to have these  

actions come to mind, notice opportunities to act freshly and to exercise choice and respond to a situation 

rather than react habitually. Engaging in the tasks planned for students or those that  provide parallel  

experiences to those of the students to generate relevant experience of what needs to be attended to, how 

mathematical themes are instantiated, what practises are drawn on, obstacles that come up and action 

taken to overcome the obstacles. etc.,  is one way of developing such a repertoire of actions  (Mason, 

2015). 

“Knowing-to-act” requires sensitising oneself  to notice opportunities to act,  to be aware of situations 

developing before an action is actually required. It requires that something relevant “comes to mind” or 

“comes into action” so as to direct attention and inform choices. Mason  (2001) suggests a set of four 

interconnected actions which he terms “The Discipline of Noticing”, to support and enhance sensitivity to 

notice, and to make it possible to act upon that noticing as events unfold.

Systematic reflection: collecting brief-but-vivid accounts of salient incidents, working on them so 

that others recognise something from their own experience; developing sensitivities by seeking 

threads among those accounts, and preparing oneself to notice more detail in the future.

Preparing and noticing: imagining oneself acting in some desired manner, using the power of 

mental  imagery  to  direct  and  harness  emotions,  and  gradually  noticing  more  and  more 

opportunities; reflecting on the past by reentering situations as vividly as possible and preparing 

to notice in the future by imagining oneself choosing to act.

Recognising choices by accumulating alternative actions and by working at bringing the moment 

of noticing into the present; being on the lookout to notice alternative behaviours or acts (in other 

people’s accounts, in texts and articles, while observing others in practice), which you would like  

to incorporate into your practice;

Labelling  salient  incidents  and  alternative  acts  so  that  they  begin  to  form  a  rich  web  of  
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interconnected experiences associated with particular collections of incidents, and linking these  

labels with specific incidents so as both to enrich the moments and to empower the labels to act 

as triggers to notice fresh opportunities to act in the future. (p 87) 

Systematically engaging with these actions enables one to prepare for noticing and acting in the moment,  

thereby supporting teachers to listen to and respond to students’ mathematics. 

As discussed in Section 6.1.4, one of the challenges that must be met while having students at the margins  

engage with explorations is listening. Together with the discipline of noticing mathematics, teachers need 

to develop a “discipline of listening” to students’ mathematics that is different from their own. Such 

listening encourages students to listen to other students’ mathematical talk as well. Acknowledging the 

need for hermeneutic listening as suggested by Davis (1997), I discuss how this applies to listening for 

coherent formalisability and point to ways in which coherent formalsability could be violated. 

6.3.2 Listening for and noticing coherent formalisability

Listening means broadly an orientation to eliciting and making sense of children’s actions and comments.  

It  involves  “reaching”  the  students  and  is  interactive  and  participatory.  While  acknowledging  the  

difficulty in listening and responding to student work, Empson and Jacobs (2008) also suggest that how a 

teacher  listens  can  transform  how  students  talk  and  what  they  learn.  Davis  (1997)  suggests  that  

attentiveness to how mathematics teachers listen may be a worthwhile route to pursue as we seek to  

understand and  help  teachers  better  understand  their  practice.  Empson  and  Jacobs  (2008)  suggested 

benchmarks for teacher listening to support teachers learning to listen – a pathway by which children’s  

mathematics becomes progressively more central.  They distinguish three kinds of listening:  directive 

listening where the teacher listens to a student’s thinking to evaluate its correctness as compared to a  

preconceived standard, observational listening with an attempt to hear and understand the sense that that  

the student is making, and responsive listening in which the teacher not only intends to listen carefully to 

child’s thinking but also actively works to support and extend that thinking. Parallel to this, Davis (1997)  

suggests evaluative listening, interpretive listening and hermeneutic listening. Hermeneutic listening also  

implies an attentiveness to  the social,  historical  and contextual  situations  of  one’s  interactions and a 

willingness to question the biases that frame our perceptions and actions. A diverse classroom, where talk  

is privileged and has a more encompassing criterion for what constitutes mathematical discourse, calls for 

hermeneutic listening.

The criterion of coherent formalisability forces a shift in perspective for the teacher as to what to listen 

for. The teacher needs to go beyond listening for the correct answer, evaluating a student contribution, or  
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even understanding it and listen for coherence. That is going beyond evaluative and interpretive listening, 

the teacher needs to engage in reflective or hermeneutic listening. She needs to let the discourse evolve as  

long as it hangs together and seek ways of building on it. For example, as discussed in Section 5.3.2, 

some students  defined “same figures” as  “ two match-stick shapes  as  ‘same’  if  they have the same 

number of matchsticks along each side”. The matchstick shapes that students were considering when they  

made this definition were triangles, squares and rectangles. The definition is acceptable in this limited  

domain, if “same” is being used in the sense of congruent. However, two quadrilaterals that satisfy this  

definition need not be the “same” – either congruent or similar. The distinction between congruence and 

similarity needs to be made even in the case of triangles,  squares and rectangles.  Highlighting these 

distinctions and insisting on correct usage poses the risk of students disengaging from what they find 

mathematically interesting, especially at the beginning of an exploration, and especially in a low-resource 

context. As the teacher, I often chose to “go with the flow” getting students to articulate their ideas, in  

whatever language, informal and imprecise if need be,  before going on a corrective mode.  Doing so 

requires an alertness to the imprecision that is being allowed and potential conflicts that this could lead to.

Just as the teacher needs to listen for coherence and formalisability, she also needs to be aware of and  

listen for potential violations of CF. In the above example, the definition had a limited scope of validity,  

beyond which it would not hold and contradict other established results. The definition itself was not  

sufficiently precise - it was not clear whether the students considered “similar” figures as “same” too.  

Talk  encourages  vagueness  and  imprecision.  Since  the  intended  audience  for  the  communication  is  

limited to fellow students and the teacher in the class, who share certain ways of talking and have a  

shared understanding, students may not feel the need to explicate all  assumptions – for example, the 

scope of validity of a definition or generalisation – whether a conjecture holds for whole numbers, or  

integers or rationals. Among the conjectures discussed in Section 5.2.1, Conjecture S - 3, that the possible 

side-sums are consecutive numbers, took for granted that consecutive numbers are being used to fill the 

Magic  triangle.  We  unpacked  the  assumptions  underlying  the  conjecture  S-4  on  the  minimum  and 

maximum side-sums possible with numbers 3-8. Such implicit assumptions need to be made explicit and  

evaluated for incoherence or ambiguity.

Assumptions implicit  in  diagrams and representations  and incompatibility  in  definitions may also go 

unexamined and be potential sources of incoherence. We saw an instance of this in the different ways that 

students  chose  to  represent  the  moves in  the Leapfrogs  exploration  (see Section  6.2.4)  one of  them 

assumed the tokens to be distinguishable, while the others did not. Such assumptions if not unearthed and 

spelt out could lead to contradictions. We saw students redefining polygons (Section 4.2.1), “same shape” 

(earlier  in this section and in Section 5.3.2),  with their  definitions being different  from the accepted  
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textbook definitions. In one implementation of the Polygons exploration, students defined the exterior  

angle of a polygon as “360o - the measure of the corresponding interior angle”. While it is acceptable to 

work with such definitions in the context of the explorations, the teacher needs to be aware that they lead 

to results that may also differ from the accepted results. For example, the sum of exterior angles of a 

polygon defined as above will no longer be 360o. 

Ill-defined and inappropriate scope of generalisation is another potential source of incoherence. Amongst  

the examples discussed in various sections, we see an instance of this when students counted exterior  

right angles of a polygon as well and concluded that “there can be as many right angles in a polygon as  

there are number of sides” (Section 4.2.1). They arrived at this generalisation based on experimenting 

with only even-sided polygons and I suggested they experiment with some odd-sided polygons as well.  

So  the  statement,  while  a  valid  statement  for  even-sided  concave  polygons,  including  exterior  right 

angles, is not universally valid. While arriving at such results is a practice that is to be encouraged in the 

context of explorations the scope of validity of the statements also needs to be spelt out. 

Literature also points to some sources of incoherence. Bardelle (2013) suggests that the interpretation of 

verbal statements in a mathematical setting may happen based on everyday context and some sentences 

involving logical  connectives evoke meanings that  contradict the mathematical interpretation.  Student  

difficulties with regard to differentiating between an proposition and its converse (Hoyles & Küchemann, 

2002), understanding logical implications (Durand-Guerrier, 2003), tendency to think in terms of whole 

numbers  (for  example  not  considering  non-integer  solutions  to  equations,  extending  properties  like  

“multiplication makes bigger” or “quotient is less than the dividend” beyond their range of applicability) 

could all be potential sources of mis-communication if underlying assumptions are not interrogated. 

To sum up, the teacher needs to be aware of these different ways in which CF could be violated and be  

alert to any evolving incoherence. Some ways in which this could happen are:

 a) taken for granted and implicit assumptions b) Incompatible definitions, representations, notations and 

assumptions underlying these c) ill defined and inappropriate scope of generalisation d) erroneous use of  

conditionals and other logical connectives e) Implicit and common sense assumptions that are conflicting.

In  Section  6.1.4  we  noted  that  the  challenges  in  listening  and  responding  to  students’  mathematics 

expressed  in  “formalisable”  language,  are  further  exacerbated  by  the  teachers’  own  biases  and 

judgements. Language carries markers of class, caste and community and a language different from her 

own may prejudice the teacher leading her  to  take a deficit  view of the imprecise and incompletely 

articulated  student  formulations.  What  the  teacher  listens  to  and  notices,  and  how the  teachers  and 
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students respond in-the-moment in the classroom is shaped by the relationship between the teacher, the  

student and mathematics. The teachers’ deficit views of students and self-assumed lack of relationship 

between students and mathematics (what Herheim, 2020, calls an I-It relationship) are important factors 

that  shape  the  way students  and  teachers  respond  in  class.  In  Chapter  2,  Sections  2.2  and 2.1,  we  

discussed the harmful effects of  deficit  discourses and the marginalising effects of mathematics. The 

overarching goal of this study was to find ways of mitigating these marginalising effects. To this end, I  

suggested mathematical explorations which offer opportunities to move away from the rigid ways of  

teaching-learning mathematics induced by the textbook culture, privileging talk as a means to do and 

communicate  mathematics  in  the  context  of  explorations  and  adopting  a  more  accommodating 

acceptability criterion of coherent  formalisability for mathematical discourses in such contexts.  For a 

movement away from the margins, the hold of deficit discourses must also be disrupted. In the following 

Section, I examine how explorations and the criterion of coherent formalisability contribute to this end. 

6.4 Disrupting deficit discourses 

As  discussed  in  Section  2.3  deficit  discourses  focus  on  students’  shortcomings,  disregarding  their 

strengths. Literature reviewed in the section points to the existence, persistence and the harm caused by 

deficit discourses. The prevalence of such discourses lead to deficit frames being adopted. Researchers 

have suggested that teachers’ framing of classroom activities and student work — for example, either as 

something that needs to be corrected and moulded/enhanced to normative levels or as self-correcting and  

self-enhancing progression — drives much of their practice (Russ & Luna, 2013). Despite the power that  

culturally dominant frames draw from institutionalised social practices and policy documents, scholars  

have contended that “intentional reframing” is possible with  “substantial and ongoing work, including 

work at the level of individual teachers and work at the level of systems and institutions” (Louie et al.,  

2021). As discussed in Section 2.4.3,  scholars have suggested such reframing - strength-based framing 

(Scheiner, 2023), anti-deficit framing (Louie et al., 2021) - to deliberately highlight the abundant and 

varied strengths of marginalised students and a multidimensional framing of mathematical activity that  

includes  practices  such  as  sense-making,  connection-seeking,  experimentation,  collaboration  and 

argumentation to disrupt deficit discourses. This expands the meaning of mathematical competence and  

who can be seen as capable. 

Aligned with this orientation, I suggest that flexibility offered by explorations and the more encompassing 

nature of coherent formalisability as an acceptability criterion, support a non-deficit framing of what it  

means  to  do  mathematics  and  what  counts  as  mathematical  language.  By  privileging  mathematical  

practices  over  the  right  answer,  mathematical  explorations  enable  a  multidimensional  framing  of  

mathematical activity as described above. In the many instances discussed in the previous chapters, we  
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saw the potential of explorations to create opportunities for students to demonstrate their mathematical  

competence  by  engaging  in  disciplinary  practices,  generating  counterstories  to  the  idea  that  the 

marginalised (the “others”) are not capable of acquiring mathematics at a “normal level”. thus disrupting 

deficit discourses. Going further, I also suggest reframing the notion of “deficit” in terms of a “distance”  

rather than a “gap”. 

6.4.1 Disrupting deficit discourse by reframing “gap” as a “distance”

Gutierrez (2008) draws attention to a phenomenon related to the prevalence of deficit  discourses: the  

“gap-gazing” fetish in mathematics education and suggests that the studies of “achievement gap” offer a 

static picture of inequities in schools and rely on one-time responses from teachers and students. Moving  

away from “gap-gazing”, I suggest reframing the notion of “deficit” in terms of a “distance” rather than a 

“gap”. In contrast to a gap, distance suggests something transient or variable, something that would be  

traversed  or  covered  with  the  passage  of  time.  Accordingly,  recentering  the  margin  would  entail 

negotiating and traversing this distance. Further, in place of the "deficit - anti-deficit" binary, distance  

provides a spectrum, the possibility that a teacher who has a deficit perspective may yet listen and alter  

her  perspective.  Moreover,  the  distance  metaphor  also  suggests  that  traversal  may  happen  in  both 

directions, of the teacher towards the student and her mathematics, as much as of the student towards the 

mathematics of the teacher. 

The understanding of the separation of the margin from the centre as distance offers the potential of  

traversal towards the centre, at the same time illustrating the difficulty of such traversal. For the teacher in 

the classroom, this provides a spectrum of possibility and multiple traversal. This encourages listening to 

children, for their mathematical thinking per se, rather than whether it conforms to formal standards, even 

while being aware of distances to be traversed. Moreover, success in this enterprise helps the teacher 

overcome her own deficit perspective.

There is also implicit in this discussion a notion of potential that orients the move, from the margin to the 

centre,  in  terms  of  the  effort  needed.  Listening  to  children  and  noticing  their  own  mathematical  

expression are conscious epistemic acts by the teacher placed in a social norm that privileges formal  

mathematical  language  (typically  as  used by  the textbook),  and therefore  require  effort.  Further,  the 

teacher needs to articulate what is gained by formalisation and generalisation and share this insight with 

students. If students are made aware that their ideas and expressions can be “formalised” or aligned to the  

“accepted ways”, it may give them confidence to go further. This offers students an epistemology of  

effort, lacking which, they too only see the alienness of their own language to that in the textbook. 
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How is such distance framed in the interaction in the classroom? We suggest that distances could be 

framed in deficit terms, leading to the foregrounding of “deficit distances”, or alternatively in non-deficit  

terms, leading to noticing and giving importance to “potential distances”. An example of deficit distance 

is  the  gap  between  grade  level  expectation  of  mathematical  knowledge  and  students’  knowledge  as 

elicited through examinations. In contrast, the distance between what students are mathematically capable 

of and what is acknowledged by the institution (teachers, schools, exams, etc.), would be an example of  

potential distance. In non-deficit  listening and responding, teachers struggle with the tension between 

deficit  and  potential  distances  and must  negotiate  this  tension.  We now look at  the  potential  of  an 

acceptability criterion like coherent formalisability to disrupt deficit discourses in the light of this distance  

metaphor.

6.4.2 Coherent formalisability as indicator of potential distance

I suggest that coherent formalisability contributes to a broader framing of what constitutes mathematical  

talk.  It  enables  one  to  see  “potential  distances”  between what  students  can  actually  do  and what  is  

expected from them by assessments and teachers and thus supports a non-deficit perspective. The extent  

of missing elements - terminology, definitions, reasoning - that need to be supplied to map the discourse 

to a formal one is indicative of the distance between students’ mathematics and the mathematics that is 

expected of them. Thus criterion of coherent formalisability provides an indicator of the distance to be  

traversed. Moreover, it is the formalisability of the students’ mathematics that is kept in sight; thus the 

distance to be traversed is a potential distance. By drawing attention to the core value of formalisability in 

discourses that differ from the dominant conceptualisation of mathematical discourse, the criterion brings  

these within the fold of acceptability.  I  revisit  the analysis of  the proof attempts in Section 5.5.4 to  

substantiate this point. 

The proof attempts discussed in the section may be judged to be inadequate from a deficit perspective.  

Krithi’s started with a particular arrangement of numbers on the base of the triangle and tried to complete  

it so as to get a side-sum of 8. She concluded that this is not possible when she did not succeed in getting  

it.  It  can  be  interpreted  as  an  unwarranted  conclusion  based  on  trying  out  a  single  possibility.  V2 

articulated his algorithm for finding the maximum and minimum side-sums through one particular case.  

One may raise questions about its generalisability and if V2 was even aware of it. Both V2’s and Maran’s 

proof were articulated in informal terms, and in colloquial language. 

Krithi’s proof becomes a valid proof with some gap-filling in the form of extending her proof-scheme,  

from  “look  for  combinations  of  numbers  that  make  a  desired  side-sum”  to  “look  for  all  possible 

combinations of numbers that make a particular side-sum”. V2 used a representative example to state the 
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generality that he has arrived at.  Maran “specialised usefully” (Polya, 1954, p. 17) when considering  

those combinations of numbers that would have 6, the largest available option, as one of the numbers. All  

three proofs can be rearticulated in more formal terms as can be seen from Section 5.5.4. Krithi’s proof  

needed some augmentation, and V2’s and Maran’s proof could be mapped on to a formal proof step by 

step. The only missing element was symbolisation. Examining the proofs for formalisability brings out  

what is mathematical in them, creating the possibility of countering a deficit view. It is worth noting that  

the heuristics of “choosing a representative example” and “specialising usefully” that  V2 and Maran  

adopted are powerful problem solving approaches. These can be considered as potential distances. I thus 

suggest  that  framing  the  difference  between  students’  informal  articulations  and  the  corresponding 

formalised versions as a potential distance allows one to see the extent of the distance that needs to be  

traversed to formalise it.

All three students believe that they have proved their claims. On their own, they do not know how much 

effort would go into proceeding further and arriving at an “acceptable proof”. When teachers show that  

their proof idea is formalisable, it may give them confidence and motivation to go further. Similarly, 

when students make inconsistent assertions or use ambiguous terms, rather than rejecting such use (from 

a deficit perspective) pointing out the distance to consistent assertions (if possible) and precise terms  

would help student effort in subsequent discussions. 

In Section 6.1.4, on the other hand, we see an example where I missed out on “hearing” what Sumi was 

trying to say, because her way of expressing the transformation as “interchanging the numbers in the 

inner  and  outer  triangles”  was  different  from my way  -  a  median  swap.  Rather  than  focus  on  the  

“formalisability” of her utterance, and how I could help her clarify it, I was perhaps fixated on my own 

way of thinking about the transformation and missed an opportunity. This could be interpreted as the 

reassertion of deficit framing. 

The examples of students’ engagement with mathematics discussed thus far are taken from exploratory 

tasks. Explorations inherently offers some flexibility to the teacher in enacting it in the classroom, as  

compared to regular school lessons. The teacher has the freedom to define what she expects from her  

class based on the requirements for the exploration at  hand and how far she expects her students to  

progress in it given their mathematical background. So it may be easier for a teacher to take a more  

accepting view of students’ mathematics and language. However, in a curricular context, the expectations  

are set by externally defined curriculum and assessment schemes and the teacher has very little choice.  

Although these might induce a deficit perspective, the possibility of unearthing potential distances to and 

from students’ mathematics do exist.
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6.5 Mathematical engagement in curricular context

In this section I address Research Question 4:

What could mathematical engagement look like in curricular context? (see Section 3.1)

As  noted  in  Section  3.1.  I  tried  to  bring  in  the  flexibility  enabled  by  explorations  and  coherent  

formalisabilty  to  the curricular  sessions as  well.  Drawing on some instances  from these classes  that  

remained  salient  in  my  memory,  I  point  to  what  mathematical  engagement  could  be like  in  non-

exploratory  contexts  when  the  teacher  is  more  accepting  of  students’  mathematics  and  languages.  

Reflecting on these instances, I draw attention to the potential distances and the possibilities of traversing  

such distances. A study of curricular contexts was not part of the initial design and happened because of 

the schools’ request to engage in some curricular teaching as well. I think it is of value to share these  

examples as indicators of the potential of flexible pedagogies to disrupt deficit discourses.

6.5.1 Potential distance in the curricular context: An example

This instance, which happened when I was solving some Mensuration problems, also serves to illustrate  

“potential distances” - the distance between what students are mathematically capable of and what is  

acknowledged by the institution (teachers, schools, exams, etc.). The square root algorithm is something 

which I  have usually seen students following without knowing why it  works.  Even teachers  tend to 

reproduce  the  algorithm blindly  and  stumble  in  explaining  the  rationale  behind  it.  I  did  not  expect 

students to raise the questions that they did in the instance described here.

In one of the classes with Grade 9 students we were practising problems on area and perimeter. We were 

on a problem that asked to find the area of a rhombus given its perimeter and one diagonal. This implied  

their finding the length of the other diagonal using Pythagoras theorem and for this they had to find a  

square-root. The calculation involved was √(402−242) , which they evaluated as √1600−576  = 

√1024  and used the division algorithm to find the square-root of 1024 as in Figure 6.6. As they went  

through the calculation, a student asked for the rationale for the step of doubling the number currently 

“at the top'' as we move to the next iteration in the algorithm (The circled numbers in Figure 6.6) and 

why one should put the same number at the “top and side” (the digit 2 in the figure). I suggested that they 

use  the  identity  by  which  the  calculation  becomes  that  of  finding  the  √(40+24)(40−24) ,  i.e., 

√64×16 , which is easily evaluated as 8 × 4 = 32. They had not considered this approach to the  

problem  and  were  surprised  at  the  ease  with  which  the  answer  came  out  and  started  clapping 

spontaneously.
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Figure 6.6: Square-root of 1024

This  square root  algorithm was something which the students  had learnt  in  earlier  grades and could  

execute correctly. Most likely these students had not been told the rationale for the algorithm, and they  

had not tried to make sense of it nor questioned why it works. In this instance they were trying to make 

sense of it and raised pertinent questions. 

While being accepting of the students’ approach to the problem using the square root algorithm, I offered  

an alternate suggestion which simplifies the calculation and is a method that can be used in other contexts 

as well. My suggestion also points out how the algebraic identities could be used to do calculations in the 

context of geometry as well, an attempt to draw connections between the seemingly disparate content 

areas of school mathematics - arithmetic, algebra and geometry. The students were quick to notice and  

appreciate this and adopt it in subsequent problems. We see in this the students’ openness to alternate 

strategies and willingness to adopt a strategy different from theirs when they are convinced of the benefits  

and to appreciate the connection between “algebra and perimeter problems” as they said. I now describe 

another instance which brings out some potential distances.

In a subsequent class when we were solving problems on volume of solids, I assigned them the problem of  

finding the side-length of a cube whose volume is 3125 cc. When I realised that this would lead to an 

irrational number as an answer I offered to change the numbers, but they wanted to go ahead with the 

same number and did not want me to make it easier for them. Having found that 3125 = 5
5
, they said they 

would have a 5 in the answer corresponding to 5
3
 and asked what they should do with the remaining two 
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5s. I suggested that they write the answer as 5 . ✕
3√25. They then wanted to work back and check their 

answer by multiplying this number by itself three times to see if they got 3125 as the result. To multiply 

3√25 by itself, they asked me how to multiply when they did not know the last digit and the last digit did  

not even exist for such a number. 

In this instance, giving them the number 3125 was a calculation error on my part, I had intended to give  

them 56 and gave them 55 instead. When I realised my mistake, I offered to correct it, but they wanted to 

go  ahead  with  what  they  saw  as  the  more  difficult  problem.  This  points  to  their  persistence  and  

willingness to engage with difficult problems. Another point that is striking in this description is that 

having found an answer, they wanted to back calculate and check if their answer is correct. Their question 

related to what they should do with the “remaining two 5s” might give the impression that  they are 

responding mechanically,  but  it  is  clear that  attempts  at  sensemaking are also being made alongside 

execution of procedures. 

The representation 3√25 can be considered an algebraic expression and as a number that corresponds to a 

point on the number line. While I was working with the algebraic representation 3√25, the students were 

working with the number that 3√25 stands for. So they extended the familiar schema of the multiplication 

algorithm to this number as well. The discomfort that students seem to be experiencing here is the lack of 

an operational meaning for 3√25 and their question on how they would carry out the multiplication 3√25 ✕ 

3√25 can be interpreted as a demand for an operational semantics of product terms such as these in terms  

of a procedure for multiplication. The interpretation of  3√25  ✕
3√25 as a number that can be used in 

calculations, rather than as an algebraic expression, is one which is seen among all students and not just 

those from marginalised contexts.  The students  here  were trying to  untangle  the two representations 

encoded in one symbol 3√25. 

In both these instances the students used their agency to ask critical questions to the teacher to understand 

content that I have seen even some teachers accept unquestioningly. The students’ attempt at seeking and 

negotiating meaning rather than blindly following procedures is an instance of what I termed potential 

distance. The teacher’s attempt at creating an atmosphere that builds the confidence to question, challenge  

each other and the teacher,  and assert  themselves can be seen as an effort  to highlight  the potential  

distance. 

In Section 6.4.1, we noted that traversal of the distance may happen in both directions, of the teacher 

towards the student and her mathematics, and the student towards the mathematics of the teacher. The  

above instance can be considered an example of effort by the students in traversing the distance to the  
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teacher’s mathematics. In the following section, I illustrate how a movement on the teacher’s part towards 

the student’s mathematics opened up the possibility of a potential future movement on the student’s part  

towards more formal mathematics. In analysing the instance, I also highlight how coherent formalisability 

enables us to see the distance between the student’s approach to the problem and the textbook defined 

approach.

6.5.2 Traversing the distances to students’ mathematics in curricular contexts: An example

 In this section I present and analyse an instance from a session where the class was doing some problems  

on percentages and discounts. In this instance a student, Selvam, came up with his own way of calculating  

a percentage and insisted on going ahead with it, despite my initial response of suggesting an “easier”  

(and textbook given!) method.

In response to the task of finding out “what percentage of 150 is 50?” student Selvam in Grade 9 stated 

that dividing a number by 100 gives one percent of the number. He calculated 150/100 as 3/2 and I 

helped him interpret it as “one and a half”. He then added one and a half and one and a half to say that 2  

percent of 150 is 3. He then continued as 2% of 150 is 3, 4% is 6, 6% is 9, 8% is 12 and so on, intending  

to keep adding 2 and 3 successively till he gets x% is 50. I noted his adding in “two lots of one-and-a-

half” at each step and tried to nudge him into “successive doubling”, i.e., from 4% is 6 to 8% is 12 and  

16% is 24 and so on, to reduce the tedium of calculation, but he insisted on doing it his way and refused  

to take my cue, saying “Porummaya calculate pannaren miss” (let me calculate patiently/slowly). He 

went on adding in steps of 2% till he reached 32% is 48 and 34% is 51, and hence concluded that 50 is a 

little less than 34% of 150.

When viewed strictly with an expectation defined by the curriculum, one might take a deficit view of this 

response and note the gaps in the student’s knowledge. Having been introduced to percentages in Grade  

7, one might expect a Grade 9 student to answer this question as a matter of course. In comparison, this 

student’s struggle to interpret 3/2 ( which he initially said was 3 rupees and 20 paise), later understood as 

one-and-a half, when he saw that there were as many 100s in 150; his reluctance to divide by a fraction  

( 50 ÷ 3/2 ) and instead attempting to repeatedly add one-and-a halves (in lots of 2) to find out “how many 

one-and-a-halves are there in 50?” may seem “deficient.” The expected way of solving the problem using  

the school taught formula would be as follows:
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If  this  is  used  as  a  reference,  then  we  may  not  be  able  to  make  any  inference  about  Selvam’s  

understanding of the concepts. But the method adopted by Selvam left no doubt about his conceptual  

understanding. He found out 1% of 150, and then calculated out how many lots of this 1% makes 50. It is  

clearly formalisable as the unitary method, a often used procedure in school mathematics. What he does 

differently is that he formalised the division problem as a repeated addition problem and used a “counting 

based  strategy”  (Venkat  et  al.,  2021)  to  arrive  at  the  answer.  Also,  he  preferred  the  everyday  

representation  of  one-and-a-half  over  the  “school  taught”  representations  of  3/2  or  1.5.  This  use  of 

everyday representation enabled him to solve the problem that would have otherwise been inaccessible to 

him. The distance that needs to be traversed is not conceptual, but in terms of the representations and the 

algorithms that  he  chooses.  The  question  is  one  of  “efficiency”  of  Selvam’s  algorithms  and 

representations but not their correctness. Analysing the instance from the perspective of “distances” , we 

see that the apparent “deficiency” or gap from “grade appropriate content knowledge” is only superficial,  

based on an arbitrary definition of  what  constitutes  grade appropriate  content  knowledge,  and not  a  

deficiency. The distance here stems from the narrow conceptualisation of school mathematics, what are 

considered acceptable ways of doing it and the constraints, including that of allotted time, imposed by  

prevailing assessment schemes. 

Noting that Selvam initially used a doubling strategy, perhaps in order to avoid the inconvenience of 

adding a fraction, one-and-a-half, multiple times and work with a whole number 3 instead, I suggested  

using it repeatedly to reduce the number of calculations. But Selvam insisted on continuing in his own 

way which I accepted. This can be interpreted as Selvam using his agency to hold on to the mathematics  

that he owned, and by doing so, creating a possibility for me as teacher to traverse the distance to this  

“other” mathematics. I interpret my acceptance of his approach as a willingness on my part to accept  

Selvam’s  implied  invitation  to  his  mathematics.  This  creates  the  possibility  of  a  potential  future 

movement on Selvam’s part towards a more formal approach to carrying out the division operation. 

After this instance I noted a change in Selvam’s willingness to attend my classes (which were optional  

and during after school hours) and his engagement in class. In the subsequent academic year, contrary to  

the regular schoolteacher’s marking Selvam as a potential “disrupter” of the class, he continued to be an 

enthusiastic participant in my class, eager to complete his work and help others as well.

I followed a pedagogy similar to that occasioned by explorations in the curricular sessions as well, and 

allowed  space  for  students’  ways  of  doing  mathematics  as  described  in  the  above  episode.  Other 

pedagogical moves like not being particular about classroom organisation and allowing students to sit  

where they liked, being accepting of their unwillingness to write in notebooks, consciously adopting their 
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language, enlisting their support in the data collection process by assigning them to operate the audio  

recorders (see Section 3.8), letting them take the role of the teacher occasionally, and over and above all  

creating an atmosphere of care and respect for each other contributed to building a relationship between 

me  and  the  students.  This  might  have  been  a  factor  that  influenced  their  classroom  response  and 

engagement. Some of these were feasible because I did not have the mandate of completing the syllabus  

and may not  be possible  for  a  regular  teacher.  But  this  study makes evident  the need to  listen and  

understand students’ mathematics without taking a deficit perspective to enable better engagement with 

mathematics.

6.6 Summary

Based  on  my  experience  of  facilitating  explorations  in  marginalised  contexts,  my  reflections  and  

discussions of these experiences with collaborators, I identified challenges that a teacher could face as she 

sets out to do explorations in similar contexts. Key among these are the absence of ready-to-use material  

that could be drawn on, the demands on content knowledge arising from the need to encounter unfamiliar  

mathematics,  the need to  recognise  and respond to students’  mathematics  expressed in  informal  and 

possibly unexpected ways. 

Building on the idea of Hypothetical Learning Trajectories, I proposed guidemaps prepared by research  

mathematicians as support for teachers to facilitate explorations. I identified the desirable features of such 

guidemaps. They should ideally spell out the key insight that can lead to a resolution of a problem, the  

various intermediate results leading to a solution, the multiple trajectories along which an exploration  

could progress, the mathematical practices that may be salient in a particular exploration, the prerequisite  

knowledge required and the task specific choices possible and their implications. These features provide 

the teacher with the content and pedagogical knowledge required to facilitate an exploration. 

Explorations bring about many contingent situations and the teacher needs to be prepared to respond to 

these in-the-moment. I draw on literature related to the “Discipline of Noticing” that suggests cycles of  

reflection,  preparation,  noticing  and  recognising  salient  events,  and  labelling  them  as  ways  of 

strengthening the teachers responsiveness. I also illustrate some ways in which coherent formalisability  

could be violated, so as to strengthen teacher sensitivity in this regard. 

Recognising  the  need  to  overcome  deficit  perspectives  to  enable  responsive  listening  to  students’ 

mathematics, and the need to disrupt deficit discourses, I further suggested re-framing perceived gaps as 

potential  distances  to  be  traversed.  Potential  distances  are  the  distance  between  what  students  are  

mathematically capable of and what is acknowledged institutionally. I also examined how privileging the 

formalisable over the formal facilitates attention to potential distances. 
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An  exploratory  context  with  the  potential  to  create  opportunities  for  students  to  bring  out  their  

mathematical competence is rich with examples of potential distances. I suggest that it  is possible to  

unearth potential distances in a curricular context too and illustrate this through an instance. Through 

another example, I also illustrate actual and potential traversal of this distance - both from the student to 

mathematics and between the teacher and the student. These instances also point to what mathematical 

engagement could be like in a curricular context given a non-judgemental and inclusive environment.
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7 Conclusions, Limitations, and Further Work 

In this concluding chapter, I summarise the thesis and discuss some implications that follow from the 

study.  In  Section  7.1,  I  recapitulate  the  key  points  from the  thesis.  In  Section  7.2,  I  discuss  some 

implications of the study and in Section 7.3, I point to some limitations and directions of future work.

7.1 Thesis summary

In this section, I briefly spell out the background of the study and its motivation, the questions that I 

attempted to answer, the methods adopted, and the findings. 

7.1.1 Background

Starting from the well-acknowledged fact that mathematics contributes to the marginalisation of some 

students, we identified three dimensions - performance dimension, disciplinary dimension, and language 

dimension - along which this happens.  The performative dimension arises from the “overvaluing” of 

mathematics  in  popular  culture,  making  mathematics  performance  critical  to  access  jobs  and 

opportunities, even where such performance is not relevant. Also, the personal experience of learning  

mathematics  may  negatively  impact  the  confidence  and  self-perception  of  many  students.  The 

disciplinary dimension is rooted in what is perceived as the “right way” of doing mathematics, especially 

in a school context. A focus on adherence to taught procedures and the expected responses puts those who 

deviate from these at  a disadvantage.  The formal language of mathematics with its  predominance of  

symbols and specialised linguistic structures that condense meaning into precisely articulated phrases also  

poses an entry barrier to the discipline. The broad concern of this study was to come up with ways of 

mitigating the marginalising effect of mathematics. While changing public perception of mathematics and 

the importance accorded to it in society requires systemic measures, I focussed attention on the measures 

a teacher could take in addressing the problem. 

Research in mathematics education points to the exercise paradigm prevalent in schools, where students  

solve problems to gain mastery over prescribed concepts and procedures and are penalised for mistakes,  

as one of the reasons leading to the marginalisation of some students. Also, it is widely acknowledged  

that  many  students  have  difficulty  handling  the  predominantly  symbolic  language  of  mathematics. 

Scholars suggest a broader conceptualisation of what it means to do mathematics and building on the 

resources that students bring - be it their lived experience or their language - to help them go further, as 

ways to address these difficulties.  Based on these, explorations or open tasks that allow for multiple  

approaches, open up possibilities for multiple questions and answers, and create opportunities for students 

to engage with mathematics in their own language, drawing on what they know, seemed to have the  
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potential to present an alternative to the school mathematics paradigm. Explorations shift focus from the 

one right  answer to the practices of mathematics and mathematical  thinking and allow for a broader  

conceptualisation of doing mathematics than that frequently encountered in schools. They also allow for 

engagement  at  multiple  levels  in terms of the mathematical  content  knowledge and facility with the  

mathematical language required. While explorations are generally believed to be useful for those who are  

proficient  in  mathematics,  their  potential  to  support  mathematical  thinking  of  students  who  are  

mathematically marginalised has not  been sufficiently explored, especially in the Indian context.  The  

study aimed to investigate the potential of mathematical explorations to support mathematical thinking at  

the margins and to recentre the margins wedged by mathematics.

7.1.2 Questions and methods

 The key questions that I attempted to answer are

● RQ. 1. What task features support mathematical thinking at the margins?

● RQ. 2a. What is the nature of mathematical thinking seen as students at the margins engage with 

explorations?

● RQ. 2b. How do they communicate their mathematical thinking?

● RQ. 2c. How does language support or hinder mathematical communication?

● RQ. 2d. What counts as mathematical discourse in such contexts?

● RQ. 3. What does facilitating explorations at the margins entail for the teacher?

● RQ. 4. What could mathematical engagement look like in curricular contexts?

Answering these questions  required that  I  observe students at  the margins engaging in mathematical  

explorations on a sustained basis, understand the nature of thinking that it gives rise to, and the nature of  

demands that it places on the students and teacher. Given the rarity of such a situation, I decided to create 

the context for the study. Supported and mentored by a mathematician and an educational researcher, I  

designed  and  implemented  mathematical  explorations  in  two  schools  catering  to  socio-economically 

disadvantaged students. I facilitated explorations in these schools on a weekly basis and pitched these as 

optional after-school enrichment classes. I adopted the stance of a researcher-teacher and investigated my 

own classes to understand what it entails for students at the margins to engage with exploration. I audio-

recorded the sessions, maintained a teacher diary, and had the class observed by an independent observer  

whenever possible. Ongoing discussion with the research team of the day-to-day evolution of the classes,  
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in the light of the audio recordings and the events that stood out for me, constituted a form of in-situ  

analysis. The audio recordings were listened to and discussed multiple times and student response to the  

module was understood, interpreted, and described. This post-facto analysis led to the identification of the 

instances discussed in this study.

7.1.3 Findings

Given the goals of the study to address the disciplinary and language dimensions of the margins, it was 

important to create opportunities for students to make their mathematical thinking visible without the 

formal  language being a barrier  to do so.  The tasks  needed to be sufficiently  open to accommodate  

multiple goals, methods, and answers. These requirements suggested flexibility and accessibility as the  

design  principles  guiding  task  development.  I  further  sought  to  elaborate  and  operationalise  these 

principles by identifying specific features to be incorporated in the tasks. I addressed this question in 

Chapter  4  of  the thesis  and described task features  that  enable  flexibility,  and accessibility;  and the  

student engagement with the tasks consequent to these features.

Task formulations that balance openness and specificity, affordances to function at multiple levels of  

formalisation, and branch out along multiple trajectories are features that allow for flexibility. Flexibility  

in  tasks  makes  it  possible  for  teachers  to  suitably  tune  the  activity  and  tasks  so  that  students  are  

encouraged to engage.  However, without some specificity with respect to the goals to be pursued or  

direction to be taken, students may be at a loss as to how to proceed. Therefore the task formulation  

should be such that these aspects are balanced. When students have limited access to the formal language  

of mathematics, affordances to function at multiple levels of formalisation becomes important. Also, The 

starting points for an exploration should ideally offer students a choice of goals or multiple trajectories to 

pursue and be generative of further questions.

Dependence on minimal prerequisite content knowledge, affordances to work with physical material - 

hands-on  or  imagined,  and  incorporation  of  multiple  entry  points  were  identified  as  features  that  

contribute  to  the  accessibility  of  tasks.  An  important  feature  that  allows  students  from  different 

mathematical  backgrounds to  engage with tasks  is  a minimal  dependence on specialised prerequisite  

content  knowledge.  When  such  dependence  is  unavoidable,  one  needs  to  explore  the  possibility  of 

unobtrusively passing on the required prerequisite knowledge to students or helping them arrive at it. I  

observed that when the starting point for an exploration involves working with physical material, it allows 

for a solution in terms of the material and does not rely on symbol manipulation. This serves as a first step 

in the transition to a more formal framing and solution. Having multiple entry points or several easily 

approachable trajectories ensures that students who are unable to solve a particular problem or follow a 
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particular trajectory have an alternate path to pursue. Problems that have more than one solution like the  

Magic triangle puzzle open up the possibility that students can find at least some of these solutions if not 

all, and make some progress. It should also be stated that making tasks accessible does not imply reducing 

the intellectual challenge to the students. 

In  Chapter  5,  adopting  Burton's  framework  of  mathematical  thinking,  I  discussed  the  nature  of 

mathematical  thinking  seen  as  students  engaged  with  explorations  and  the  means  they  adopted  to 

communicate their thinking. Students performed mathematical operations such as comparing, classifying,  

making correspondences, studying relationships, engaged in mathematical processes like specialising and 

generalising, conjecturing and convincing, and built on already found results in the process of problem-

solving.  A high  level  of  engagement  was  seen  and elements  of  mathematical  thinking  described  in 

literature were discernible in the way students explored. This points to the feasibility of mathematical  

explorations in a marginalised context and their potential to support mathematical thinking. 

The means of communication students adopted were marked by the use of multiple languages (English  

and Tamil), multiple registers (everyday register and mathematics register), interspersing of formal and 

informal  language,  and  use  of  means  of  communication  such  as  diagrams  and  gestures.  The 

communication was primarily oral. Writing was used as a means to support their thought processes rather  

than  to  communicate  their  work  to  others;  perhaps  because  of  this  students  preferred  to  write  on 

impermanent surfaces like the blackboard or classroom floor and not in notebooks. The discourse differed 

from the characterisations of mathematical discourse in the research literature in that word- use was not  

reified, there was limited use of symbols and students pointed to multiple examples to establish the truth  

of  a  proposition  (inductive  means)  rather  than  prove  it  deductively.  However,  students  also  offered 

mathematically convincing justifications for some of their stated conjectures. Their talk included half-

formed sentences, frequent use of pointing words, and was imprecise and vague at times. Though the talk  

deviated  from  accepted  characterisations  of  mathematical  discourse,  it  was  rich  in  elements  of 

mathematical thinking. 

In  order  to  avoid  deficit  perspectives  of  mathematical  thinking  expressed  through  “unconventional  

means”  there  is  a  need  to  define  a  more  accommodating  acceptability  criterion  for  what  counts  as  

mathematical discourse. However, the role of formalisation in teaching-learning cannot be overlooked 

because  it  enables  access  to  opportunities  for  higher  education  and  professions  as  well  as  to  make  

progress in mathematical learning. I also noted that  progress in an exploration was also made easier  

through formalisation. So there is a need to balance the insistence on the formal with the need to be 

accepting of students’ mathematics. Inspired by the practice of research mathematicians who draw on  
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informal means during the process of discovery,  keeping in sight the formalisability of their  thought 

process to ensure consistency, I proposed coherent formalisability as such a criterion. I defined coherent 

formalisability as the potential  of  a section of discourse to be mapped to a formal one by supplying 

missing terminology, definitions, and reasoning, in a uniform manner.

The  flexibility  afforded  by  explorations  and  the  more  lenient  acceptability  criterion  of  coherent  

formalisability places demands on teachers. In Chapter 6, I discussed the additional challenges that this 

brings for the teacher based on the challenges I faced in the process. These include the non-availability of 

ready-to-use reference material,  the need to know mathematics content  and practices beyond what is  

learned through courses, the need to respond to students’ mathematics in-the-moment, the need to listen  

and understand the ways of communicating mathematics adopted by marginalised students from a non-

deficit perspective and absence of prescribed assessment criteria.

I suggested guidemaps prepared by research mathematicians and educators as teacher support to facilitate 

explorations. I also identified desirable features of such guidemaps: they should spell out the key insights  

that could lead to the solution of a problem and the intermediate results, map out the different possible  

trajectories through which the exploration could progress, describe the ones that students are likely to take  

and the mathematical practices that are salient in an exploration. Drawing on literature, I discussed the 

practices of the Discipline of noticing and hermeneutic listening which could help the teacher listen and 

respond  to  students’  mathematics  in-the-moment.  I  also  discussed  some  ways  in  which  coherent  

formalisability could be violated so as to give the teacher some pointers to be alert to. 

Key to helping the teacher listen to and understand students at the margins is overcoming her own deficit  

perspectives. I suggested reframing perceived deficits as a “distance” rather than a “gap” as a step in this  

direction. I argued that the extent of missing elements and reasoning that need to be filled in to map  

students’  discourse to  a  formal  one  is  indicative of  the distance  between their  mathematics  and the  

mathematics that is expected of them. By focussing on this distance, the coherent formalisability criterion 

facilitates attention to what students are capable of and ways of improving on that, rather than on the  

deficits.  In  the  final  section  of  the  chapter,  I  argue  that  coherent  formalisability  as  an  acceptability 

criterion is also applicable in curricular contexts.  Looking at students’  mathematics through this lens 

reveals that they are indeed capable of doing much more than what is expected of them by the institutions 

(school, assessments). I termed this distance between their capabilities and institutional expectations as a  

“potential distance”. I also noted that attention to coherent formalisability enables traversal of distances  

between the teacher’s and students’ mathematics. 
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7.2 Conclusions and Implications

The study demonstrates the feasibility of enabling access to mathematics at the margins and the potential  

to mitigate the marginalising effects of mathematics through enacting well-chosen explorations bringing 

in flexibility and the move of privileging talk. Having a more accommodating acceptability criterion -  

coherent formalisability in talk rather than formal mathematical language - and adopting a non-deficit  

perspective  reveals  that  students  at  the  margins  are  capable  of  doing  much  more  than  what  their 

performance in standardised assessments indicates. Though the study itself was done in a school catering 

to students from socio-economically disadvantaged backgrounds, I suggest that the conclusions also apply 

to  ‘mathematically  marginalised  students’  from  any  background.  Based  on  this  the  study  has  the 

following implications:

The curriculum needs to be reorganised to allow time and space for explorations and talk.: An often-

heard reason for opportunities not being created for students to engage with explorations is that they take  

away from the limited time available to “cover the syllabus” for the examination. The structured nature of  

assessments,  which are  predominantly written,  influences  the nature  of  teaching that  happens  in  the 

classroom. Time is devoted to solving specific problem types and helping students refine their writing in 

the organised way that is expected in the year-end evaluations. When the focus is on producing a solution 

written out in a preferred style, talk (and even thought!) gets relegated to the background. In the course of  

this study, I noted that students may be unwilling to write and offer the written work for scrutiny even 

when inclined to talk freely. In this study, writing was done to the extent that it was required to support 

the thought process. But they were eager to talk and share their insights and solutions. In a marginalised 

context, where proficiency in written language may be limited, an insistence on writing hinders students  

from expressing their ideas and demonstrating their mathematical competence. Therefore, privileging talk  

emerged as a way of supporting students to do this. The focus on end-of-chapter exercise problems leaves  

little room for students to find things for themselves. This study demonstrated that explorations along  

with  pedagogies  that  support  explorations,  could  be  a  countermeasure  that  brings  students’  talk, 

discussions, and discoveries to centerstage. This implies that there should be committed effort to allot  

time  for  explorations  in  the  school  schedules  and  to  create  opportunities  for  and  validate  oral  

communication of mathematics. This may involve conceptualising different classroom activities that draw 

on different discourse practices. 

An important learning from the study is that contrary to the popular belief that one requires a certain level  

of  mathematical  maturity and facility with formal mathematics to be able to engage in mathematical  

explorations,  students  in  marginalised  contexts,  who  are  supposedly  “behind”  their  peers  in  grade-

appropriate  content  knowledge  can  explore,  solve  problems,  build  on  solutions  and  engage  in 
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mathematical practices. The many instances described in the thesis attest to the extent of mathematical 

thinking  they  are  capable  of.  Therefore  the  recommendation  that  space  and  time  be  allotted  for  

explorations applies to schools across contexts. The flexibility afforded by explorations and talk enables  

even  students  to  whom  the  formal  language  of  mathematics  proves  to  be  a  barrier  to  engage  in 

mathematical thinking.

Assessments need to be broad-based and not rely entirely on facility with formal language:  It is well 

acknowledged that assessments drive the content being covered in class and the pedagogy being adopted.  

Therefore  for explorations and talk to  become a part  of  the school  context,  it  is  also necessary that 

assessment formats be reconsidered. The dominant means of assessment, written exams, privilege the 

formal. This puts at a disadvantage students like Selvam whose approach to a percentage problem was  

discussed  in  Section  6.5.2.  Though based  on  a  sound understanding  of  percentages  and  the  unitary 

method, there is no way that he can show his understanding within the prevalent assessment formats. 

Also, he will have to factor in the time restrictions of the exam, before going through the kind of lengthy 

calculation that he did. While it is necessary for him to learn more efficient or “better” ways of solving 

the problem, the first step to this is acknowledging what he knows and building from there. So I suggest  

that  the  assessments  need  to  be  designed  that  take  a  favourable  view  of  informal  approaches  like 

Selvam’s.  Also,  there  should  be  scope to  communicate  understanding  through means other  than  the 

formal  language  of  mathematics  -  orally  or  through  gestures  or  diagrams  or  other  means  that  are  

comfortable for the student. 

Teacher education needs to include relevant elements for a pedagogy for explorations:  In addition to 

content knowledge demands over and above the school curriculum, the key challenges that are likely to 

be  faced  while  facilitating  exploration  are  listening  and  responding  to  students'  mathematics  and 

refraining from taking a deficit perspective. Making explorations part of a regular school schedule would 

also  imply  equipping  teachers  with  the  necessary  means  to  meet  these  challenges.  One  part  of  this  

involves  the  creation  of  material  in  the  form of  guidemaps  as  discussed  in  Chapter  6  of  the  thesis 

accompanied by some illustrative student work. In addition, teacher education programmes should allow 

time and space for doing mathematical explorations for the prospective teacher. More importantly, the  

teacher needs to be enabled to create a classroom culture where the students can express themselves and 

share their solutions or findings without the fear of being ridiculed or judged. Such a classroom culture  

based  on  care  and respect  for  each other  and for  mathematics  itself  can be a  resource  that  enables  

explorations. 

Teacher education programs should incorporate elements that explicitly hone the teacher’s expertise in  
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noticing  students’  mathematical  thinking  and  significant  moments  (significant  for  their  potential  to 

enhance and advance students’ mathematical thinking) in the complex scenario in a class. There is also a  

need for teachers to reflect on their practice and be aware of what they notice and the frames that they  

adopt when interacting with students and mathematics. When framed in terms of a disability, a deficit  

perspective dominates and this has implications for inclusive pedagogy. Teacher education programmes 

should  have  a  component  that  enables  such  reflection  and a  deliberate  focussing  of  attention  to  the  

resources students bring thus enabling a shift to anti-deficit and strength-based framings. 

I  suggested  that  focussing  on  formalisability instead  of  formalisation of  students'  mathematics  is  an 

enabler  of  anti-deficit  framing  and  is  a  way  of  highlighting  what  students  are  capable  of  doing  as  

compared to what is expected of them. The experience of trying to formalise students’ mathematics by 

augmenting it as necessary will enhance the teachers’ sensitivity to formalisability. The teacher also needs 

to be sensitised to ways in which coherence could break. In the preceding paragraphs, I highlighted some  

pedagogical elements that support an exploratory pedagogy. There is a need to identify such elements and 

ways of providing teacher support to facilitate explorations and incorporate these in teacher education 

programmes. 

7.3 Limitations and further work

This  study  focussed  on  student  mathematical  thinking  at  the  margins,  ways  that  they  express  their  

thinking, and the influence of flexibility on their mathematical engagement. The study was not designed  

to investigate in depth the role of the teacher in enabling this flexibility. The insights that I offered on the  

challenges a teacher might face in this and the suggested workaround of guidemaps are based on the  

reflections and experience of the research team. Being a first-person research conducted outside of the  

normal class timetable, the efficacy and the day-to-day challenges a teacher would face in implementing  

explorations have not been looked into. Moreover, teaching operates within a community of practice, and 

recentering  the  margins  would  be  possible  only  if  teaching  communities  internalise  anti-deficit  

perspectives and learn from each other. This requires a different line of research than the one undertaken  

here.

The guidemaps that I suggested were limited to the mathematical and pedagogical aspects of facilitating  

an exploration. Crucially, the guidemap also needs to inform the teacher of ways of working with the 

informal language. Questions like ways of structuring student talk, building bridges between students’ 

ways  of  talking  and  the  formal  language,  and  moving  to  more  formal  ways  of  talking  need  to  be  

addressed  in  the  guidemap.  The  current  experiential  basis  for  the  guidemaps  needs  to  be  further  

strengthened by drawing on teaching theories and principles of task design. We need to work further with 
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teachers, involving them in developing such guidemaps, and gain a deeper understanding of both the  

usefulness of our guidemaps and teachers’ resourcefulness in using them effectively. 

In addition to guidemaps, there is also a need to develop assessment rubrics for explorations. What does it  

mean to “progress” in an exploration? What are pointers that one can look for to make sure that students 

are  making  mathematical  gains,  for  instance,  progressively  moving  towards  more  formal  means  of 

communication? Such rubrics are important both from the perspective of student evaluation and providing 

teacher support to facilitate explorations.

Writing is an important aspect  of  learning mathematics.  Our primary focus has been on talk and we  

relegated writing to the background in the interest of keeping up student engagement. However there is a 

need to study the nature of writing that an exploratory context calls for, the kind of writing that students  

produce in such contexts, how their writing relates to their talk, and what may be considered acceptable  

writing. Further, the differences between written and spoken natural language (such as in Tamil) may also 

have an impact on students writing mathematics. 

With the  students  who were  part  of  this  study,  we found that  insistence on writing  was  hampering 

engagement,  and  allowing  talk  was  an  enabler.  We  also  noted  the  use  of  other  resources  such  as 

manipulatives, gestures, pictures, and diagrams in communicating mathematics. One of the future points 

of  investigation  is  the  potential  of  these  other  resources  to  communicate  mathematics,  the  specific 

occasions when students choose these means, the affordances that they offer, and what the formalisabilty  

of mathematics expressed through these involves. It is also of relevance to ask if there is a hierarchy 

among these modes of communication in terms of formalisability. 

As mentioned in the thesis, the pedagogy adopted was largely whole-class teaching with some work in  

small groups. A key aspect that was noticed, but was not studied was the interaction and collaboration  

between students. In an exploratory context, the group dynamics is important. There have been instances 

when the group overcame the need for some prerequisite knowledge by drawing on the knowledge of one  

person in the class, who knew this. I have also seen instances where the discovery of one student becomes 

shared knowledge of the whole class and another member builds on it. This aspect makes a study of  

collective  explorations  by  a  large  group  markedly  different  from  an  individual  student  pursuing  it.  

Understanding the inter-group interactions and how these affect the mathematics that students work on as 

well as the development of their mathematical discourse a worthwhile point to investigate. 

Recentering the mathematical margins would require commitment and action at a larger systemic level  

and a great deal of research. I hope that this study contributes some initial steps in this direction. 
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Appendix

Consent form

   

Sub: Invitation to Participate in a Research Study on Mathematical Explorations

Dear Madam,

I request your permission to conduct a research study on ‘Mathematical Explorations’ in your school.

I,  Jayasree Subramanian a Research Scholar,  at  the Homi Bhabha Centre  for Science Education,  
Mumbai will be the Principal Investigator in this study. I will be mentored by Prof. K. Subramaniam,  
Homi  Bhabha  Centre  for  Science  Education,  Mumbai  and  Prof.  R  Ramanujam,  Institute  of 
Mathematical  Sciences,  Chennai  in  this  study.  This  study  aims  to  provide  opportunities  for 
mathematical explorations to class IX students and study how they respond to these opportunities.

If you agree to be a part of this study, I would request your consent to teach once a week in the grade  
IX class of your school. During this time, I would be doing some exploratory tasks in mathematics, 
with the students. I would also be  audio recording  the class and the interactions with students that 
happen therein and collecting the work that they do in these classes. I request your permission for 
audio recording and to analyse the interactions and student work to understand how students engage  
in mathematical explorations.

The data may be stored for the analysis of encounters and used for further research studies.

I plan to publish the results of this study. I will not include any information that would identify you,  
the school or any of the students involved. Their privacy will be protected and the research records 
will be confidential. The data will not be seen by anyone other than the researchers engaged with the 
research issue.

Looking forward to your cooperation.
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Consent

I  permit  Ms.  Jayasree  Subramanian  to  teach  grade  IX  and  to  audio  record  the  proceedings.  I  

understand that these records will be only used for the purpose of the research. I also understand that  

the researcher will take care that the identity of the school and students will not be attached to any  

results, findings, discussions, or academic papers produced by this project.

_________________________________________________________________________

Participant’s Name Signature Date

_________________________________________________________________________

Researcher’s Name Signature Date
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