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Abstract

The  studies  reported  in  this  thesis  are  aimed  at  understanding  student’s  conception  of  area

measurement  (AM),  particularly  in  terms  of  understanding  the  cognitive  processes  (rather  than

outcomes), and their implications for mathematics education research (MER). The thesis consists of

three main sets of studies, which adopt varied theoretical and methodological frameworks, broadly

following  three  major  trends  of  research  in  MER  –  constructivism,  social  constructivism,  and

enactivism. 

The first set of studies were inspired by Piagetian theory of constructivism or individual construction,

and  aims  to  understand  the  status  of  students’  conception  of  area  through  naturalistic  methods

(Moschkovich, 2019). Since naturalistic method does not focus exclusively on the individual learner,

but also considers external environmental factors, with minimal to no external interference, the initial

studies were conducted in-situ, to understand the pedagogy of AM through classroom observation,

students’  interviews and textbook analysis.  Later,  however,  structured tasks,  based on interviews,

were conducted with students in a research setup.  The studies highlighted a range of issues with

respect to AM conception, and led to a network model of AM, as a way of consolidating the results. 

The second set of studies involved a teaching design experiment, where tasks were designed and

developed based on insights gained from the previous studies, and applied in a classroom. Inspired by

Vygotskian  social  interaction  theories  and  social  constructivism,  the  lessons  were  aimed  at

encouraging  collective  construction  of  concepts  within  a  classroom,  through  the  process  of

argumentation. The analysis of classroom interactions was based on the argumentation framework

(Toulmin, 2003; Krummheuer, 2007), to examine the argumentation structure in the classroom. The

study highlighted students’ conceptual difficulties in connecting spatial and numerical aspects of AM,

and the way students engage in the meaning making process through collective argumentation in the

classroom. 

The third set of studies were inspired by recent advancements in enactivist theories of cognition, and

their  applications  to  mathematics education.  The studies  sought  to  understand the role played by

physical manipulations while solving AM tasks. The study was based on the eye-tracking method, and

found significant differences between the eye-movement patterns of students who used manipulations

and  those  who  did  not.  The  eye-movement  patterns  of  the  group  of  students  who  did  specific

geometric manipulations, based on tangrams, indicate the use of more efficient strategies to solve the

AM task,  compared  to  the  group who did not  do  any manipulation,  and  also  those who did an

unrelated manipulation using clay. 
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The  final  discussion  brings  together  these  diverse  results,  and  discusses  multiple  conceptual,

curricular, and pedagogical implications of these results for the learning of AM. 
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1

Introduction

In this thesis,  I  report a journey to understand students’ conception of area-measurement and the

process by which students construct the conception of area-measurement. 

1.1 Personal Motivation

During the late 1980’s, when I was very young, my father, who was in the armed forces, and other

elders used to give me sweets or money to buy them. I used to get coins of only 5 paise, 10 paise, 20

paise or at most 25 paise. Irrespective of the value of the coins I got, I always spent the money on

biscuits and candies from a nearby store. Of course, currency notes for Re 1 and Rs 2 and even higher

denominations existed, but I was never given that much money. In the year 1989, I was about 2 and a

half years old and my father came home after a very long time. Following our tradition, he gave me a

Rs 2 currency note. I was thrilled to receive that red-coloured note, I knew that the note was special

and was more valuable than the coins I used to get or even the blue Re 1 note I had seen. I went to the

store to buy my favourite items and I handed over the currency note to the shopkeeper and asked him

to give me candies and biscuits. Looking at the higher denomination note, he asked me, "For the

whole note?" This question was unfamiliar to me so I thought about it for a while and then I tore the

currency note in half and handed him one of the halves. The shop-keeper got angry, he refused to take

the piece of the note and give me what I had asked for. His reaction made me feel as if I have done

something wrong. I came back home with a sad and heavy heart and shared this embarrassing incident

with my parents and showed them the torn Rs 2 note. But to my surprise, my parents felt happy and

proud. They told me that a note loses its value if it is torn but they also made it a point to praise my

inner reasoning to tear a Rs 2 note. They appreciated my reason that by tearing the note I could give

the shop-keeper a part of the full amount and not the full Rs 2 note. This incident is one of most

powerful memories of my childhood for my parents and me, so much so that the characteristics of the

note, the size, the colour, are still vivid in my memory. I still ponder about the reasoning used by that

young child,  the reasoning that comes to a child much before any formal intervention (or formal

mathematical learning). That is also a reason why the Piagetian way of probing students’ intuitive

reasoning initially inspired me to choose this topic of study. To me this instance indicates the intuitive
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connection between quantity and space that a young child makes before any sort of formal school

intervention.

1.2 Academic Motivation

1.2.1 Practical motivation

Measurement is one of the most important tools to understand the world around us. Some of the most

basic everyday measurements that we come across are time, distance, weight, volume, temperature

and length. The reason measurement is so prominent in our everyday life (and communication) is its

practical utility. The knowledge and use of measurement is also essential to be an informed individual

in the present advanced society. These  factors make measurement an important topic in a child’s

education. 

1.2.2 Curricular motivation

The need to measure comes intuitively to children (Smith, Males, & Gonulates, 2016). However, in

formal  learning  contexts  (e.g.  school) Indian  students  mainly  (or  at  least  initially)  encounter

measurement in mathematics.  A major basis of measurement learning thus gets formed through the

school  mathematics  curriculum.  While  the  school  curriculum  gives  attention  to  different

measurements,  the major focus is  given to geometric measurement.  Most  curricula, including the

Indian  curricula, present  measurement  as  an  important  content  area,  but keep  it  separate  from

geometry. The word geometry literally means “earth measurement”, indicating that even geometry

might  have  been  conceptualized through  measurement.  Also,  the  general  understanding  is  that

geometry was developed to measure and mark fields in Egypt, because every year, the boundaries

would  be  erased  when  the  Nile  flooded (Lloyd,  2008;  de  Freitas  &  Sinclair,  2020).  However,

contemporary curricular geometry is stripped of its measurement roots, and is kept separate from the

topic of measurement, with measurement mostly following geometry, rather than the other way round,

which  might  be  closer to  history.  Several  math  educators  have  established  the  importance  of

connecting geometry and measurement,  to support  the conceptual understanding of measurements

involving spatial components such as length and area (e.g. Huang, 2017; Owens & Outhred, 2006).

However, this research has not changed curricula, which still  present measurement and geometry as

separate topics in the school curriculum, with more focus on geometry, which generally  precedes

measurement (de Freitas & Sinclair, 2020). 

Studies  of  cultural  anthropology  and  symbolism  suggest  that  stages  in  the  child's  cognitive

development follow a progression similar to evolutionary stages of human development (Borchert &

Zihlman 1990, Bates 1979, Wynn 1979, as cited in Foster, Mary LeCron, 1994). That is, children
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might be able to cognize many of the concepts better if presented in the same sequence as they have

evolved historically (naturally) in human society. Contrary to this idea, school curricula present the

final  abstracted (or idealized) forms,  such as the Pythagoras theorem, using formal statements or

deductive proofs, completely stripped of its historical human roots. 

Typically, the curriculum presents high school geometry as a collection of abstractions, in terms of

definitions,  proofs,  axioms,  and  postulates  while  primary  school  geometry  focuses  more  on

vocabulary (Sinclair & Bruce, 2015). A major part of school geometry is mainly Euclidean geometry

(Sinclair & Bruce, 2015), with an emphasis on deductive reasoning rather than building on students’

experience  and  intuition,  which  are  important  for  learning.  Perhaps  it  might  be  because  of  the

influence of Platonism on Euclidean geometry (and Mathematics), which considers geometrical (and

mathematical) objects as independent of human practices, making mathematics a thinking activity (or

a thought experiment) done in an abstract world rather considering mathematics as something that

people in the real world do. Geometry occupies a significant portion of school mathematics curricula

compared  to  measurement,  with  a  prime focus  on  the Euclidean  plane (not  the  real  plane)  with

imaginary or idealized mathematical objects (e.g., dimensionless point, line without any thickness).

This detaches geometry from real world objects, which makes it difficult for students to understand

geometry. Moreover, not being able to deal with geometry impacts students’ overall mathematical

performance,  and  their  ability  to  understand mathematics.  This  eventually  can  be a  reason for  a

student to give up or hate mathematics (Clements & Sarama, 2011). As measurement has practical

applications, it can bridge the gap between the real-life roots of geometry and its abstractions, which

in turn can help students to better access mathematics in general. 

Measurement was seen as a root topic of learning mathematics by the classic mathematics educator

Davydov (1975). He challenged the age-old traditional curriculum that starts with the most abstract

concept of numbers, which may be logically and psychologically inappropriate for the learner. He

proposed and tested an experimental curriculum (with elementary/primary children), which started

with measuring quantities based on comparing the structure and the relationship between quantities.

He recommended using aspects of practical measurement to the basis for a primary arithmetic course.

He  argued  that  measurement  can  bridge  the  gap  between  whole  numbers  and  real  numbers,  by

bringing in the need for fractions (or rational numbers) in a more organic way, rather than being dealt

with as separate topics,  which is the way it is done in the conventional curriculum.  Further, he has

argued that  this  can eventually bridge the gap between algebra and analysis.  In his experimental

curriculum, he worked out an extensive course of how the foundation of mathematics can be laid by

allowing learners to handle and compare different quantities, to come up with different relationships

between the quantities, For example, relationships of  “less than”, “greater than” or “equal to” could

be represented symbolically using {<, >, =}. After this, he proposed that students move to counting,
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and actually measuring quantities, which can in some cases bring in the idea of the “remainder” and

can set the ground for fractions.

Drawing on Davydov’s work, we see that measurement can act as a foundational connecting link for

several  important  topics  of  mathematics.  This  approach can provide an alternative to  the  current

school curriculum, which presents measurement mainly as a geometric measurement, starting with

length measurement on a single dimension. The final goal is to make the student learn to use a ruler,

followed by area and volume in two and three dimensions respectively, and the eventual goal is the

use of formulae.

Considering  the  crucial  role  played  by  measurement  in  the  learning  of  many  basic  topics  of

mathematics,  it  could  be  given prime attention  in  our  school  mathematics  curriculum.  However,

student’s performance on measurement tasks is not encouraging. Battista (2007) cites several studies

showing the poor performance of students on measurement tasks. In 2000, the National Assessment of

Educational Progress (NAEP) showed that around 75% of 4th graders and 40% of 8th graders could

not find the correct length of an object when it is placed above a ruler, with its end not aligned to the

end of the ruler (Kloosterman et al., 2004; Sowder et al., 2004, as cited in Battista, 2007, p. 892).

Similar findings were also reported in five metropolitan cities of India, where it was found that a large

fraction of students (49% in 4th, 42% in 6th, 25% in 8th  grade) made an error in using the scale,

despite length measurement being introduced in the second grade (Kanhere, Gupta, & Shah, 2013;

Educational Initiatives, 2006, p. 10). The situation worsens when it comes to measuring area. In a

study with eighth grade students, only 25% could find the surface area of a rectangular solid, and only

14 % could find the number of tiles required to cover a region with given dimensions (Sowder et al.,

2004  as  cited  in  Battista,  2007).  This  poor  performance  is  attributed  to  the  lack  of  conceptual

understanding of area, and the disconnect between spatial and measure-based numerical reasoning.

These have been discussed as the main factors for students’ poor performance in the use of scale for

length measurement and formula for area measurement (Kanhere, et al., 2013; Educational Initiatives,

2006; Battista, 2007; Sarama & Clements, 2009). 

1.2.3 Theoretical motivation

Though the tasks used in the above studies were quite successful, and insightful in bringing out the

gaps in students’ understanding with respect to measurement, the objective of some of these tasks was

mainly finding students’ misconceptions. On the other hand, the Piagetian approach (and the tasks

there)  evolved  with  the  objective  to  explore  what  children  know,  by  opening  up  the  door  for

children’s intuitive understanding in general and their understanding of measurement in particular

(Piaget, Inhelder, & Szeminska, 1960). Piaget, et al., (1960) reports extensively how young children

move  along  different  stages  of  learning  of  length  measurement,  starting  from reconstructing  the
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relations of distance to understanding conservation with respect to change of position, to measuring

length to measuring subdivisions of length. Piagetian studies have been highly influential for decades.

The longitudinal,  detailed and  extensive nature of the study has  led  several  educators to develop

curricular sequences inspired by this model (Clements, 1999; Sarama & Clements, 2009). However,

such  sequential  curricula, where  students  move  from comparison  to  using  non-standard  units to

standard manipulative units to the use of scale1, have also been challenged by studies. For example, in

a study where 6-8 year old children were given a sheet with a line drawn on it, and the task was to

communicate  (over  a  telephone)  whether  the  line  is  equal,  longer,  or  shorter  compared  to  their

partner’s,  children with the standard ruler or even a broken ruler performed or reasoned better than

when they were using a thread (Nunes, Light, & Mason, 1993). Further, Clements (1999) observes:

“The Piagetian-based argument,  that  children must  conserve length before they can make

sense of ready-made systems such as rulers (or computer tools, such as those discussed in the

following  section),  may  be  an  overstatement.  These  findings  support  a  Vygotskian

perspective, in which rulers are viewed as cultural instruments children can appropriate. "That

is children can use rulers, make them their own, and so build new mental tools.” (Clements,

1999, p.5) 

Here  the scale is proposed as a cultural instrument that can be adopted and appropriated for length

measurement,  just  like  clocks  are  used  for  time  measurement  or  thermometers  for temperature.

Despite having a culturally developed tool or instrument to work with, in the form of scale or ruler,

students seem to perform poorly.

The situation becomes more challenging while measuring areas, where there are no such commonly

available  or  culturally  developed  instruments  or  tools.  The  abstraction  becomes  two-fold  when

children are asked to measure the area of a rectangle, as they not only have to measure the dimensions

(length and breadth) of the rectangle but also have to use the formula of multiplying the dimensions to

get the area of the rectangle.

The lack of conceptual understanding in students’ use of scale/ ruler could be because of the hidden

conceptual processes packed within the scale. Studies have identified the processes involved in length

measurement  as  identifying  the  attribute,  conservation,  transitivity,  equal  partitioning,  unit  and

iterations,  accumulation  of  distance  and  addition,  starting  point  or  origin,  and  numerical

representation (Sarama & Clements, 2009; Piaget et al., 1960). Linear measurement can thus be seen

as an assemblage of several such conceptual processes or components (or units), which suggests that

the structure  of  the  measurement  concept  is  a network,  formed from several  interconnected sub-

concepts.

1 Marked ruler is referred to as scale here. Transparent Scales are commonly available in the market. 
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Related to this view, the scale can be seen as a culturally developed instrument, structured as an

assemblage of the above mentioned conceptual processes. Through its wide everyday use, it gains the

status of a culturally appropriated instrument for the learner (Nunes, et al., 1993). Ruler or scale as an

instrument forms a graspable learning resource, which holds together different conceptual processes

in a compact, accessible form, allowing learners to play around with this form, and eventually abstract

out the conceptual elements that are assembled in its construction  (Zacharos & Chassapis,  2012).

Through appropriate and meaningful use of the ruler as a resource, a learner may abstract out the

mental model of the ruler, along with the different conceptual components involved in it in a compact

accessible form (Schwartz & Holton, 2000). Developing a mental ruler, through the successful use of

a physical ruler, allows a learner to see lengths in terms of a scale. In the case of area, such a compact,

accessible instrument or tool is not available. This  makes  area measurement almost impossible for

students to abstract out  through activity,  and form a mental  model  for area measurement (Smith,

Males, & Gonulates, 2016). 

Similar to the way conceptual processes or components are assembled within a scale or ruler, there is

a need to develop an instrument/ tool where the conceptual processes involved in area measurement

could be assembled. This design problem requires  visualizing the concept of area as a network of

several  interrelated  conceptual  components. Further,  since  the  most  common  area  tasks  with

rectangular areas require students to measure the linear dimension, it becomes  hard for students to

distinguish or abstract out the area attribute. That is, since students end up using the same instrument

(scale or ruler), for finding the area, they might end up thinking linearly or only along one dimension,

even though area is a two-dimensional attribute. Thus, drawing from this need, we tried to develop

and use a tool or an instrument for students to engage with area measurement.

1.2.4 The case of area measurement

Area measurement is an important topic in school mathematics education, as it poses many challenges

for the learner. It also brings in the next higher level of abstraction in the domain of measurement. To

elaborate further, for measuring area, the learner not only has to measure the linear dimensions of a

given two-dimensional space, but also has to do a multiplicative operation on the dimensions. That is,

for measuring area,  students  are required to move from using physical  tools  like  rulers to  doing

numerical operations to the use of algebraic abstractions like formulae. Thus, area measurement acts

as a crucial transition point in the topic of measurement in general, by opening up the ground for

numerical computations through formulae,  which have  further applications in higher mathematics

and  science,  for  e.g.,  force  =  mass  ×  acceleration  (Smith,  Males,  &  Gonulates,  2016).  Area

measurement provides affordances even for other very important and advanced mathematical topics,

like fractions and calculus and thus plays a foundational role in school mathematics.
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Understanding of area is integral to understanding calculus as it provides the geometric meaning of

the integration operation in calculus.  While the derivative of a function is the rate of change of that

function, the integral of a function is graphically defined as the sum of the areas under the curve. For

example,  the following integral  expression as presented below can also be expressed through the

graph as shown in Figure 1.1. 

∫
x=4

x=14

f ( x )dx  =  Area under the curve f(x) from point C to point D. 

Area-measurement thus enhances the spatial understanding of measurement. It  also  integrates and

enriches the scope of mathematics as the area-model has application in several other topics, including

multiplication, fractions, algebraic multiplication, scaling, geometry, functions, and probability (Ron,

Dreyfus,  &  Hershkowitz,  2017;  Sisman,  & Aksu,  2016;  Sarama  & Clements,  2009;  Outhred  &

Mitchelmore, 2000). It can be further extended to engage with other higher mathematical topics such

as measure theory (de Freitas & Sinclair,  2020).  Area-measurement thus serves as a foundational

basis  to  broaden  students’  mathematical  learning.  This  further  highlights  the  integrated,

interconnected,  and  the  interdisciplinary  nature  of  area  measurement.  This  thesis  explores this

complex structure of the area concept, and the associated learning difficulties. The following outline

captures the structure of the thesis.  
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1.3 Thesis outline 

1.3.1 Graphic outline of the thesis structure

The thesis has six chapters (see Figure 1.2), starting with this introduction, followed by the literature

review chapter. This leads to the first study of the thesis, which is reported in the third chapter. Two 

more studies are reported, one covering aspects of social interaction (fourth chapter) and one covering

aspects of material interaction (fifth chapter). The final conclusion chapter summarizes the overall

contribution of the thesis.

1.3.2 Overview of studies done in this thesis

1.3.2.1 Study 1 (Chapter 3. Exploratory study) 

The first study chapter reports studies inspired by earlier studies that have explored students’ nuanced

understanding  of  area  measurement.  In  these  studies,  I  have explored students'  conceptual

understanding  of  the  concept  of  area  and  the  nature  of  the  gap  between  spatial  and  numerical

understanding, mainly using observational methodologies. 

1.3.2.2 Study 2 (Chapter 4. Classroom study) 

The second study adopts an active participant approach, where I examined how students construct the

concept of area-measurement in the classroom. Drawing from the idea of scale or ruler as a culturally
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developed instrument (or tool) for length measurement, we incorporated graph paper sheets in our

area lessons, and tried to develop it as an instrument or tool for area measurement, to be appropriated

through social interaction in the classroom context. 

1.3.2.3 Study 3 (Chapter 5. Experimental study) 

In the first and the second studies, the focus was on students’ explicit actions and interactions, which

provided data points to understand student’s conception and construction of area respectively. In the

third study, we have looked at how the materials used in the second study function at the cognitive

level, thus exploring development of the area concept in a way that is independent of social or cultural

roots. This study also examines the role of material interaction in students’ engagement with the area

problem.  For  this,  a  comparative experimental  study was conducted,  to  understand how physical

manipulation of materials  changed students’  cognitive  processes related to problem solving.  This

relationship was explored by an eye-tracker.

It should be noted that the student samples in all the three sets of studies were different and were

convenient samples that were made accessible to the researcher.

1.3.2.4 Conclusions

Overall, the findings from the studies provide more insight into the gap between students’ spatial and

numerical understanding,  particularly with respect to area measurement. Further, this work provides

insight into the role of social and material interaction in the process of learning area measurement.

The  thesis  also  tried  to  address  the  question:  "Can  the  gap  between  spatial  and  numerical

understanding be bridged by highlighting the role of the integrated and interdisciplinary nature of the

area concept or topics?" 

The thesis aims to address the above question by exploring and extracting the essential aspects of

social and material interaction in constructing meaning. In social interaction, the thesis highlights the

role  of  argumentation  and  students’  warrant  as  focal  components  in  the  process  of  knowledge

construction and thus adds to the literature of social construction of knowledge. Another outcome of

the thesis is the design and development of several tasks on AM after a reasonable ground work on

identifying the gaps in AM. Extending the tasks further, the thesis investigates material interaction by

studying the effect of specific manipulation on students’ solution strategies. The thesis presents novel

designs and methodologies to conduct such investigations integrating the disciplines of mathematics

education research and the learning sciences to advocate and add to new paradigms of research.   
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2

Review of Literature

Measurement is the act of quantifying an attribute or aspect of physical material or process (e.g.,

weight of a pineapple, length of a piece of cloth, time taken to cover a given distance, etc.,), while

geometric measurement is the act of quantifying an attribute of a geometric or spatial object (e.g.,

length of a line segment, area of a closed figure) with reference to an appropriate unit. Geometric

measurement not only requires one to identify the geometric or spatial feature of the given object, but

to also visualise the spatial structuring of the appropriate unit within the given object, in order to

quantify or carry out any numerical operation on it (Battista, 2007). Thus, geometric measurement

requires integration of geometry, spatial, and number based reasoning, which connects and enriches

the two critical domains of mathematics: geometry and number. However, formal instruction often

fails to make use of this important conceptual connection between these two mathematical domains

while teaching geometric measurement (Sarama & Clements, 2009). 

The  low performance  of  students  in  measurement  tasks  has  been  reported  in  several  studies  as

mentioned in the previous chapter. An important reason for the low performance, according to several

studies,  is  the  disconnect  between  spatial  reasoning  and  measure-based  numerical  reasoning  in

students, i.e., students making improper connections between the process of unit-measure iteration

and numerical measurements (Barrett & Clements, 2003; Battista, 2001; Clements, Battista, Sarama,

Swaminathan, & McMillen, 1997, as cited in Battista, 2007). 

Sarama & Clements (2009) also found that children face difficulty in finding an appropriate unit for

measuring the attribute e.g., length or area. They recommended that connecting the curriculum with

student’s  out-of-school  measurement  experiences  and  spatial  abilities  could  tlead  to  better

performance on measurement. Most earlier studies have seen area-measurement (AM) as part of a

continuum  of  geometric  measurement  that  includes  length  and  volume  measurement  (Curry,

Mitchelmore,  & Outhred, 2006; Battista,  2007). Such studies have tried to highlight the common

problems and common solutions for all geometric measurements. For example, Curry, Mitchelmore,

&  Outhred,  (2006)  identified  the  five  principles  of  geometric  measurement:  need  of  congruent/

identical units, use of an appropriate unit, using the same unit for comparing objects, inverse relation
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between the  unit-size  and the  measure,  and  structuring  of  repeated  units  on  the  measure.  Later,

Battista  (2007)  emphasised  the  importance  of  connecting  and inter-relating  various  measurement

concepts in the curriculum, as it was found that students have difficulty in relating and separating the

concept of length, area, and volume.

However, looking at AM as a continuum of geometric measurement may deprive us of insights into

the specific issues related to the nature of AM. Thus, in this chapter,  I  will  review the literature

focusing specifically on area-measurement (AM).

As we saw in the previous chapter, students’ performance on AM tasks is worse compared to length

measurement tasks. One of the main reasons for this could be that in the AM curriculum the major

emphasis  is  on  procedural  understanding  rather  than  conceptual  understanding,  compared  to  the

length  measurement  curriculum,  as  found  in  the  curricular  analysis  done  by  Smith,  Males,  &

Gonulates (2016). They found that most curriculum handles AM by relying on formulas, mainly for

rectangles.  However,  none  of  the  textbooks  they  analysed  did  much  to  build  the  conceptual

connection between the formula (of multiplication of lengths) and area measures.  Huang & Witz

(2011), citing the works of Strutchens, Harris, & Martin (2001) and Tan (1995, 1999), argue that

curriculum and  instruction  of  school  mathematics  most  likely  result  in  children's  inflexibility  in

dealing with AM problems. They also state that with respect to AM, teachers most often adopt an

algorithmic  or  numerical-calculation  approach,  stressing  on  procedures  and  formulas  rather  than

allowing children to explain the functioning of such formulas, or explore the rationale behind using

these formulas. Furthermore, overemphasizing formulas restrains children from having the required

time and experience to visualise the geometric figures, their properties, and how the formulas for area

measurement work (Fuys, Geddes, & Tischler, 1988, cited in Huang & Witz, 2011). This is despite

the fact  that  AM is considered to be a significant  topic of school  mathematics in the curriculum

guidelines of several countries (NCTM, 2000 & TME, 2003 as cited in Huang & Witz, 2011). Thus,

there is an immediate need to critically review and analyse the present AM curriculum, and to also

restructure it to provide a way forward, towards a more conceptually sound approach to present AM. 

Thus, the aim of this literature review is not just to understand the existing conceptual difficulties or

gaps  around  the  learning  of  AM,  but  to  also  look  into  various  curricular  efforts  made  towards

overcoming  them.  Further,  I  have  also  tried  to  extend  and  connect  this  literature  with  recent

approaches/themes that have been developed in mathematics education research in other topics. To do

this, I have organised the literature related to the learning of area measurement under four themes. I

have put  forth the possible research questions arising from each of these themes,  which lays the

ground for the three studies that follow. 
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2.1 Themes in the Literature Review

To provide a conceptual background to the thesis studies, I have divided the vast literature I have

drawn inspiration and insights from, into four themes. These four themes are not mutually exclusive,

but  overlap  somewhat,  as  some  studies  belong  to  more  than  one  theme.  The  four  themes  are:

Conceptual Studies, Curricular Studies, Tool Use and Multiplicative Thinking. In the first theme, I

have  categorized  the  different  gaps  or  errors  found  in  students’  understanding  related  to  area

measurement. From these studies, I have identified the errors in students’ conceptual understanding of

area and the gaps found in AM curriculum. However, these studies were carried out from a deficit

perspective, with an aim to find what students don’t know with respect to AM, or the gaps in the AM

curriculum, rather than acknowledging what a student knows or how the curriculum could be revised.

This leads to the second theme, which was inspired by the Piagetian tradition of looking at what

children know about a particular concept (in the present context, the concept of area or AM) at a

particular developmental stage, and how it develops over time. This also leads to a possible road-map

of what the AM curriculum should look like. The third theme is aligned with Vygotsky’s philosophy

around the use of tools. As argued in the introduction chapter, culturally appropriate tools can help the

learner jump to higher developmental stages rather than following a prior stated path discussed in the

previous (second) theme. Lastly, as mentioned in the beginning, measurement requires connecting the

domain of geometry with number. Area-measurement specifically requires one to connect geometry

with the multiplicative operations. Multiplicative thinking has already evolved as a broad domain in

mathematics education, to support students in handling multiplicative operations. Thus, to support the

connection  between  AM  and  multiplicative  operations,  there  is  a  need  to  take  into  account  the

developments in the field of multiplicative thinking,  and further explore the connections between

multiplicative thinking and AM. 

I elaborate on each of the four themes below.

2.1.1 Conceptual Studies

In  this  theme,  I  have  gathered  those  studies  which  have  discussed  specific  gaps  in  students’

understanding with respect to AM. Several studies have reported that students confuse AM of a given

shape with that of the perimeter or the measure of the shape’s boundary (Cavanagh, 2007; Kanhere,

Gupta, & Shah, 2013; Education Initiatives, 2006, p.16). Even teachers probably end up feeling that

the two measures -- area and perimeter -- are connected, as they were found to agree that as perimeter

increases, the area will also increase (Ma, 1999). This indicates the conceptual difficulty, and hence

the need to pay attention to identifying and understanding the attribute of area and how it is different

from the other measures. Lehrer, Jenkins, & Osana (1998) also found that a majority of students could
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not identify the unit of area as a unit of cover. Rather they tend to focus on units of length, with 1/3rd

of students unable to measure area when given card-board cut-outs of square and right-triangular

units.  This  happens  because  the  most  fundamental  aspects  of  measurement,  like  the  relationship

between the unit of measure and the attribute to be measured, remain unaddressed in the conventional

curriculum (Lehrer et. al., 1998). 

Cavanagh (2007) probed Grade 7 students with a questionnaire asking: define area, find the area of a

given rectangle and a right triangle and explain the method. He identified three misconceptions among

students: confusion between area and perimeter, using slant height instead of perpendicular height for

calculating the area (e.g., of a parallelogram) and not being able to see the relationship, that a right

triangle is half of a rectangle. The school curriculum mostly introduces area with simple shapes like

rectangles,  triangles  and their  area  measure  is  introduced as  formulas  of  some operations  of  the

shape’s  linear  dimensions,  like  length  multiplied  by  breadth  for  a  rectangle,  and  half  of  base

multiplied by height for a triangle. So perhaps students end up associating or focusing on the linear

dimensions or the boundary measures for the area attribute of the given shape, rather than engaging or

experiencing  the  two-dimensionality  or  covering  aspect  of  the  space.  Thus,  Cavanagh  (2007)

emphasised the need for appropriate activities, and sparing enough time for students to develop a

sound conceptual understanding of array structure, before using numerical formulas. The premature

use of formulas leads to misconceptions about area-measurement, with students skipping the physical

meaning (behind the numerical representation) of AM (Zacharos, 2006), and several students not able

to identify the number of unit areas fitting into a rectangle, even after calculating the area of that

rectangle by applying the area formula. 

These  studies  show  that  while  the  school  curriculum  extensively  uses  formulas  such  as

length×breadth (or l×b) for getting the area of a rectangular space, this abstraction may hide the sense

of unit of area, and the continuous covering nature of area (Kobiela and Lehrer, 2019). Conversely,

the tiling tasks might prestructure the activity (Outhred & Mitchelmore, 2000) as a counting activity,

which might hide the l×b abstraction. Thus, simplifying the area activity as a tiling task has its own

limitations, specially to move to a multiplicatively structured abstraction (elaborated further in the

fourth theme of this chapter). Furthermore, when a Geoboard was used by Kamii and Kysh (2006) to

show fourth grade students a 3×3 and a 2×4 rectangle on two Geoboards respectively and were asked,

“If these were chocolate bars, which one would be bigger and have more to eat?”. It was found that

only a very few students counted the unit squares, most often student counted Geoboard pegs rather

the square spaces between them, showing that a majority of students don't consider square as a unit of

area for comparing two-dimensional space even on a Geoboard, indicating a serious conceptual gap

among students in such comparison tasks. This is also connected to the third theme of the literature

review, about the use of tools or materials, in raising the caution that it is not enough to just use any
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tool or material, they need to be properly and carefully grounded in the concept. 

Students face difficulty in abstracting or applying the understanding of area to different shapes other

than  the  conventional  shapes,  such  as  L-shaped figures  (Cavanagh,  2007;  Zacharos,  2006).  This

difficulty  could be due to  various  factors,  like  students’  understanding of  area  fixated only with

conventional shapes like rectangle, square, triangle, or limited to specific formulas, thus lacking the

general understanding of area as a measure of a two dimensional plane or space. Students may not be

able to deduce the area of a given different shape or figure with their existing knowledge of area. To

understand the underlying cause behind the students’ difficulty, we need to explore what students

mean by the term “area”.  

The discussion under this theme may not be exhaustive, covering every study reporting difficulty or

gaps in students' understanding with respect to area measurement. It is aimed at giving a flavour of the

nature  of  such  studies,  which  have  tried  to  elaborate  and  highlight  the  gaps  through  students’

interviews or students’ ways of attempting different area specific tasks. For my first study, I have

drawn heavily from this theme, to understand students’ existing understanding with respect to AM

and also how curriculum and teaching may contribute to such understanding. What I gathered from

this  strand of  studies  is  the  methodology of  student  interviews,  and the design of  specific  tasks.

However, as I mentioned earlier, some of these studies are based on a deficit perspective, where the

main aim is to uncover the students’  misconception or the students’  errors (through testing).  The

studies reported in this theme are generally based on short duration contact with students, and thus

lack a  longer  engagement  with their  learning process.  Hence,  the  role  of  teaching  or  instruction

remains  unattended  in  this  theme.  In  my  first  study,  I  have  followed  a  holistic  approach  in

understanding the present state of AM conception, by taking into account students’ understanding,

teaching and the curriculum around AM. 

This brings us to the next strand or theme of research studies that adopt a developmental perspective

and are generally longitudinal in nature.

2.1.2 Curricular Studies (Stages of learning, Levels of Sophistication, and 

Learning Trajectories)

In this section, I explore studies which are longitudinal in nature, and follow a developmental model

of learning area measurement. The development is described variously by different researchers, in

terms of Stages of learning (Piaget, Inhelder & Szeminska, 1960), Levels of sophistication (Battista,

2007),  Learning  Trajectories  (Sarama & Clements,  2009)  etc.  These  studies  typically  report  and

recommend a  step-wise  development  in  understanding  a  topic,  and  in  teaching.  The  progression

presented is generally hierarchical. Other approaches (e.g. Izsak, 2005) take a contrasting view.
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Starting with the classic work of Piaget,  Inhelder & Szeminska (1960),  developmentally oriented

studies have found that children's reasoning about various measurement concepts like length, area,

etc.,  develop  in  sequential  stages  of  learning.  They  used  several  tasks  to  understand  children's

reasoning with AM, especially conservation and operational thinking. In one of these tasks, children

were shown two identical green cardboards as grass meadows, and a small wooden cow was placed

on each meadow. Subsequently an equal number of identical wooden house blocks were placed on

each “meadow” in different configurations, and children were asked whether the same amount of

grass is available for the two cows to graze. 

The authors  identified roughly four  stages  of  understanding  area among children,  based on their

articulation of reasoning. starting with stage I, where a child hardly engages with the given context. In

stage II, the child is interested and engaged in the task, but her reasoning is mainly perceptual. Stage

II is divided into two sub-stages IIA and IIB. In stage IIA, the child may accept that the two given

meadows have the same space, even with the introduction of first few pair of house (or blocks), so far

as the arrangement in the two meadows are same, but will disagree immediately if the arrangement of

houses are changed in the two meadows. In stage IIB, there are a range of intermediate responses,

where children may agree with the complementary space (or area) being equal (even with different

arrangement) after a few pairs of blocks, but deny the remaining space to be equal after a certain

number of blocks. Stage III is also divided into two sub-stages, IIIA and IIIB. At this point, newer

tasks were introduced to explore further stages. At stage III A, the child is able to acknowledge that

transforming a shape doesn’t change the space that is conserved by it. However, deducing that the

complementary area will also be equal only comes at stage IIIB. Stage IV is identified as that stage

where the child is able to abstract the formal operation through unit iteration, and understand the

relation between length and area, which is not covered in this study. 

As we go into the details of the interaction between the child and the interviewer, we come across

several  cases  where  a  child  almost  falls  back  to  stage  II  of  perceptual  reasoning.  With  some

prompting, they move to stage III of acknowledging operational conservation, when there is little

variation in the task. Thus, Piagetian studies develop this rich methodology of uncovering children’s

intuitive reasoning, with respect to area conservation and measurement. The insights that come out of

the studies is not just what children do know about area conservation and measurement, but also the

rich  context  designed  by  the  researchers  and  the  rich  facilitating  interaction  provided  by  the

interviewer.  Another  interesting  point  that  the  work  reported  in  “The  Child's  Conception  of

Geometry” is the way the authors conceptualized geometry. It was not in terms of the conventional

geometry curriculum of introducing shapes as some abstract mathematical objects, but more in terms

of concrete,  actionable or accessible forms of measurement. Though, for the current  theme, I am

highlighting the “stages” from the  Piagetian  theory, but  Piagetian studies are much more than that,
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and a major chunk of the studies mentioned in the  literature review draws heavily from Piagetian

studies.  Further, the studies reported in the next chapter are mainly guided by Piagetian methods of

clinical interviews, task design, and framing of questions.

Moving to the level-wise development of AM, a key resource is  the review of research done by

Battista (2007) in the chapter on “The development of geometric and spatial thinking” in the book

“Second Handbook of  Research  on  Mathematics  Teaching  and Learning”.  There  has  been  some

remarkable and influential  work in defining the level-wise growth of geometric reasoning among

children, of which the most influential one is Van Hiele levels of geometric reasoning. Both level-

wise and Piagetian’s stage-wise development mark qualitatively distinct types of cognition, occurring

in a hierarchy at each level and stage respectively. However, levels are defined for a specific domain

(or a particular concept), but stages are defined across different domains (Clements and Battista, 2001,

cited by Battista,  2007).  Moreover,  despite  Battista’s  acknowledgment  that  historically  geometric

measurement is intertwined with the conception of geometry, in his book chapter, the literature review

of  geometric  measurement  is  kept  separate  from  geometry,  i.e.,  different  theories  on  geometry

learning are covered first, followed by theories on geometric measurement. Though one may present

them separately in the interest of a simplified and systematic discussion, I caution against assuming a

deep divide between the domains of geometry and measurement.  

In the  above mentioned chapter  reviewing “The development  of geometric and spatial  thinking”,

Battista (2007) characterised students' construction of length into two fundamentally different types of

reasoning:  measurement  and  non-measurement.  The  author  also  elaborated  different  levels  of

sophistication for each of these types of reasoning. However, for area and volume measurement, the

author  proposed integrated developmental  models.  Overall,  the  author  recommended that  the  low

performance of students in the measurement tasks could be due to the disconnect between spatial

reasoning (e.g., units iteration process) and measure-based numerical reasoning. He suggested that

children often face difficulty in making the transition from filling a space with concrete units  to

visualizing and using the unit structure, which is needed for conceptualizing and measuring area or

volume. Battista (2007) explained that this transition happens in different levels of sophistication, and

have defined the following seven levels: 

1. Absence of the processes of Units-Locating and Organizing- by-Composites (the latter refers to

collecting the units in a row or column),

2. Beginning Use of the Units-Locating and the Organizing-by-Composites Processes,

3. Units-Locating Process Sufficiently Coordinated to Eliminate Double-Counting,

4. Use of Maximal Composites, But Insufficient Coordination for Iteration,

5. Use of Units-Locating Process Sufficient to Correctly Locate All Units, But Less-Than-Maximal
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Composites Employed,

6.  Complete  Development  and  Coordination  of  Both  the  Units-Locating  and  the  Organizing-by-

Composites Processes,

7. Numerical Procedures Connected to Spatial Structurings, Generalization

These  levels,  start  from  having  no  sense  of  unit  or  organising-by-composites  and  go  up  to  the

development of numerical procedures with spatial structuring (Battista, 1999; Battista & Clements,

1996; Battista, Clements, Arnoff, Battista, & Van Auken Borrow, 1998, as cited in Battista, 2007).

These levels are hierarchical in nature, and are drawn from the student’s unit structuring tasks, which

could be very narrow, considering the wide range of tasks and tools available for measuring. Again

the initial levels defined here convey a deficit view about students, and it is assumed that students are

supposed to reach to the highest level (level 7) before being able to measure area or volume. 

However, apart from the levels, Battista (2007) also state that there are five basic cognitive processes

that are essential for meaningful enumeration of arrays of squares and cubes: abstraction, forming and

using mental models, spatial structuring, units locating, and organizing-by-composites. He suggests

that  the  cognitive  processes  underlying  geometric  measurement  could  consist  of  two  types  of

abstraction. One is abstracting the attribute, where the student initially abstracts the attribute to be

measured (e.g.,  length) from the other spatial attributes of the object,  through experience, and the

other  is  abstracting  unit  iterations  in  structuring.  He  emphasised  that  structuring  is  a  reflective

abstraction, and not an empirical one. According to him, the critical components required in tiling a

shape are constructing a mental model of the shape, which includes critical features of the shape's

geometry that can be mentally manipulated (e.g., being able to visualise tiling of a shape even without

having the physical materials to do the tiling) and developing an appropriate structured mental model

of the array of shapes in the tiling. Students need proper orientation with iteration of appropriate units

rather than directly using formulas for AM and standard measuring tools (e.g., Rulers) for length in a

traditional  way.  Again the developmental  levels defined here,  for  area and volume measurement,

involve only the measurement (numerical) reasoning having to do with enumerating units. This is

different  from  the  case  of  length,  where  non-measurement  ideas  (like  conservation)  were  also

explored, like in the Piagetian approach, which could be based purely on spatial inputs.      

Several  other  papers  have also  organised students’  thinking through levels  of  sophistication.  For

example,  Outhred & Mitchelmore (2000) have defined levels of  sophistication among elementary

students' drawing of unit-square coverings of rectangles. Clements, Wilson, and Sarama (2004) have

described levels of  sophistication in  young children's  ability  to make a  larger shape with pattern

blocks (cited in Battista, 2007). 

Another  significant  model  of  developmental  progression  is  “learning  trajectories”  proposed  by
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Sarama & Clements (2009). According to them, during development and learning, children follow a

natural  developmental  progression,  and  when  instruction  was  mapped  according  to  this,  with  a

sequence of activities, it led to developmentally appropriate and efficient learning environments. The

main focus of a learning trajectory are the developmental paths followed by children. Two books were

published  by  Clements  and Sarama in  this  regard  (2009a;  2009b);  one  book synthesizes  various

developmental  research studies  on the foundational  domains  of  mathematics,  and the other  book

highlights the corresponding instructional activities for these domains. Several foundational domains

were characterised by learning trajectories, starting from counting and arithmetic to geometry and

measurement. Three major components of learning trajectories are identified: a mathematical goal, a

developmental path that a child follows to reach that goal, and a set of instructional activities or tasks

to match with the developmental path of children, to facilitate their movement to higher levels of

thinking. Further,  researchers suggest that professional development based on learning trajectories

increases teachers’ professional knowledge, and students’ motivation and achievement, by facilitating

developmentally  appropriate  teaching  and  learning  for  all  children  (Clements  &  Sarama,  2009).

However, they have also discussed the domain of geometry and measurement in different chapters,

with the chapter on measurement following the chapter on geometry, rather than the reverse (while

the  reverse  sequence  is  argued to  be  more  logical  and  based  on  historical  progression).  Despite

acknowledging that measurement can act as a bridge between the foundational domains of geometry

and number, the authors keep the chapter on measurement separate with no connections made with

the chapters or learning trajectories on number & geometry. 

As can be seen from the preceding discussion, the developmental models offer  rich guidance for

curriculum and instruction on AM. However, the literature discussed under this theme overlooks some

important issues with respect to AM, which will be addressed in the next themes. Most of the above

developmental models of measurement dealt with measurement separately from geometry or spatial

thinking,  with development  in  the  former  domain generally  following the latter,  unlike Piagetian

work, where measurement is seen as integral to geometry. Although most of the studies acknowledge

the  significance  of  measurement  as  a  bridge  topic  between  geometry  or  spatial  thinking  with

quantification or numerical  thinking,  such integration is  not  given prominence.  I will  explore the

interconnected and integrated nature of measurement in the fourth theme of this chapter. 

The  above  developmental  models  generally  follow  a  linear  growth,  unlike  some  other  learning

models,  such  as  the  knowledge  in  pieces  perspective  (Izsak,  2005).  The  work  of  Izsak  draws

extensively  on DiSessa’s  work  on  knowledge  in  pieces  perspective  and  on  coordination  and

refinement of concepts or knowledge. Izsák has adopted and extended diSessa’s work specifically to

the context of AM, as diSessa’s work mostly covers topics in  physics and higher mathematics. We

will further explore such learning models in the fourth theme, and also in the subsequent chapters of
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this thesis.  Thus,  it may be misleading to interpret  all  learning progressions as a sequence of stable

levels. The thesis does not intend to label or generalise all learning progressions as having a linear

model. 

As argued in the introduction chapter, culturally developed tools play a significant role (Nunes, Light,

& Mason, 1993 as cited in Clements, 1999) in facilitating students’ move to higher levels of thinking,

and thus may bring qualitative differences in the developmental paths followed by learners. Apart

from the global standard tools (e.g ruler), there are local, cultural measuring tools, based on usually

non-standard length units, developed or used by local communities over a long time. These can also

have great  significance in the learning of measurement (Subramaniam & Bose,  2012).  While the

studies  mentioned  in  this  theme  do  guide  us  in  the  design  of  curricular  activities  that  facilitate

learner’s AM conception, the next theme specifically focuses on the nature of different tools and how

they support or facilitate students’ conception with respect to AM. We will try to delve deeper into the

aspect of different tools, activities and other operational factors in the learning of AM. 

2.1.3 Use of material interaction (tools, instrument, and gestures) in 

measurement

The main motivation for this theme came from the mathematics lab2 (math-lab) of the institute, where

my  research  is  based.  The  math-lab  was  developed  by  a  team  of  mathematics  educators  and

collaborators.  Apart  from the  hands-on  nature  of  the  activities  in  the  math-lab,  the  pedagogical

approach has also evolved as a way that allows children to explore different mathematical patterns or

results through a process of collaborative argumentation and reasoning. The lab consists of several

materials,  artifacts and activities like different kinds of Abacus, Napier’s bones, Tower of Hanoi,

Magic number cards, tic-tac-toe multiplication cards, Nim-game, jigsaw puzzles, origami papers, etc.

Of these, the activities that are particularly relevant to AM are Tangram, Missing-area, and Geoboard.

I will briefly explain how the three activities are done in the math-lab, to highlight the important

educational and pedagogical insights drawn for this theme, before moving to the published literature

in this regard.  

2.1.3.1 Tangram 

Tangram is a widely used and known activity (see Figure 2.1). In the math-lab, the activity typically

starts with an A4 sheet. The first action is to get the largest square out of the sheet by removing the

remaining rectangular part out of it. And then the seven Tangram pieces are created out of the square

sheet, by folding and cutting. Here, the action of folding is used to understand the equivalence of

pieces or shapes. Throughout this process, there will be instruction and discussion, about the actions

2 https://mathedu.hbcse.tifr.res.in/mathematics-laboratory/

34



to be taken on the pieces, by focusing on the different spatial characteristics and attributes of the

shapes that are created.

Once everyone completes making the seven pieces, they are asked to join them together to get back

the square they started with. Later they are also asked to create rectangular and triangular shapes out

of the same seven pieces. By creating different shapes out of the same seven pieces, students are

exposed to  a  material  experience of having different  spatial  arrangements out  of  the same seven

pieces. That is, the seven pieces are constant or conserved in this activity. Thus, the activity allows

students to engage with the spatial features and attributes of the shapes, through physical manipulation

of  the  Tangram  pieces.  Afterwards,  the  activity  moves  from  the  spatial  discourse  to  numerical

discourse, by identifying or quantifying one piece as a unit and quantifying the total of the all pieces

together based on that. For example, students are asked, if the size of the smallest piece is assigned to

be a value of 1 or 2 or ½ units, what will be the value of the whole square? Students then compare

different pieces with respect to the smallest piece, and find their value, and subsequently give the

value of the whole, and derive the multiplicative relation between the smallest unit and the whole.

Likewise, even with assigning different values to the smallest unit, students readily find the value of

the whole. And then, by generalizing, even if the value of the smallest unit is an unknown x, they

always predict that the whole would be 16x. Thus, the activity very organically connects the spatial

with the numerical, and then later with algebraic generalization to some extent. 

2.1.3.2 Geoboard 

Geoboard is a very simple and elegant material resource to introduce area as a count of unit squares,

even to young children. As can be seen in Figure 2.2, the geoboard consists of a square board with an

array of nails at uniform distance from each other. Different polygons (regular, irregular, convex,

concave) can be made on it with an elastic rubber band. The best part is to find the area of the polygon

without using any formula, but by mere counting of the small square boxes (units), and some simple

arithmetic.
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Figure 2.1: Tangram Pieces



By using even the visual fact that if a rectangle is divided along the diagonal, it divides the space into

two equal symmetric parts, by knowing the number of square units in the rectangle, we can predict the

value of its half. This is also known as completing the rectangle strategy. For example, to find the area

of the polygon ABCDE in Figure 2.3, completing the rectangle strategy is used to envelope different

triangular parts in order to find the area.   

Area of polygon (ABCDE) =   Area of Square (EKCI) 

        +  ½ × {Area of Rectangle (JDKE)}

       +  Area of Rectangle (AFIH)

       –  ½ × {Area of Rectangle (AFEG)} 

                   –  ½ × {Area of Rectangle (ALBH)}  
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Figure 2.2: Geoboard

Figure 2.3: Computing the area of the polygon ABCDE by completing rectangles



Thus, we come across this innovative way of computing the area of a polygon which even very young

children can attempt, while different polygons made on it appear challenging for adults and teachers.

Further possibilities of exploration exist that make this activity an example of a low-floor high-ceiling

activity. 

2.1.3.3 Missing Area (or missing square) Activity  

Missing square (or area) is an activity involving a square sheet of paper with a side of length, say 8

units,  and divided into four parts,  as shown in Figure 2.4(a) and 2.4(b).  On rearranging the four

pieces, the area of the new shape appears to have increased or decreased by 1 unit. For example, the

area of the square as shown in Figure 2.4(b) appears to have increased its area to 65 sq units when its

pieces are rearranged in the configuration as shown in Figure 2.5(a), and decreases its area to 63 sq

units when rearranged as per the configuration as depicted in Figure 2.5(b). Therefore, when the same

four pieces are arranged into a square, a rectangle or the third shape, they appear to have the total

number unit squares in each of them to be different. Thus the activity appears to challenge the concept

of area conservation by having a difference of one unit square with a rearrangement. The activity

creates a situation which can lead to a very rich mathematical discussion.  
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Figure 2.4: (a) “Missing Area” activity using square of side 8 units, with area 64 sq units, (b)

“Missing Area” activity with each piece represented using different colors



The activity can be designed using squares of sides 5 units, 13 units, and in fact any number (≥5) that

occurs in a Fibonacci sequence. However, if the side is of odd length, the rectangle formed from the

square will appear to have decreased in area, as opposed to the case of a square of even length whose

area will appear to increase in area when rearranged into a rectangle.

The apparent  paradox of the  activity involves  the  fact  that,  if  Fn,  Fn+1,  Fn+2 are three consecutive

numbers in the Fibonacci number sequence, then the following result holds true: 

Fn+1 ² – Fn×Fn+2  = ± 1

For example, in the fig. 2.6, the parts of the square sheet with side 5 units can be rearranged into a

rectangle with sides 3 and 8 units respectively.

As we go further right in the series, the ratio of any two consecutive numbers converges to 1.62 (also

known  as  the  golden  ratio).  Thus  cutting  along  the  diagonal  of  a  rectangle  whose  sides  are  in

Fibonacci numbers of the form Fn and Fn+2, the slope of the diagonal line will give the impression that

they can fit together as the slope of the diagonal line would be close to the square of the golden ratio

(Fn+2 / Fn  =  [Fn+2 / Fn+1 ] /  [Fn /  Fn+1] ~ 1.622 )
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Figure 2.5: (a) “Missing Area” activity sheet after rearranging pieces into a rectangle with apparent

area 13×5 = 65 sq units, (b) “Missing Area” activity sheet after rearranging pieces with apparent area

63 sq units



The main insights from the above mentioned activities are the common pedagogical characteristics in

each  of  them,  that  is,  they  are  accessible,  hands-on,  have  low-floor  high-  ceiling  nature,  allow

multiple arrangements and possibilities, thus allowing the learner to explore different facets of AM.

Another important characteristic they possess is that they allow or provide a very integrated approach

to learning a particular concept.  

2.1.3.4 Theoretical support for material interaction

Connecting to the classic Piagetian work, in the previous two themes, I focussed on the theoretical

and  methodological  standpoints  in  Piagetian  studies.  However,  there  are  many  factors  and  their

minute details that are present in the Piagetian tasks that lets children meaningfully engage with them,

and thus allows researchers to explore and understand a child’s thinking. The factors can be classified

under the nature of material, context, actions and interactions involved in the tasks used in Piagetian

studies. 

Piaget et. al. (1960), studied children's conception of measurement by asking children to build a tower

of blocks, on the floor, of the same height as the tower built on a nearby table. As children engaged

with the task, it allowed Piaget et. al. (1960) to characterise different stages of development in the

logic of measurement among children. The first stage was on Perceptual Comparison. The second

stage was characterised by Manual Transfer (i.e., placing objects side-by-side and comparing them

directly), Body Transfer (i.e., grasping gesture, like opening your hand to hold the object) or, Object

Imitation (i.e., comparing with one’s body e.g., measuring the object against one's arm). The third

stage involved the use of a symbolic object to imitate the size of the measured object, and treat them

as a unit of measurement. This developmental sequence was characterised in terms of the children's

progressive  ability  to  use  a  symbolic  object  as  the  intermediary  term  in  measurement  (i.e.,

understanding of the general logical principle of transitivity). The main point to highlight here is the
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Figure 2.6: “Missing

Area” activity with side 5

units can be rearranged

into a 3×8 rectangle 



material (or tool) used for investigation. Also, the actions and gestures of the child on the material

were as much a unit of analysis as the verbal reasoning of the child, in the characterisation of the

stages. 

Piagetian studies used materials to understand what children know at a particular stage (i.e., mainly to

define a child's stage), indicating a static nature of knowledge held by the learner at a particular point

of time. Piagetian theory believes that a child is born with a certain knowledge form, considering that

a child is not “a blank slate,” and that the child keeps accumulating new knowledge forms from the

environment  that  fits  with  their  previous  existing  forms  and  also  incrementally  modifies  them.

However, the Vygotskian approach did not consider the absolute stage of a child, but the potential of

any child to move to higher psychological  processes,  mediated through tool  use  and interactions

(Vygotsky,  1980).  Piagetian  studies  do  not  highlight  the  uplifting  role  of  the  material  and  the

interaction in the making of different schema (or knowledge structure) in the child’s cognition, and

that the schema are dynamic in nature and constantly growing, even while the child is probed through

mediated interaction. Here, materials play a significant role in acting as a mediator or a common tool

or language, to engage and understand the child’s thinking. Thus, to move from knowing a child’s

thinking to the process of knowledge construction by a child, we need to move our attention to the

material factors of the interaction.  

The  instructional  sequence  recommended  in  several  publications  adopted  from  Piagetian  theory

(stage-wise development of length conservation) are: gross comparisons of length, measurement with

nonstandard units  such as paper clips,  measurement with manipulative standard units,  and finally

measurement  with  standard  instruments  e.g.,  rulers  (Clements,  1999).  However,  this  stage-wise

development has been challenged by several studies, which have claimed that Piagetian reasoning

abilities do not necessarily determine measurement concepts (Clements, 1999). For instance, children

use intermediate measurements to compare two lengths without any explicit transitivity question and

move a unit  to  measure the  length of an object  without  worrying about  the length conservation.

Boulton-Lewis, Wilss, & Mutch (1996) found in one of their tasks that the strategies used by children

support the claim that non-standard units do not necessarily help children understand the need for

standardized units in the length measuring process. As mentioned in the introduction chapter, Nunes

et al.  (1993) found that the traditional  ruler  supports children's  reasoning more effectively than a

thread  (cited  in  Clements,  1999).  And  building  on  a  Vygotskian  perspective,  a  ruler  acts  as  a

culturally developed instrument that can be appropriated by a child for length measurement through

its use, which through further use can be abstracted as a mental tool for the child. Subramaniam &

Bose (2012) have also highlighted the significance of culturally and historically developed measuring

tools (and units) in making the formal learning of measurement more meaningful for students. One

must therefore take into account the potential of materials in pushing students to higher stages or
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higher levels of thinking. 

In the context of area measurement, even among elementary students, when given a rectangular figure

and a cardboard unit, those who used the strategy of concrete covering – that is moving the concrete

unit along the figure – were much more successful (75% of cases) in determining the number of units

(Outhred & Mitchelmore, 2000). In the same study, in other situations where the concrete unit was not

given, but only a drawing or measure of the unit was given, only few students could determine the

units. However, the study acknowledges that a concrete unit might pre-structure the task. Also, we

often see that a tool or instrument may hide different foundational ideas (i.e., iteration, identical units,

covering etc.) of  measurement assembled in that material  object.  But despite such objections, we

cannot  deny  the  significant  role  of  tools  in  developing  and  exploring  students’  conception  of

measurement, and we should let children construct their conception through interacting with tools or

by  making  meaningful  connections  with  the  real  world.  The  measurement  tools  used  today  are

developed through a process of social mediation (Vygotsky, 1980), and for students to adopt them,

there  is  a  need  to  deliver  the  necessary  cultural  tools  through  a  proper  planned  teaching  effort

(Zacharos, 2006; Zacharos & Chassapis, 2012). The materials or tools used for area measurement are

mostly  covering  and  counting  units,  completely  skipping  the  relational  aspects  hidden  between

material quantities (de Freitas, & Sinclair, 2020). Thus, there is a need to re-conceptualize the use of

tools,  which  can  potentially  integrate  both  the  computational  and  conceptual  aspect  of  area-

measurement, by moving beyond the discrete counting exercise to accommodate the aspect of area as

a continuous quantity. For example, using the context of painting or sweeping with physical tools and

material interactions to access the continuous nature of AM (Kobiela, & Lehrer, 2019).

However to address these objections, we need to focus on the design and use of the material that

provides the learner opportunities to engage with higher levels of thinking,  that  is allow them to

reason multiplicatively, and not just perform additive counting. I elaborate more on this in the next

theme.  

2.1.4 Role of Multiplicative thinking in area-measurement 

As I  argued in  the  introduction  chapter,  area  acts  as  the  first  measuring  quantity  that  a  student

encounters  in  school  mathematics,  which  is  defined  (or  dealt  with)  as  a  multiplication  of  two

dimensions (or quantities). Thus, abstracting the l × b formula – that is the product of two quantities

(length and breadth) for a rectangular area – requires one to reason multiplicatively (Stephan and

Clements  2003,  p.  10,  as  cited  in  Huang,  2014).  However,  students’  persistent  use  of  additive

counting methods (of units) might hinder the development of multiplicative thinking in them, which

becomes a basic requirement to understand area-measurement (Cavanagh, 2007). This points to the

need to see the connection between multiplicative thinking and area-measurement (AM). Even though

41



several  research  studies  have  recognised  the  importance  of  the  multiplication  operation  in  area

formula,  and  hence  AM,  there  is  dearth  of  research  that  explicitly  acknowledges  the  role  of

multiplicative thinking in AM. (Huang, 2014). 

Multiplicative thinking is a well researched area in mathematics education. Multiplicative thinking

leads to a multiplicative response to a situation, by identifying or constructing the multiplicand, the

multiplier and their simultaneous coordination in that situation (Jacob and Willis, 2003). It involves

attending  to  the  multiplicative  relation  between  quantities  and  magnitudes,  and  the  capacity  to

mathematically  deal  with  such  situations  (Subramaniam,  2011).  Multiplicative  thinking  has

application in a broad range of mathematical topics, like understanding the inverse relation between

multiplication and division, part-whole relation, fractions, proportion, etc. In contrast, the domain of

measurement  is  relatively  less  researched,  with  even  fewer  studies  that  explicitly  discuss  the

connection between measurement and multiplicative thinking. More recent studies have also argued

for  using  measurement-based  meaning  of  multiplication,  as  it  is  found  to  encompass  diverse

multiplication situations, and thus pedagogically provides more coherence in the school mathematics

curriculum (Izsák & Beckmann, 2019). 

Geometric measurement involves deriving a new quantity, “the number of units'',  from the known

quantities – magnitude of the unit and magnitude of the space to be measured -- between which there

is a multiplicative relation, namely, that the target magnitude is “so many times” the unit. Thus, unlike

in the case of direct counting of discrete quantities, multiplicative thinking lies at the heart of the

concept of measurement. Lamon (2007) and several others have argued that the way measurement is

handled  in  the  elementary  curriculum leads  students  to  just  do  an  act  of  measuring,  rather  than

developing the concept of measurement. She reports that very few students could understand that the

unit of measure could be further broken into smaller subunits, to make the measurement more precise.

That is, the unit of measure has a multiplicative relation with other smaller units, which are formed by

subdividing or partitioning the initial unit. Petitto (1990) found that children shifted from sequential

reasoning to proportional reasoning when given a set of number-line estimation problems during their

first three elementary grades, and reported a connection between students’ performance on number-

lines and measurement tasks. Further, Mitchell & Horne (2008) argues and establishes the connection

(or relational understanding) existing between fraction, rational numbers and measurement through a

study with Grade 6 children using number line tasks. Thus, the connection between measurement and

multiplicative thinking in linear measurements is not hard to see, but abstracting the multiplicative

relation in higher dimensions is still not directly apparent like in area-measurement. 

In  the  literature  on  multiplicative  thinking,  most  of  the  situations  and  contexts  examine

proportionality, and involve a linear relation between two single dimensional measures (for example,

the relation between cost and weight, time and wage, speed and distance, etc.,).  Each such single
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dimensional measure is analogous to length; so, many of the concepts explored in the proportionality

context  have  their  analogues  in  the  case  of  the  geometric  measurement  of  length.  For  example,

unitization,  the  process  of  mentally  chunking  discrete  units  into  either  a  larger  convenient  unit

(chunked unit), or breaking a unit into smaller units, plays an important role in proportional reasoning

(Lamon, 2007). Unitization is also the basis of measurement, and flexible unitization is involved in

tasks that require construction of a “unit of units” (Reynolds & Wheatley, 1996). The number line,

which is  a direct  representation of length,  is  useful  in  reasoning in proportionality contexts.  The

double  number  line  in  particular  is  a  convenient  representation  of  proportional  relationships

(Subramaniam, 2008), which affords the structuring and co-ordination of subunits and chunked units.

Battista (2007) has recommended the use of fractional-units to help children understand the principle

of unit structuring and unit iteration in measurement, which is similar to the process of unitizing in

multiplicative thinking. Thus, both measurement and multiplicative thinking, involves comparison of

quantities,  understanding  of  unit,  inverse   relation,  part-whole  relation,  fractions  (partitioning),

proportion, etc.,

The  five  measurement  principles  stated  by  Curry,  Mitchelmore,  & Outhred  (2006)  are:  need  of

congruent  units,  use  of  an  appropriate  unit,  using  the  same  unit  for  comparing  objects,  relation

between the unit and the measure, and structuring of unit iteration. Each of the above five principles

requires appreciating the multiplicative relations that arise in the context of geometric measurement in

various ways. Some measurement tasks require general logical reasoning. One is to know the inverse

relationship between the size of the unit and the number of those units required to cover any fixed

space, and the other is the need of equal-length or equal-sized units for measuring (Clements, 1999).

Such logical reasoning involves the multiplicative relation between the size of the unit and the number

of those units required to cover any space. It also involves the part-whole relation, when a given

whole space is divided into equal parts of units, or units are subdivided into smaller units. Again, an

understanding of the multiplicative relationship is required to get the area of a rectangular surface

using its length and breadth, and to get the volume of a solid using its height and cross-sectional area

(Battista, 2007). 

In  the  case  of  area  measurement,  multiplicative  thinking  arises  first  in  ways  similar  to  length

measurement, such as: (i) the use of sub-units and chunked units (unit of units) in determining area

(ii) inverse relation between size of unit and the measure. It also arises in ways that do not occur in the

case of length measurement, such as the array structuring of units in the case of rectangles, leading to

area as the product of length and breadth. Further, there is a multiplicative relation between the area of

the  rectangle  and  the  unit,  between  the  area  and  length,  and  between  the  area  and  breadth.

Correspondingly, there is an inverse relation between the area measure and the magnitude of the area

unit, which is itself dependent on the length and breadth of the unit. Further, the passage to non-
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rectangular polygons involves triangulation,  starting from the area of a right  triangle obtained by

dividing a rectangle in half, which involves a multiplicative relation. Thus we find that multiplicative

relationships are involved in complex ways in area measurement. An instance of this can be seen in a

study by  Reynolds & Wheatley (1996), where a fourth grader solved the problem of finding the

number of 3-by-5 cards required to cover a 15-by-30 rectangle. She solved it by dividing the area (450

divided by 15), despite being skeptical of the calculation, as she wanted to verify it by drawing, in an

attempt to connect  the spatial  and numerical  form of the problem. Thus,  in this case,  it  was not

determined if the student knew that the number obtained after dividing the areas would be correct

only  if  the  two  dimensions  (length  and  breadth)  of  the  small  card  completely  divide  the  two

dimensions of the large rectangle respectively (cited in Battista, 2007). This gives an instance where

the unit  is  related to the target  area,  not  only in terms of the multiplicative relation between the

magnitude of the unit and the magnitude of the target area but also in terms of the multiplicative

relation between the dimensions of the unit with the dimensions (length and breadth) of the target area

(i.e., area of the space to be measured).

The  above  discussion  shows  that  an  understanding  of  the  area  concept  requires  connecting

multiplication  to  geometry.  Multiplicative  thinking  is  a  well-researched  foundational  topic  in

mathematics education and has application in a broad range of domains. Thus, there is a need to

design studies to explore different ways in which multiplicative thinking can support the geometric

measurement of area. Specifically, we needed to develop tasks that can elicit or make the connection

between these domains more visible. Again, while developing tasks we need to move beyond the

discrete counting exercise of unit covering, to tasks that allow students to view the continuous nature

of area and to see it’s measure as a continuous composition of lengths  (Kobiela, & Lehrer, 2019; de

Freitas & Sinclair, 2020).This requires us to re-imagine the tasks from additive counting of units to

multiplicative composition of dimensions. 

Referring back to the curriculum proposed by Davydov (1975), he argued that measurement connects

the gap between whole numbers and real numbers, by bringing out the need of fraction (or rational

numbers), and it further connects algebra and analysis in a very organic way. Thus, the significance of

measurement,  and  the  need  of  integrating  different  foundation  topics  of  mathematics  with

measurement,  was  realised  in  the  classic  work  of  Davydov,  to  build  a  coherent  curriculum for

mathematics. 

Drawing on this understanding, I will try to build an integrated model of area, by pulling together

various  conceptual  understanding  involved in  area,  and  by  connecting  it  with  other  foundational

topics of  mathematics,  along with multiplicative thinking. Thus,  through my studies done in the

following chapters I will propose a curriculum for learning area measurement which can integrate or

connect different conceptual topics in a network form. 
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2.2 Reflections and need for further studies

Drawing from the first theme, Chapter 3 describes the first set of studies of the thesis, which will

explore and understand students’ conception of area in their existing setting through observational

studies. The research design and methodology is mostly inspired from the studies reported in the first

and  second  themes  of  the  present  chapter.  Thus,  Chapter  3  will  explore  the  students’  existing

understanding of AM or area through studying the existing curriculum, pedagogy and students’ task-

based interviews. Drawing from the insights of theme 3 of the present chapter and building on the

findings from Chapter 3, in the 2nd study (reported in Chapter 4), I will design and develop a teaching

sequence on AM, and implement the same in a classroom context. However, the intention is not just

to explore the success of the lesson, or the effect of different materials used, but to also focus on the

complex forms of social interaction involved in the construction of the area concept, and how it can

be  analysed.  To  further  explore  the  role  of  material  interaction  separately,  without  the  noise  of

complex social interaction, I will present the 3rd study (reported in Chapter 5), which will explore this

aspect in a controlled lab set-up. 
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3

Study 1: Exploratory Studies 

This  chapter  outlines  the  initial  exploratory  studies  to  probe  students’  conception  of  area

measurement. These studies were done in a naturalistic setting as far as possible, in the classroom and

within the regular school schedule. As the studies were exploratory in nature, I have used a mix of

approaches, ranging from classroom observations to semi-structured interviews, textbook analysis,

planned and structured task-based interviews, and written questionnaires. The broad objective was

characterizing the existing scenario of students’  understanding of area-measurement in the Indian

context, as the literature review we saw in the previous chapter mostly covers work done in other

countries,  especially  in  the  Western  context.  As  I  progressed  with  the  exploratory  studies,  our

observations and data collection became more and more refined, to a more focused and structured

study,  which  explored  specific  aspects  of  students’  understanding  of  the  concept  of  area-

measurement. 

3.1 Overview

The main objective of my thesis in general and the present chapter in particular is to understand and

explore students’ conception of area-measurement (AM). The literature review already throws some

light on students’ conception of AM and it also covers some of the major issues faced by students

while learning AM. While a majority of such issues were covered under the conceptual theme of the

literature review, we saw their bearing/connection with the other three themes of the literature review,

that is, the curriculum, the material-use, and multiplicative thinking. Thus, students’ conception of

AM, or the issues faced by the student while learning AM, are not independent of the curriculum, the

material-use,  or  the aspects of  multiplicative thinking involved in the pedagogy of AM. Thus,  to

properly understand students’ conception of AM, one needs to engage holistically with all the above

mentioned aspects of AM instruction. Most of the studies mentioned in the literature review on AM,

except a few, are not from the Indian context. Unfortunately, these few Indian studies also tend to be

inspired by international tests and studies e.g., PISA, TIMSS, and end up strengthening and verifying
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some  of  the  already  reported  misconceptions  related  to  area  and  perimeter  found  in  such  tests

(Kanhere, Gupta, & Shah, 2013; Educational Initiatives, 2006). Moreover, such tests follow a deficit

perspective,  in  labeling  students’  conceptions  identified  through  written  tests  as  misconceptions,

rather than meaningfully engaging with students’ conceptions (like in the Piagetian approach). They

thus provide a narrow understanding of the underlying factors affecting students’ conceptions. Thus,

to  bring  out  aspects  of  Indian  students’  AM conception,  there  is  a  need  for  further  exploration.

Moreover, to understand students’ conception of AM in the Indian context, it is equally important to

understand it within the context of Indian school, that includes the practiced Indian curricula, and the

pedagogy that is followed in shaping students’ conceptions. Also, to plan any intervention in a given

situation, it is important to know the existing situation. Since the subsequent studies reported in the

thesis are intervention studies, it was important to study the existing issues in the present setting.

Considering the need for a fresh exploration of the issues at hand in the Indian context, the most

suitable methodology was Naturalistic methodology. I elaborate this in detail in the next section. 

This chapter presents a series of studies, which can be divided broadly into three categories. The first

set of studies were done in students’ existing natural (or regular) setting, that is the school setting of

the students. The second category included the analysis of the curriculum or textbook. The third set of

47

Figure 3.1: Graphic summary of the chapter



studies were done using one-on-one, task based interviews, conducted in the research institute or an

isolated lab provided to me in the school itself (e.g., school’s computer lab). A concise graphic picture

of the forms of studies covered in this chapter are shown below in Figure 3.1. The chapter ends with a

proposed model for learning the concept of area-measurement.

3.2 Methodology

In this study we have used the Naturalistic research methodology that falls under the Naturalistic

paradigm,  and  it  integrates  several  data  collection  methods  (Moschkovich,  &  Brenner,  2000).

Naturalistic  methodology  has  evolved  from  the  paradigms  of  sociology  and  anthropology,  as  a

challenge to the positivist trend of investigation, and thus acknowledges the role of the observer along

with the participants in the construction of meaning (Moschkovich, & Brenner, 2000). The naturalistic

paradigm has three main principles, elaborated as below: 

The first  principle requires one to consider multiple points of  views/data.  In this study,  we have

addressed  this  by  exploring  students’  conception  of  AM  through  three  data  sources:  classroom

observation, textbook (curriculum) analysis and students’ interviews. This method requires one to

view students’  ideas  purely  from their  own cultural  positioning,  with  a  more  open and original

outlook  to  listen  to  students’  description  and  definitions,  rather  than  looking  for  pre-existing

definitions or issues or problems mentioned in the existing literature from different contexts. Thus the

aim is not to attain objectivity by compromising on the natural factors, but rather giving subjectivity

its due by acknowledging it and describing it completely as much as possible.  

The second principle of the methodology demands one to not just verify existing theories, but to help

create new ones.  Thus in this chapter,  we not  only try to characterise the overall  picture of AM

learning in the Indian context, but also generate and propose a new theory based on the data collected.

This “network model” of AM pedagogy, elaborated at the end of this chapter, is an outcome of several

studies. Thus this chapter not only contributes to forming a better-picture of AM conception in the

Indian context,  but  it  also proposes  a theory (network model  of AM) to address the specific  yet

complex character of AM pedagogy. 

The third principle discusses the significance of context in the study of cognitive activity or learning.

Thus the methodology requires  one to study and include aspects  of  the setting or context  of  the

student, as the student is not an individual learner separate from her or his context, but draws meaning

out of the place and its practices. Also it is important to elaborate how the existing setting is affecting

the learning and cognition, instead of just describing or qualifying the “natural” setting. The initial set

of studies of the present chapter are done in the regular natural setting of the students, while the later

set of studies, which were planned to be more structured cognitive studies, were done in a research
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setting. 

The chapter starts with the following three broad research questions: 

RQ 1. What are students’ conceptions of “area” ? 

RQ 2. What is the conception of “area” reflected in classroom practices? 

RQ 3. How does the curriculum deal with the “area” conception? 

However these broad research questions become more specific as we move through the different

studies covered in this chapter and go deeper into each of these studies. The next sections delve into

the studies done to explore each of the above three research questions. In the process of exploring

these three broad research questions, further specific research questions emerge, leading to further

structured studies done later on. The end of the chapter presents an attempt to consolidate all  the

studies, in order to re-imagine the pedagogy and curriculum for AM.   

3.2.1 Classroom Observation on Area-measurement

In  order  to  understand and probe  the  existing  pedagogy around AM,  and to  address  the  second

research question (conception of “area” reflected in the classroom practices), classroom observations

in regular schools were carried out. The very first study in this venture started with visiting schools

located in an urban setting. Close to our Research Institute are six schools, which are part of a chain of

federally funded schools distributed across multiple locations in India. This school chain follows a

central government curriculum, and is different from the other school systems which are either private

or  state  government  schools.  The  schools  cater  to  students  from  middle-to-upper-middle-class

families, and mostly to students whose parents work in central government jobs. The schools follow

the books produced by the National Council of Education Research and Training (NCERT), which is

an autonomous body of the Government of India to improve the quality of school education. 

I went to all  the six schools, took permission from the principal and then asked the mathematics

teacher there if I could attend their class on geometry and measurement. All of them gave me slots to

observe the classes. These visits and observations were made during November-December, 2010. For

over a month I observed 30 lessons, and made hand-written notes for 20 of them. I attended and

observed a wide range of classes, from Grade 4 to 10, based on whichever class the mathematics

teacher allowed me to attend. The schools, and the classes I attended, were thus chosen based on

convenience. The teacher taught in those classes quite confidently, and did not see me as a threat or an

obstacle in her teaching, possibly because I was open to observations and I was not there to evaluate

or judge the teaching. I myself have grown up studying in a similar school system and learning from a

similar syllabus, though the textbooks have been revised since my time as a student. I have repeated

some of  these observations  in  other  kinds of  schools  as  well,  for  example in  government  aided,
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private, and state government schools. Although I will not be reporting them in this section, they are

broadly similar  to the  present  set  of  observations.  Some broad observations that  could be drawn

through the notes about the pedagogy of AM are as follows:

1. In almost all the classes I observed, across grades, the main focus was on solving the exercise

problems in the textbook at the end of each chapter. Sometimes the teacher also mentioned

how many marks a particular exercise question would carry in the exam. Thus it was literally

an exercise for exams. 

In one class of 7th grade, the teacher allowed me to observe her class. She told me that she

generally tries to have a discussion with her whole class and that day she was planning to

teach area-measurement.  The teacher started with exercise  questions,  and helped children

recognise the use of the formula for area and perimeter in different question situations. After a

few questions she talked about the distinct contexts for area and perimeter. Thus, the teacher

mentioned that perimeter will be used for contexts of lace, track, decorating, etc., and area

will be used in the contexts of polish, design, distributing land, sowing seeds, tiling, etc. The

teacher also said that for making a door, we want an area, but we strictly need length and

breadth.

In another school, where the teacher started the topic of area and perimeter for her Grade 7

students, the class started by asking students about perimeter. While one student said that it’s

the length of the boundary, the teacher started asking about specific conventional shapes like

squares and rectangles. She did a few example problems and then moved to discuss about

area. Following is an excerpt of the interaction that happened afterwards in the classroom

(since  these  were  hand  written  by  me  in  real  time,  there  is  scope  of  human  error  or

imperfection or omission, so the excerpt may not capture the exact utterances):

Teacher: What is area ?

Student 1: It is the total space occupied, no I am not getting the right term

Student 2: It’s the total region

Teacher: It is measured in unit square. Where 1 square centimeter means area 

of the square is 1 cm²

[Teacher draws a rectangle on the board, marking it’s length as l and breadth as 

b]

Teacher: How can you prove that area is length × breadth ?

… [some chattering] ...
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Student 1: It’s divided into unit squares. It’s the multiplication of the squares in 

the length multiplied by the number of squares in the breadth. 

[As the student explains, the teacher draws some lines inside the previously 

drawn rectangle, some parallel to the lengths and some parallel to the breadth] 

Student 2: Is there any other way to prove it? 

Student 3: How is this a proof?

Student 4: So why ?

Teacher: When we say area, what we say are units. What does square-cm mean?

How?

Teacher: 1 square-meter is the area of a square of side 1 meter. 

Teacher: Now you will have to practice questions. This syllabus was done in 

October to December. 

Teacher: I think all of you got the answer.   

As can be seen from the above interaction, the teacher asked for the proof of area as equal to

length × breadth, which led to students responding and raising questions to each other or

asking for proof. But the teacher did not address those questions, and switched the interaction

focus to the syllabus. This may be because the teacher wanted to focus on things which are

more relevant for the exam. The episode can also be seen as students trying to make sense of

area by wanting a materialistic or  realistic understanding of area,  but  the teacher tried to

switch the interaction to a more formalized understanding of area, and did not try to connect

students’ experiences about area with the formal way of finding it.  

2. There was extensive use of numerical calculations in all the classes, with great emphasis on

the formula or  rule  to  be used for  the  given exercise  or  numerical  problem.  The  use  of

formulas were seen as conventions or rules in math, without delving into the logic or reason

for it. For example, the formula for area and perimeter of shapes like Rectangle, Square, etc.,

and formula for surface area for cone, cylinder etc., were told to students, for them to use

during solving different numerical problems.

3. There was no discussion on any alternative ways of solving a particular problem or exercise

question. So, when a teacher posed a particular exercise question, and students gave their

responses, students only got the feedback of whether the response is correct or wrong, with no

discussion on why it is correct or incorrect.

4. Students rush into the race to give the answer first, and the teacher looks for only the correct
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answer.  Even if  different  answers  come from students,  teachers  don’t  engage with these,

considering them to be wrong. 

5. In the classroom discussion on area-measurement mostly typical shapes, which are regular

polygons like rectangle, square, triangle etc., appear. In Class 6, the teacher introduces how to

find the area of an irregular shape as shown in Figure 3.2 and Table 3.1 (similar examples can

be seen in the textbook analysis in the next section).

Table 3.1: Procedure followed in finding the area of an irregular shape

Covered Area Number Estimated area (in sq cm)
Full square 13 13  sq cm

More than half 8 8  sq cm
Half square 3 3/2  sq cm

Less than half 7 0 

Thus a particular rule is presented to find the area of irregular shapes. As can be seen from the first

and second row of the above table (Table 3.1), squares which are covered, fully or more than half

were counted as whole, squares which are covered half are considered half, while squares which are

covered  less  than  half  are  considered  or  counted  as  zero.  However,  there  was  no  discussion

beforehand on why such a rule was being used, or why it works to find the area of an irregular shape.

Though this rule could provide a powerful strategy of partitioning a given area into smaller square

units, and noting the counts of different sized units into a tabular form, it lacks proper grounding for

using such strategies. Thus the pedagogy missed any discussion on why the different sized units or

parts are counted in this particular way, for example, why the estimated area of parts that were less
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than a  half  square  were taken as  zero.  Also the instruction of  numbering the units  restricted the

students to count each unit, rather than coming up with some alternative optimal way of chunking the

units into some bigger shape. 

Thus  some  general  and  specific  observations  arose  regarding  the  pedagogical  practices  around

measurement, from several classroom observations. These observations and insights helped me in

reflecting about designing my own teaching sequence on learning AM. This is presented in the next

chapter.  

3.2.2 Students’ interviews inside school

In this study, I extended my observation from looking at the pedagogy around measurement to what

the students’ conceptions of area-measurement are. I planned to interview a few students from each

class that I observed. This is a general practice that I followed for most of my observations, because

after doing the classroom observations, students noticed me and became familiar with me to some

extent. Generally, I requested the mathematics teacher to identify six students for me, two who scored

above average, two with average scores, and two with below average scores, from each class, to have

some fair representation of students to some extent. I interviewed some 20 students, and made notes.

Students were in the age group of 10-12 years. The nature of the interview was open-ended, with no

rigid structure or set of questions. The interviews were fully guided by a curiosity to know what

students understand by area or area-measurement, maintaining an informal tone. The setup was also

kept informal, and the interviews were done in the school premises, either in the playground, or the

stairs or corridors of the school. The interviews usually started with some general question about the

student’s name, age, etc., and then they were asked what do they know about area, or understand

about area measurement, or just “what is area?”. To facilitate the discussion further, I also asked them

about perimeter. A casual tone was maintained in the interview, to make students feel comfortable.

They were also assured that their identity will be kept anonymous. Considering the noise in such an

informal  (and unstructured)  setup,  I  relied  completely  on  my hand written  notes,  instead of  any

recording device. Some of the broad observations in this context are as below:

1. Interestingly, almost all the students who could respond to the area question spoke about area

as  l × b, side × side,  2l + b,  l + b etc., and for perimeter they said, side+side+side+side,

2×(l+b), 2+l+b. Though I went with not much expectation, I still thought they might indicate

the 2-dimensional space or show me the plane surface when I asked them about area. But to

my surprise their association with area was not with any space but with some symbolic and

numerical representation. 

2. In further discussion with the students, they were shown a rectangle drawn in a notebook with

given  dimensions  (measures  of  length  and  breadth)  and  were  asked  about  its  area  and
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perimeter.  Again,  most  students tended to mention some numerical  operation,  rather than

trying to highlight the attributes that are measured for area and perimeter respectively. After

that students were asked if a square part is removed from a rectangle what will be the area and

perimeter  of  the  resulting  shape  (see  Figure  3.3  and  3.4).  Some  students  (around  four)

subtracted  the  perimeter  of  the  square  from the  perimeter  of  the  rectangle  e.g.,  students

calculated 24cm-4cm=20cm as the perimeter of the resulting shape in Figure 3.4, rather than

finding the measure of the resulting boundary. A few students could not say how to find the

perimeter of the resulting figure as also reported in several other studies (Cavanagh, 2007;

Kanhere, Gupta, & Shah, 2013; Educational Initiatives, 2006). Thus, students’ understanding

of  perimeter  is  confused  with  that  of  area,  where  students  apply  the  same  operation  of

(subtracting)  area  for  perimeter  too.  This  also  highlights  the  complete  lack  of  spatial

understanding of the attributes and their measure among several students.                 

3. When students were asked why area is l × b and perimeter is  2×(l+b), most students could

not explain, or said that they see it as a rule or convention. However, two students connected
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removed from the edge of a rectangle



it with the unit squares on the length multiplied by the units on the breadth, and they also

explained the perimeter as the measure of the boundary. Two students drew both horizontal

and vertical strips on the rectangle and said that’s why it is length multiplied by breadth. One

of these students explained it as the length is getting repeated along the breadth and that’s

why it is length into breadth (i.e., length times breadth). 

4. When I drew an irregular closed shape and asked them about its area, some students (around

7) either could not respond, or with some prompt they said it would not have any area. For

them, area was associated with only typical regular shapes like square, rectangle, triangle and

in some very few cases circle. For example, two students responded like this 

 I: aur circle ka area? [and circle’s area?]

S': ma’am circle ka area nahi hota [ma’am circle doesn’t have area]

S: Kyuki circle means squares or rectangles ko number likh sakte hain…circle 

ko side nahi hote number nahi likh sakte… [ because in circle means for 

squares and rectangles number can be written… circle doesn’t have side so 

number can’t be written…] 

Thus, the student’s meaning of area is just associated with some ideal mathematical object

(e.g., square, rectangle) completely disconnected to any realistic material or physical object.

However, some other students (around 5) tried doing it similar to the way explained in Figure

3.2,  that  is,  partitioning  the  given  irregular  shape  roughly  into  squares  and counting  the

squares in the given irregular shape. Here, again students were conveniently leaving out the

parts around the corner of irregular shape after partitioning, without any explanation for it. So,

either they are just implicitly following the rules that they had learned in the class, or they

didn’t  consider  that  part  as  belonging  to  the  area  of  the  region.  But  this  could  not  be

ascertained.  Thus  these  observations  indicate  that  students’  understanding  of  area  is  just

limited to some symbolic representation or some numerical operation or numerical value, and

is  totally  devoid  of  any spatial  or  material  or  physical  understanding of  what  the  “area”

concept represents. 

5. Another observation that came up in students’ interviews is that the moment I utter the word

area, students try to reproduce the formal knowledge that they had learned in school, with no

reference to their out of school context. It could be due to students having not much exposure

to area context outside of their schooling, as most of these students were from urban areas. Or

it could be due to students having different references (or contexts or words) for area in their

own local language or local context, which I was not aware of at that time. Since English was

the second or third language for most of the students, students may have some other term for
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area in their own language and thus asking questions on the English term “area” might have

hindered them in connecting it with their own experiential or cultural meaning of area.

These observations also indicated some gap in student’s understanding of area. This motivated me to

design some structured interviews, to probe some of the observations further in a more systematic

manner, after doing a textbook analysis. 

3.2.3 Curricular Material: Textbook Analysis

As argued earlier, the above aspects of conceptual understanding are not independent of the remaining

three  themes  of  the  literature  review  i.e.,  the  curriculum,  the  material  use,  and  the  role  of

multiplicative thinking (MT). Here I report a textbook analysis, using an analytical framework based

on the insights drawn from the last three themes of the literature review. In the last theme of the

literature  review, I  argued for the role  of  MT in learning AM, through several  studies  that  have

established the presence of MT in AM. However, the connection between AM and MT cannot be

made one way (by just bringing MT to AM) but has to be established both ways, by also having the

contexts of  area or AM within different  MT contexts.  For example,  several  math educators have

extensively used graphic area models of multiplication to provide visual and concrete representations

for  students  learning  two-digit  multiplication  (Englert  and  Sinicrope,  1994;  Izsák,  & Beckmann,

2019). Extending the same model, several educators have used the base-10 materials (as in graph

paper) as a model, not just for multiplication of whole numbers but also decimal fractions (Rathouz,

2011). Thus, through this textbook analysis, it is also important to explore and report such instances

where the area model is used for multiplication, or to illustrate decimal fractions and how the concept

of area appears in such multiple topics.  

To get a deeper understanding of area measurement (AM) in the curriculum, I have analysed the math

textbooks as a curriculum material. For the present section, I have analysed the math textbooks of

Grades 5, 6, and, 7 of Maharashtra3 state board (MSB) books and similarly the math textbooks of the

corresponding grades of National  Council  of  Educational  Research and Training (NCERT) books

respectively. The MSB books are followed mainly in one state of India in schools that come under the

state board, while NCERT books are followed across India in several schools that come under the

Central  Board  of  secondary  Education  (CBSE).  From  here  on,  I  will  be  referring  to  the  math

textbooks of MSB and NCERT of Grades 5, 6, and 7 as MSB 5, MSB 6, MSB 7 and  NCERT 5,

NCERT 6, NCERT 7 respectively. 

3 Maharashtra is one of the states in India, out of 28 states and 8 union territories. Maharashtra, like most other 

states, has its own state education department and its own curriculum.  
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3.2.3.1 Geometry vs geometric measurement 

One of the main arguments in the previous two chapters is how over time geometry has become

separated from geometric measurement, with more weightage given to the former over the latter. An

impression of the same can be seen in the content distribution of the textbooks analysed here. In Table

3.24,  the  chapters  on  geometry  are  highlighted  in  yellow,  while  the  chapters  on  geometric

measurement  are  highlighted  in  blue.  It  can  be  clearly  inferred  from  Table  3.2  that  geometric

measurement is kept separate from geometry5 in almost all textbooks. Again as we move to higher

grades, the proportion of geometry-related content increases over measurement-related content. After

much deliberation, the topics (or chapters) on “practical geometry” in NCERT books and the one on

“constructions” in MSB books are identified under the category of measurement because they are

mainly based on  the  principles  of  measuring using the geometry toolbox.  However,  the  analysis

indicates that these chapters only have a few exercises on measurement, and most of the exercises in

them are based on the application of results and proofs from the chapters on geometry. Thus, the

chapters on “practical geometry” and “constructions” act as application or verification of the already

existing geometric results and proofs rather than a space for students to construct their own authentic

geometric results and proofs.   

Table 3.2: Distribution of Geometry and Measurement related topic in textbooks

MSB 5 MSB 6 MSB 7

● Geometry: Basic 
Concepts

● Angle and Triangle
● Measurement
● Segment: Measurement 

and Construction
● Properties and 

Rectangles and Squares
● Circle
● Perimeter
● Area

● Point, Line, Plane
● Angle
● Pair of Angles
● Perimeter 
● Triangles and Types of 

Triangles
● Properties of Triangles
● Geometric 

Constructions
● Area
● Volume
● Circle

● Properties of Triangles
● Theorem of Pythagoras
● Construction of Triangles
● Quadrilaterals
● Congruence
● Types of Quadrilaterals
● Area
● Volume and Surface Area
● Circle
● Construction of 

Quadrilaterals

Geometry based = 4 Geometry based = 6 Geometry based = 6

Measurement based = 4 Measurement based = 4 Measurement based = 4

4 The list of all the chapters in different textbooks are mentioned in Appendix II.

5 With regard to the distinction created between geometry and measurement related content, the content on 

geometry deals purely with mathematical objects or entities with very little reference to real life objects. The 

content on measurement will have more real life contexts and exercises, and an aspect of the practical or 

physical measurement using tools like ruler, protractor, etc. 
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Total chapters = 22 Total chapters = 23 Total chapters = 23

NCERT 5 NCERT 6 NCERT 7

● The Fish Tale
● Shapes and Angles
● How Many Squares?
● Does it Look the Same?
● Mapping Your Way
● Boxes and Sketches
● Area and its Boundary

● Basic Geometrical Ideas
● Understanding 

Elementary Shapes
● Mensuration
● Symmetry
● Practical Geometry

● Lines and Angles
● The Triangle and its 

Properties
● Congruence of Triangles
● Practical Geometry
● Perimeter and Area
● Symmetry
● Visualising Solid Shapes

Geometry based = 3 Geometry based = 4 Geometry based = 6

Measurement based = 4 Measurement based = 2 Measurement based = 2

Total chapters = 14 Total chapters = 14 Total chapters = 15

It is evident from the above table (Table 3.2) that the topic of geometry and measurement together

covers around 35-55% of the total mathematics content in all the given textbooks. It can be clearly

noticed that except NCERT 5, in most of the other textbooks, geometry related topics majorly precede

measurement  related  topics  and  have  more  number  of  chapters  devoted  to  geometry  than

measurement.

3.2.3.2 Use of area contexts in other topics of mathematics (Integration of concepts)

In addition to the chapters on geometry and measurement, I also explored the presence or absence of

area context in other topics of mathematics. In this part of the analysis, I searched for the term “area”,

or the context of area, in all the chapters of the selected books. Table 3.3 gives the list of all chapters

(their name and their chapter number from the respective textbook) which have used the term area or

the context of area. The number of instances such contexts are used are mentioned in brackets. 

Table 3.3: Titles of chapters using some form of area representation in different textbooks  (number of

instances in brackets

MSB 5 MSB 6 MSB 7 NCERT 5 NCERT 6 NCERT 7
Profit and loss 

(1)

Squares 

and square

roots (1)

 Theorem of 

Pythagoras (1)

Parts and 

Wholes (2)

Knowing 

our 

numbers 

(1)

Fraction and 

Decimals (2)

Equivalent 

fractions (1)

Volume 

(1)

Quadrilaterals 

(1)

Mapping 

your way (7)

Algebra (1) Data Handling 

(2)
Multiplication 

and division of

Identity (1) Boxes and 

Sketches (1)

The triangle and

its properties (1)
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fractions (3)
Volume and 

surface area 

(1)

Ways to 

multiply and 

divide (2)

Congruence of 

triangle (2)

Circle (1) How big? 

How heavy? 

(3)

Comparing 

quantities (2)

Algebraic 

expression (1)

From the above table (Table 3.3), it's clear that the context of area is used in several topics in both

NCERT and MSB books6. The use of area context in this wide range of topics (or chapters) shows

that the context of area has application in a broad range of topics. However, it is also seen that the use

of area in other chapters is not given its due importance in these set of books, except for the NCERT

Grade 5 book, where each of these chapters consists of a few notes (at the bottom of the page) for

teachers about how the context of area can be consciously used with students to build understanding

of the topics in those chapters. The notes emphasise the idea of integration of concepts. None of the

other books have any such notes which emphasise or highlight the use of area in those chapters.  

The integration of area concept with other topics is comparatively poor in MSB books. In MSB 5, the

sixth chapter on “Profit and loss” has the following exercise question, 

Makarand purchased a plot for Rs 81,450. After a few years, he sold it to Ajit at a profit of Rs

1,750. What was the price for which Ajit purchased that plot ? (p.32)

Although the present framing of the question uses the notion of plot just as an object with some price,

devoid of any discussion, it does assume the social knowledge of buying and selling of plots of land,

which involves the 2-dimensional quantification of such plots. Thus, even though the context of a plot

is kept immaterial,  and the emphasis is merely on the price and the profit, the context does have

underlying it  the notion of  quantification of  a 2-dimensional  space in  terms of price.  This could

provide a rich context to integrate AM with the topic of profit and loss. The potential of integrating

AM with other topics could have been made more explicit by providing a teacher's note or footnote

for such contexts. 

The chapter on “congruence” in MSB 7 book even has congruence of triangles and quadrilaterals. But

6 The books were analysed in the year 2012, however the very next year itself the MSB books were revised and 

thus they are no longer followed by the state boards after the year 2013. Broadly speaking, those revisions 

have some elements of the NCERT books, as some of the members involved in the revision of MSB books 

were also involved in the NCERT book revision process. 
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it  doesn't  have  any  mention  of  area,  even  though  it  is  so  imperative  to  the  understanding  of

congruence, as one of the main implications of congruence of shapes is that they will have equal area.

So,  while  congruent  shapes  may visually  look different  due  to  translation  and rotation,  all  their

corresponding measurements (of dimensions) will  remain the same. Thus the spatial or numerical

representation of area can be more explicitly used in each of these chapters, either as a context or to

broaden the understanding of each of these concepts.  

3.2.3.3 Kind of shapes and “unit” representations

As can be seen from Table 3.4, except in NCERT 5, and in very few instances in NCERT 6, most

other  books  use  very  conventional  geometric  shapes  in  the  chapters  on  geometric  measurement,

causing children to associate area or AM only with conventional geometric shapes (as reported earlier

in interviews with students). This also results in students developing a very limiting view or meaning

of AM or area, as a mathematical concept cut off from the real world, or having no meaning in the

world outside. 

Table 3.4: Shapes shown in the chapters on Geometric Measurement 

MSB 5 MSB 6 MSB 7 NCERT 5 NCERT 6 NCERT 7
triangle, circle,

hexagon, 

rectangle, 

irregular 

curved shapes 

(on 

grid/graph), 

polygons

(unit-square 

shown)

triangle, 

rectangle, 

circle, 

square, 

pentagon

rectangle grid, triangle, rectangle,

real-life examples (e.g.,

animal skin, footprint, 

etc.), parallelogram, 

curved closed shape, 

quadrilaterals, design 

patterns. 

(Square unit, triangular 

unit)

circle, 

rectangle, 

star shape, 

leaf, 

irregular 

polygons, 

cloud and 

curved close 

shape on 

grid 

rectangle, 

irregular 

polygon, house, 

triangle, 

quadrilateral, 

parallelogram, 

circle, racing 

track, circular 

objects.

Most of the curricular developmental models on measurement cite the importance of units, and the

need for moving from informal units to standard units (Piaget, Inhelder & Szeminska, 1960; Battista,

2007; Sarama & Clements, 2009). However, in the textbook analysis, we see that the idea of unit is

there only in the fifth grade of both MSB and NCERT books, but not much in later grades. Again,

except NCERT 5 that does bring in triangular units,  most other books talk about or assume only

standard square units. While the use of different fractional units are strongly recommended in the

literature (Battista, 2007), and these are considered very important for understanding the conceptual

spatial structuring and unitization involved in AM. 
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3.2.3.4 Connection with real life terms like “size” 

As we saw in the section on students’ interviews, most students did not connect with, or give any real

life contexts,  for “area”. So I tried to find what the general term used for area or AM in regular

everyday language is by asking a few lay people. What I realised is that, in most daily life contexts the

word “size” is used to refer to area or AM. The last curricular reform recommends connecting the

school’s  content  with students’  real  life  in  the  National  Curriculum Framework (NCERT,  2005).

Thus, in this part, I explored the uses of the word “size” in these textbooks. Referring to Table 3.5, I

checked for occurrences of the word “size” in each of the books. We see significant uses of the word

“size” throughout the NCERT books. However it occurs in only one instance in MSB 5, and there are

no instances in MSB 6 and MSB 7.  Though the word “size” is majorly used to refer to AM in these

books, on some occasions it is also used to refer to linear or volume measure, or some other quantity.

Thus, the word “size” is, in general, ambiguous and derives its specific meaning from the context

where it is used. 

Table 3.5: Uses of the word “size” in the following books

MSB 5 MSB 6 MSB 7 NCERT 5 NCERT 6 NCERT 7
1 0 0 18 20 34

Although the word “size” seems non-mathematical,  it  does bring in a rich and integrated generic

understanding  of  measurement,  which  is  also  related  to  students’  regular  language.  This  will  be

further explored and established in our later study, where most of the students seem to be comfortable

using the term “size” for area.  

3.2.3.5 Kind of AM tasks or exercises (Numerical to spatial representation conversion 

for AM missing)

In the topics on length or angle measurement, or even in the chapters on practical geometry, students

are required to draw or construct a line segment of given length or given angle. That is, with given

numerical values, students were expected to draw the corresponding spatial representation. There are

also a few reverse situations, where students are required to measure the length and the angle (i.e.,

getting the numerical value) given some spatial representation like shapes, etc. However, in the case

of AM, except for the NCERT 5 book, most other textbooks do not have exercises or tasks, where

students could actively engage with the visual representation of AM. Most of the exercise questions

on AM are “find” questions which are calculation based, rather than drawing, creation or construction

based tasks. 

Some researchers (e.g., Boaler, 2015) have emphasised the use of open and creative tasks, such as
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finding  multiple  visual  representations  for  the  product  18×5.  That  is,  tasks,  where  given  some

numerical  measure for area,  students are asked to create (or draw or visually represent)  different

figures having the same numerical area measure. Such tasks encourage conversion from numerical to

spatial representation for area. Tasks that allow movement in both forms (moving from numerical to

spatial and vice versa) can strengthen the connections between different representations. Such tasks

may further help in building connections with different contexts, and help students to transfer them to

real-life contexts. One reason for the lack of such tasks in AM could be due to the absence of any

instrument or tool in the case of AM, unlike other measures like length and angle, where students

have ruler and protractor respectively.  However,  this  absence also needs to be addressed through

connecting or building new “cultural tools” for AM within the classroom.

3.2.3.6 Area of irregular or curved shapes 

In students’ interviews we also saw that for irregular or curved shapes, some students said that it does

not have area;  for them area was something associated only with a few conventional shapes like

square  and rectangle.  Thus  it  was important  to  explore  how textbooks present  areas  of  irregular

shapes. It was found that there are several mentions of irregular curved shapes having area in Grade 5

books of  both NCERT and MSB.  However,  as we dig deeper,  we see that  the measurement  of

irregular shapes is introduced as some procedure or calculations, with counting and some formula,

with  less  attention  paid  to  the  rationale  for  such  procedures.  This  was  also  corroborated  by  the

classroom observations, where students found the areas for irregular shapes. 
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For example, NCERT 5 introduces areas for irregular shapes as shown in Figure 3.5, and requires

students to count the number of squares (complete squares) to get the area. Again, in NCERT 6, area

for irregular shapes is handled through making a table to count or categorize the fully-filled, half-

filled, more than half-filled and less than half-filled squares (Figure 3.67, Figure 3.7). 

Figure 3.6: NCERT 6 (NCERT Textbook1, p. 216)

Though the textbooks mention that it is an estimate of the area, they do not elaborate further why such

categories appear in the table. Or why is such counting used? Also, why are we considering more than

half-filled square as 1 unit and less than half-filled square as 0 units? Why is such a formula used at

the end? What is the actual area? How close is this estimate to the actual area? Can we move further

in getting the precise area? 

7 The number of fully-filled squares, as given as “1” in the first row of the table, could be a printing error.
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The emphasis on counting of squares and rectangles (within the curved shape), could be a reason that

some of the students in the interview did not associate area with irregular curved shapes. 

In MSB books, irregular curved shapes are attended to in Grade 5, but only as shown in Figure 3.8.

Here a different procedure for calculating the area of irregular shapes is provided. 

Here again no rationale is provided for this procedure, and the emphasis is on counting the squares.

However, the use (or representation) of the graph sheet in MSB 5 book, instead of grid in NCERT

books,  does  seem to  have  more  potential  for  increasing  the  precision,  that  is,  in  addressing  the

questions of reaching more precise measures in finding the area for irregular curved shapes. Thus, the

graph sheet can be used as a tool for measuring area, just like the ruler is used in measuring length.
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3.2.4 Structured studies

To develop a more structured cognitive understanding of students’ conception of area, I designed and

developed a set of tasks and contexts for students, inspired by Piagetian clinical studies, and adapting

the approach adopted by Piaget. Before the task-based interviews, I did a written test with some of the

tasks with a few students,  to assess the accessibility of these tasks without  interference from the

interviewer. This helped determine how the tasks can be further clarified, and what further probing

questions the interviewer can ask. Unlike the interviews mentioned in the earlier section, the ones

conducted in these structured studies were based on materials prepared beforehand, and are done in a

more structured set-up, to avoid any noise present in a natural setup. The details of these structured

studies are described in the next section. 

As elaborated in the initial part of the present chapter, we started with three broad research questions,

leading to three broad studies in the naturalistic setting: classroom observation, students’ interviews,

and curriculum analysis. One of the main insights drawn from these broad studies was that asking

direct questions around the formal term “area” can be limiting and misleading in accessing students’

true  conception  about  AM.  Thus,  here  I  move  beyond the  broad research  questions,  to  specific

research questions studied in a research setting, guided by the Piagetian way of investigation. The

questions aimed at assessing students’ conception grounded in meaningful contexts were: 

1. What are students’ conceptions of “conservation” of area and perimeter ?

2. What are students’ representations for area and perimeter? Or, Which attributes of the figure

are measured through area and perimeter?
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3. How do students interpret area and perimeter for unfamiliar figures?

4. What are students’ conceptions of unit structuring in area-measurement ?

The next  part  elaborates the  design and development of  the structured studies,  to  investigate  the

specific research questions mentioned above. 

3.2.4.1 Sample and setting 

From the previous unstructured observations and informal interactions with students from Grades 4 to

7,  it  was evident  that  students  hold widely different  understanding of  measurements  of  area  and

perimeter.  That is, different students construct the meaning of area and perimeter differently even

with common instructional practices. 

In this study (see Table 3.6), students from Grade 5 were called, and before carrying out the task-

based-interviews, a pilot test was conducted with four students from the school Sc0 using a written

questionnaire,  to  check the  comprehensibility  and accessibility  of  some of  the  tasks,  and  get  an

estimate of the rough time duration. This was followed by a task-based interview with students from

two different schools (Sc1 and Sc 2), from the same chain of schools catering to students’ whose

parents serve in government jobs. Students were selected by their respective math teacher and were

identified by the teacher as above or below average or average scorer in math. This information was

requested from the teacher, in order to select students representing the variation in the population in

terms of math ability. 

Table 3.6: Sample set from three different schools

Sample Set
1st group (School: 

Sc0)

2nd group (School: Sc1) 3rd group (School: Sc2)

Students 

selected by 

the Math 

teacher

Pilot study (4 pupils): 

2 AA, 2 A

Main study (5 pupils): 

2 AA (S1,S2), 2 A 

(S3,S4) and 1 BA (S5)  

Main study (5 pupils): 

3 AA(S1',S2',S3'), 1 A 

(S4'), and 1 BA (S5')

AA: above average scorer, A: average scorer, BA: below average scorer

S1, S2,… and S1’, S2’,… are students belonging to school Sc1 and Sc2 respectively. 

Task-based interviews of students were done and were audio recorded after getting the consent from

(Appendix I) both students and parents. Students’ drawings and written notes were also collected as

data. The next section gives a description and rationale of the tasks used for this study. The actual

tasks are mentioned in Appendix III. 
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3.2.4.2 Task description

The tasks used in this study are inspired from the research reported in the literature review and the

studies reported in the earlier sections. Broadly, there were nine tasks, along with some sub tasks in

the interview (Appendix III).  The first  task and subtasks within the first  task were inspired from

Piagetian conservation tasks with children (Piaget, Inhelder & Szeminska, 1960). As reported in the

previous literature review chapter, Piaget et al., (1960) used the context of grass meadows, wooden

house blocks and small wooden cows to explore children’s conception of conservation of area and

operational thinking with respect to area. Children were asked questions around the amount of grass

available for the cows to graze. Thus, drawing from the nature of Piagetian tasks, instead of asking

direct questions on area, the tasks were contextualized in some way that required students to think in

terms of area without using the term “area”. Since most of the students I was interviewing were from

the urban setup and are familiar with school playgrounds, the first task was around whether same

amount of space is available in two different set-ups (or arrangements, see Fig 3.9) of a playground,

when a  small  square  part  is  used  up  (or,  taken  away)  from two different  locations  of  the  same

playground respectively. While the first two sub-tasks of the first task were on area, the third sub-task

was on perimeter, but here again, I used the term boundary rather than perimeter. Thus, for this task,

the formal terms “area” and “perimeter” were deliberately avoided, to avert students from falling back

to formulas. 

The second task was directly related to the research question of how students represent or highlight

the area and perimeter for given figures. The rationale for this task and the research question came

from the literature that reported the challenges in connecting the numerical and geometrical aspects of

area-measure (Sarama & Clements, 2009; Battista, 2007). That is, area, apart from having a numerical

measure, also refers to a geometric or a geographic region. That is, it has real or material existence,

apart from having the formal abstract or constructed existence. Some tasks have tried connecting these

two through covering tasks, where students were asked to find the number of units which fit in a

particular given rectangular region or draw the units that cover a given particular area (Clements &
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Stephan, 2004; Outhred & Mitchelmore; 2000). These tasks still rely on discrete counting, and lack

the aspect of area as a continuous quantity. More recently, Kobiela & Lehrer (2019) used sweeping or

painting to bring in the geometrical or spatial aspect of area. Drawing inspiration from these tasks,

here I asked students to highlight the area and perimeter for given shapes through coloring, shading,

drawing, or darkening.   

The third task (task 3) was inspired from several studies that used L-shaped figures (Cavanagh, 2007;

Zacharos, 2006), to explore whether students could extend their understanding or computation of AM

beyond rectangles, to other rectilinear shapes. The fourth task was seeded from the textbook analysis,

which  showed  a  dearth  of  tasks  or  activities  that  requires  students  to  construct  or  draw figures

(geometrically or spatially) given the numerical value of the area. The nature of the fifth task was

almost like the first task, with the exception that students were explicitly asked to find the area and

perimeter of the remaining rectangular part when a square part is used up (taken away) for some

other purpose. Thus, unlike the first  one, where students were asked to qualitatively compare the

remaining space, for this task students were expected to compute the remaining space quantitatively.

This task was also to explore whether students could distinguish between the two measures i.e., area

and perimeter. The sixth task was also very similar to the fifth one, but used a triangular base instead

of a rectangular one. 

The  last  three  tasks  (Tasks  7,  8,  9,  see  Figure  3.10)  were  of  the  same nature,  where  given  the

dimensions of the rectangular space (sheet or floor) and the dimensions of the units (rectangular and
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triangular one), students were asked whether such units can be used for covering the given space, and

how many such units will be required to cover the given space. Thus, these last three tasks were not

just  to  explore student’s handling of  unit-structuring,  but  to  also explore  how they deal  with the

multiplicative relation between the dimensions of the unit and the measure.

3.2.4.3 Results and discussion

One broad impression that emerged from the interviews across tasks was that above-average (AA)

students tend to rely heavily on numerical procedures and formulas,  even incorrect  ones, without

having proper justification for their application. This was seen on many occasions, despite having no

direct reference to formal terms like area or perimeter for some question items. On the other hand,

average (A) and below-average (BA) students seem quite open and flexible in using other simple non-

formal strategies,  or  techniques like estimation,  comparison,  etc.  Although,  this  might  be a small

sample to say this  conclusively,  this  trend does indicate that  the  criteria for  the identification of

students by the teacher was based on their performance in the use of numerical procedure. Apart from

this broad observation across tasks, I discuss below some of the main results of this structured study

task-wise. 

1. For the first sub-task of task-1 (see Figure 3.9), four out of ten students said there will be the

same space  left  to  play  in  the  two arrangements.  Among these,  one  of  them justified  it

through numerical calculation i.e., computing the area of the remaining space for each case.

However, the other four mentioned that the arrangement with the square table at a corner (i.e.,

arrangement on the left of Fig 3.9) has more space to play than the one where it is placed

along  an  edge.  On  further  probing,  it  was  found  that  their  reasoning  was  based  on  the

convenience aspect, as the play could be better if the table is at one corner than at an edge.

This was different from a purely perceptual justification of one appearing to have more space

than the other. 

However, for the second sub-task of task-1, which required students to decide on whether

making a lawn in the two cases will cost the same or different, eight out of ten concluded that

both arrangements will cost the same. Thus, an important insight that I could draw from these

two  sub-tasks,  is  that,  in  the  first  sub-task,  some  students  tend  to  think  more  from the

practically accessible remaining land (of a rectangular space) when something is at a corner

than  something  is  at  an  edge.  This  is  probably  because  the  context  in  the  first  sub-task

becomes more qualitative, and thus more removed from the operational thinking. Thus, even

in the Piagetian task, probably not all students were judging the available space perceptually.

They may have considered the practical accessibility of space (grass for cows). In contrast,

the second sub-task had attributes like value of the land or space in terms of money, and this
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could  be  the  reason  most  students  (eight  out  of  ten)  promptly  responded  that  both

arrangements will cost the same.   

2. The  third  sub-task  of  task-1,  was  about  the  conservation  of  perimeter,  but  the  word

“perimeter” was not here, instead students were asked about the length of the boundary in the

two  arrangements.  All  the  students,  after  some  probing,  correctly  concluded,  either  by

computing or without it, that the second arrangement will have a slightly longer boundary. 

However, in task-6, most students tended to deduct the perimeter of the piece to be eliminated

from the perimeter of the initial figure, incorrectly extending the rule for area to perimeter.

This further supports the observation that students tend to fall back to the superfluous use of

rules  and  formulas  when  formal  words  are  used,  probably  more  so  when  a  meaningful

material context is not present.  

3. In task-2, students were asked to highlight the spatial aspects of area and perimeter. That is,

students were asked to represent the area (i.e., shade or color the region measured by area)

and perimeter (i.e., darkening the boundaries) of two given shapes respectively. Only 5 out of

10 students could shade the full interior region for the area, and only 7 out of 10 students

could darken the boundary for the perimeter. Probably because students were not asked to

calculate the numerical values for area, and they were not provided with any dimensions for

the given figures, most students looked puzzled with the task, and asked for some number, as

can be seen in the following excerpts of the interviews: 

[The  language  of  communication  for  the  interview  was  Hindi.  'I'  and  'S'  stand  for  the

interviewer  and  the  student  respectively.  Different  instances  of  interview  with  different

students are separated by horizontal lines]

Excerpt 1

I: Can  you show me the area here with pencil or can you colour the area of the first two

figures with pencil ?

S1: Area means? Number nahi hain! [Area means? There are no numbers here!]

Excerpt 2

I: Inn dono figure ke area dikha sakti hon? [Can you show me the area of these two figures?]

S2: Ma’am length aur breadth toh pata nahi. [Ma'am length and breadth are not known.]

I: Inn dono ke area ko colour ker sakti hon? [Can you colour the area of these two?]

S2: ...length ka number nahi diya toh isme length hi nahi diya toh area kaha se hoga.  [length’s

number is not given so it has no length given, then how can there be area.]
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Excerpt 3

I: Iss figure ke area ko pencil se colour ker ke dikhao...dikha sakti hon? [Show me the area of

this figure by colouring with pencil? Can you show?]

S3: Ma’am nahi. [No ma'am.]

I: Iss figure ke kis portion ko area kehte hain pata hain? [Do you know which portion of this

figure is known as area?]

S3: Ma’am length into breadth.

__________________________________________________________________

It can be seen from the above three excerpts that the students are expecting some numerical

value for the dimensions of the given shapes. A few students could articulate their thinking

and asked for  numerical  values,  while  some others  looked stuck with  the  task,  probably

because they had not encountered such tasks on area and have only dealt with the numerical

aspect of area. 

Some of the examples of incorrect shading of the region considered for area are shown in
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Figure  3.11.  These  errors  could  also  be  a  result  of  the  framing  of  the  questions,  which

students  could  not  relate  to,  based  on  their  prior  experience  and  understanding.  Since

textbooks talk of region for area, I could have asked students to shade the region considered

for  area  than  asking them to shade area,  which  for  the  students  and  the  curriculum is  a

numerical measure and not the material attribute it is associated with. 

4. For the L-shaped figure (non-conventional shape), only two students out of 10 could find the

area correctly. Furthermore, two other students could correctly find the perimeter. The rest of

the students expressed varied forms of numerical operations. For example, Figure 3.12 shows

the improper use of formulas for finding the area (e.g., multiplying all the given dimensions).

When asked for reasons, most students could not respond why they chose to multiply the

dimensions for  the  area.  Probably they just  extended the area formula of multiplying the

dimensions for a rectangle to multiplying all the given dimensions for an L-shaped figure.

Likewise,  they  extended  the  formula  for  the  perimeter  to  add  all  the  given  dimensions.

Extending the perimeter formula still turns out to be correct, which is not the case for the area.

Though  both  of  these  students  could  correctly  determine  the  perimeter,  they  still  had

difficulty explaining the rationale behind it. 

5. The last three tasks explored students’ understanding of unit-structuring (Battista, 2007) of

area. That is, given a rectangular sheet or a rectangle with given dimensions and given units

(rectangular or triangular), whether students can predict if such units can be used for covering

the given rectangular space, and if yes, how many such units will be required to cover the

same. Two kinds of strategies emerged among students (while doing task-7): Close to the

formal procedural strategy, where four out of ten students divided the area of the rectangular

sheet (calculated by multiplying the dimensions) with that of the area of the unit (rectangular
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cards) to decide whether the unit  can cover.  Further,  they calculated the number of units

required to cover the given area. The rest of the six students did the other strategy which was

a  more  concrete  actionable  form,  of  checking  the  tiles  along the  two dimensions  of  the

rectangular  sheet.  Students  using  the  former  strategy  were  not  able  to  make  a  correct

judgment about the cases where the dimension of the unit was not a factor of the dimension of

the rectangle (they missed to check if the dimensions of the unit divided the dimensions of the

rectangle separately or not). The group of students using the second strategy could recognize

the cases where the unit would not fit along any dimension of the rectangular sheet, and some

of them also suggested that the unit needs to be divided into pieces to cover the remaining

sheet. These responses suggest that students doing the action of tiling along the edges have an

advantage  in  engaging  and understanding  unit-structuring  than  the  group which  used  the

formula. This also highlights that it is not enough to know the multiplicative relation between

the  area  of  the  unit  and  the  area  of  the  rectangle.  The  multiplicative  relation  between

dimension of the unit and dimension of the rectangular surface also needs to be understood.

Similar observations were found for task-8 as well. 

For the last task (task-9) on unit-structuring, where students were given the dimensions of a

right-triangular tile, every student first said that such a tile cannot completely cover a given

rectangular space. Two students changed their response later, realizing that two such triangles

can  be  joined  to  obtain  a  rectangular  unit.  This  is  either  because  students  expected  the

measurement unit to be of the same shape as that of the shape to be measured (Heraud, 1987,

as cited in Zacharos, 2006) or probably because they have not used triangular units much in

the formal curriculum.

Overall,  these  tasks  indicate  some  gaps  in  students’  understanding  of  unit-structuring.

Broadly, this gap is due to lack of engagement with the relation between the unit and the

measure. More specifically, it is due to lack of exposure  in terms of different multiplicative

and geometric structures within the unit-structuring.  Thus,  we could infer  that  conceptual

understanding  of  area-measurement  requires  strengthening  of  the  unit-structuring  through

different fractional units (Battista, 2007), to provide a variety of scaffolding for students to

abstract and connect different multiplication structures with geometrical notions. This study

provided the ground for our next study, where we explored ways to facilitate and further

explore the connection between multiplicative thinking and area-measurement.

3.2.4.4 Conclusion

The  findings  suggest  that  there  is  a  disconnect  between  students'  formal  understanding  of

measurement concepts and the way area is widely understood. There is thus a need to move beyond
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formal learning, to connect area with other meaningful contexts.  The term “area” mostly restricts

students to think of area only in terms of what they have learned in school, and limits them from

seeing area in other shapes. Instead of using the term “area” maybe we should use some other more

accessible term with students. The above findings suggest that most students lack the geometrical or

spatial  understanding  of  area  and  perimeter  (2-D  measurements).  The  studies  indicate  a  lack  of

connection between the geometrical, spatial, numerical and even algebraic (area formula) aspects in

students’  understanding  of  area  measurement.  Despite  the  immense  potential  for  application  of

measurement in mathematics and in everyday life, students continue to have difficulty in meaningful

learning of  the  measurement  concepts.  More research is  needed to develop an exhaustive list  of

students' difficulties in area, and the effects and effectiveness of alternative instructional approaches.

This may require moving beyond the child psychology perspective, to think in broader terms that

includes the curriculum and the pedagogy. A careful analysis of students’ responses for the last unit-

structuring (or tiling) tasks, indicates a missing link between the number of units (or tiles) that could

cover a rectangle and its relation with the dimensions of the tile and the rectangle. There’s a need to

rethink the learning progression for understanding area as covering a space with units, to include the

aspect of multiplicative thinking between the unit and the measure.

3.2.5 Exploring the connection between Multiplicative thinking and area-

measurement

Since the last study suggests the need for further exploration on the connection between multiplicative

thinking and the measurement of area, in this study I tried developing tasks that could elicit such

forms of thinking, by including more action based and construction based practices of unit structuring.

Task-based interviews of a different  set  of  students,  from the same cohort,  were done and video

recorded after getting consent from students and their parents. Interviews were done either in school

or in the research institute. Video recordings of the interviews were used for the analysis. As the name

of the section suggests, the research question explored here was:

RQ: What is the connection between area-measurement and multiplicative thinking?

As elaborated in the literature review chapter,  multiplicative thinking is a well researched area in

mathematics education, and has application in a broad range of topics. However, in the present section

of the study, I explored different ways in which multiplicative thinking is involved in the geometric

measurement of area. Specifically, the focus is on developing tasks that facilitate and elicit the use of

multiplicative thinking in finding the area of geometric figures. I report the tasks that were designed

and developed for  this  purpose,  and explore  the  connections  between numerical  and geometrical

aspects of area-measurement using multiplicative thinking.       
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3.2.5.1 Sample

The sample consisted of  a convenient sampling of students studying in Grade 5 from two different

schools. Ten students  came from a school serving mostly middle income families (from the same

school  as  mentioned  in  the  earlier  studies),  and  nine students  come from  another  school  serving

mostly low to middle income families (from a different school than the ones mentioned earlier). The

tasks used were not  identical  across all  these students,  as they were progressively adapted in the

course of the study. However, the approaches taken by the students to do the tasks were broadly

comparable. The final set of identical tasks was given to eight students, which constitutes the final

sample set of the study, where four students were picked from each of the two schools respectively. 

3.2.5.2 Tasks

Unlike the tasks used in the previous studies, which explored students’ existing knowledge about a

particular concept, the tasks used in the present study explored how students engaged with the task

and what they drew out of the tasks. As these tasks also follow a progression, I also tried to explore

how one  task  interferes  with  or  facilitates  the  next  task.  The  use  of  actual  physical  or  concrete

materials provided students the flexibility to work with the given objects in the way they wanted.

There were four tasks, which are explained below along with the materials shown in Figure 3.13. 

• Task  1.  Comparison  Task: This  task  required  students  to  compare  two  given  pairs  of

rectangular sheets with very small differences, either in length or breadth but not both (see

leftmost in Figure 3.13). The aim of this task was to prime students with rectangular sheets
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and to explore whether the students compare area by overlap or by comparing only attributes

like length or breadth.  

• Task 2. Card Task: This task required students to construct a rectangle with a given number

of unit square cards (1inch 1inch). In this task students were first shown a number and were⨯

then allowed to take those many square cards from a box to make a rectangle (see second left

in Figure 3.13). This task provides the possibility to connect the number of cards and the

resulting rectangular array, and also seeks to exploit the flexibility of physical manipulation.

This  task  implicitly  requires  one  to  notice  the  multiplicative  relation  between  the  given

number and its factors along the length and breadth. Since the task requires overt action on

the part  of  students,  it  allows one to see whether students are implicitly  attending to  the

multiplicative relation involved, even if they do not overtly express this relation. For the card

task they were shown a specific number written on small sheets.  In the first  set of trials,

students were shown one of the composite numbers such as: 10, 12, 14, 15, 16, etc. They were

then asked to take those many cards from a given collection of cards to make a rectangle. In

the next set of trials, the students were given a composite number and were asked to respond

verbally  about  the  rectangle  that  could  be  made  from  the  cards.  Finally  students  were

randomly shown either a prime (e.g., 11, 13, 17, etc.) or a composite number, and then were

asked whether they could make a rectangle with the given number and how many cards would

be there along its length and breadth. 

• Task 3. Measuring Task: This task required students to compare two sheets to decide which

is larger (see Figure 3.13) – a square sheet (7 inch × 7 inch) and a rectangular sheet (8 inch ×

6 inch).  The difference  in  area  between these sheets  is  small,  and cannot  be determined

directly by overlap. Students were also given a small square card (1 inch × 1 inch) and asked

to use it if they needed to. After the card task, the measuring task allowed us to explore the

various  strategies  (e.g.  array  structuring,  complete  covering,  multiplication,  etc.)  used  by

students while measuring the sheets. Further, this task allowed us to look into whether the

students  apply  the  ideas  abstracted  from  the  previous  tasks,  i.e.,  whether  they  use  the

multiplicative relation or repetitive addition to get the measure of the two areas.  

• Task 4. Unit of units Task: For this task students needed to get the measure of a given A4-

sheet,  and then get  the  measure  of  a  table  in  terms of  the  previous square  unit  (see  the

rightmost in Figure 3.13). Students were given an A4-sheet and they were free to use the

materials  used in the previous task.  This task was developed to explore whether students

could extend their understanding of area-measurement to bigger shapes. Further,  this task

may  create  the  need  to  optimize  the  number  of  operations,  and  thus  use  the  nested

multiplicative relation. 
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3.2.5.3 Findings

I report findings from a detailed analysis of the responses of eight students, who were presented with

stable versions of the tasks. A few instances of the earlier additional interviews (of the initial set of 20

students) will also be presented, to give a picture of some specific strategies students used during the

study. 

1. In the first comparison task, there were only minute differences in either length or breadth

between a  pair  of  sheets,  and these could not  be determined by merely looking at  them.

Among the eight students, all except one tended to compare the rectangular sheets either by

length or breadth, when the sheets were placed flat on the table next to each other. However,

later  they  overlapped  the  sheets  to  compare  them.  This  suggests  a  natural  tendency  to

compare  the  sides  of  rectangles  when  students  were  asked  to  compare  the  sizes  of  two

rectangular sheets, and this indicates an implicit understanding of the relation between the

sides and size.

2. For  the  second  (card)  task,  four  students  (after  a  few  trials)  understood  the  connection

between the factors of a given number and the resulting rectangular shape. Of which, one

student could explicitly say that he is looking at the factors of the number for making the

rectangle, while another three students showed the use of multiplication tables for the card

task.  For  the  remaining  four  students,  this  connection  was  either  implicit  or  unstable.  It

appeared that  in  some of  the  trials,  they were implicitly  using the multiplicative relation

between the number of cards and the resulting arrangement. For example, in several instances

students created the first row of cards using a number that was a factor of the given number.

However, they were not able to explain why they chose that number. The connection was

unstable for some students,  who were not consistent with their strategy. For instance, one

student  made 4 × 3 and 6 × 2 rectangles with 12 cards and said 15 can be made into a

rectangle as “3-5 za8 15” (i.e., 3 times 5 is 15). Later,  when asked about the sides of the

rectangle that can be made with 10 and 13 cards respectively, the same student said 3, 7 and

3, 10. Another student who said “7-4 za 28” for the number 28, also said 8 squares in length

and 6 squares in breadth for the same number and wrote 8+6=14 and 14 × 6 = 64 on paper.

This showed that  students shift  between the additive and multiplicative relations between

numbers while doing this task.

These last four students, although not expressing their idea or thought process, indicated the

implicit use of the relation between the given number and its factors through their actions.

8 "3, 5 za 15" is a corrupted English form of "three fives are fifteen". Most Indian school students and teachers 

recite the multiplication tables in this way, without often being aware of the original expression. 
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These students started with a factor of the given number, but were not able to say why they

started with that number of cards. In fact, one student said the number came to her by own

without thinking. In another instance, the student said squares can be made with numbers

which will come double e.g. 6-6 za, 1-1 za, 10-10 za, 3-3 za. This showed that the student had

an idea of how a number is related to a square arrangement. Students with more awareness of

the multiplication facts did get the measurement-multiplication connection sooner than those

without, or those relying more on addition facts rather than multiplicative ones. We infer this

because all the four students who decomposed the number into factors were fluent with the

multiplication tables, while the other four were unsure about the multiplication tables.

In some instances, when the students were not able to find the factors for a number, they tried

to arrange the cards along the perimeter of a rectangle leaving a gap in the centre. In such

cases, students were asked to make a complete rectangle that is fully covered. However this

move indicates that the task does not necessarily constrain students from making a figure by

filling  a  rectangular  space  with  cards.  The  perimeter  arrangement  is  interesting  because

students then decompose a given number using both additive and multiplicative relations, as

seen earlier in the instance where a student decomposed 28 as 2 × (8+6). This also indicates

that a rectangle is imagined in two ways, one as an array (or filled space) and the other as a

border (with empty space in the middle). An interesting question is how these two ways of

conceptualising the geometric figure influences the learning of the area concept.

The card task also allowed some students to explore rectangles with fractional lengths. Two

of the eight students cut the cards into half to get rectangles: one student made a 7.5 × 2

rectangle from 15 cards by cutting one card into half. Another student suggested a 5¼ × 4

rectangle with 21 cards and made a 6½ × 2 rectangle with 13 cards.

3. For the measurement task, one student compared the extra space that was left on both the

square and the rectangle once they were overlapped or placed one above the other, and saw

that the width of the space left was one unit in each case. So the student said both the sheets

have equal space. But the student missed the fact that the extra space of the square can hold 7

cards, but the extra space in the rectangle can hold only 6 cards. 

All the eight students, when asked to find the number of cards that can be made out of the

rectangular sheet,  marked the adjacent sides of the rectangle using the given square card.

Only three students multiplied the number of cards that can fit along the adjacent sides of the

rectangle, to get the total number of cards. The other five did repetitive addition to get the

total number of cards. This was found even with the students interviewed earlier.  Thus it

appears that the most common method was to add the number of cards in one row repeatedly

as they counted the card marks along the adjacent side.
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4. Six  students  were  able  to  do  the  unit  of  units  task,  but  in  this  case  also  three  used  the

multiplicative relation while the other three used the repetitive addition relation. For example,

for illustration purpose, if we assume that a student could find that an an A4-sheet can have

100 cards, and a table can be filled with 10 such A4-sheets, then the number of cards for the

table was arrived at by adding 100 ten times rather than multiplying 10 with 100 to get ten

100 cards.  

Some students initially tended to find out the number of times a rectangle placed lengthwise

covers the length and breadth of the table respectively. They orient the rectangle lengthwise

even when they place the rectangle along the breadth of the table. The students then multiply

the numbers they get, to obtain a wrong result for the number of rectangles that can cover the

table. But the students were not consistent in this strategy, and changed their strategy when

asked to explain how  they got the total number of (the given square) cards in the table. 

It is worth noting here that for the unit of units task, the unit was not a standard square unit,

but  some multiplicative  (or  chunked)  unit.  In  such  instances  it  is  not  enough to  see  the

multiplicative relation in measurement. One also needs to see the geometrical division of the

measure  in  terms  of  this  new  multiplicative  unit.  In  other  words,  the  students  need  to

coordinate  both  the  numerical  and  geometric  aspects  to  perform  this  task.  One  way  to

interpret the above strategy (of measuring lengthwise) is to consider the students as having an

implicit understanding of the need for coordinating the two aspects, but not understanding the

nature of the array structure. Perhaps the numerical aspect dominates, and the measurement is

done  to  get  values  for  multiplication,  while  a  proper  understanding  requires  keeping  the

multiplication and geometric structure in mind simultaneously.   

3.2.5.4 Discussion

The tasks used in the present study provide students with the possibility of directly connecting the

measurement unit with the number. The five important insights from the present study are:

1. Students were inclined to focus on the sides of the rectangle rather than space (or area)

covered by it in the comparison task. Even for the card task, some students often missed to

fill the inside of the rectangle, and placed the cards either along the length, breadth or the

boundary.

2. Students often used the additive relation between the numbers in the card task, rather than the

multiplicative one, while splitting up the given number for constructing a rectangle.

3. Even when students use the connection between multiplication and array structure in the card

task, this strategy is not stable.
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4. From the method perspective, the tasks used in the present study gives students flexibility to

explore  various  structures  and  their  connections  to  numbers,  and  allows  us  to  explore

students’ understanding about multiplicative (chunked) units, even when they are unable to

articulate their understanding.

Students have an implicit understanding of the link between numerical properties and area

but they are unable to express this understanding. The tasks used in the present study allows

children to manipulate many structures, giving us insights into their implicit thinking.

The tasks thus allowed students to manipulate and explore many spatial structures and their

connections  with  numbers  and  different  sub-concepts  like  unit,  array,  multiplication.

Considering the  wide presence of  multiplicative thinking  in  other  topics  of  mathematics

education, we tried connecting it with area-measurement. The present study not only attempts

to  establish  this  connection  but  also  opens  new  ways  of  looking  into  the  problems  of

understanding of area-measurement. 

Thus, the card task requires students to decompose a given number into a pair of factors that

represent  arrays  (or  chunks)  of  units  in  rows  or  columns.  This  model  or  representation

connects multiplication facts with unit structuring of a rectangular area and is inspired by

studies connecting measurement with multiplication (Izsák, 2005; Izsák & Beckmann, 2019).

The task  allowed  students  to predict  different  possible  multiplication  facts  for  a  given

number  and see  different  possible  resulting  rectangles  and the  respective  dimensions  as

nothing but the numbers that appear as factors. Additionally, keeping the same area enables

students to observe that increasing the number by a factor along one dimension decreases the

number along the other dimension by the same factor. This further highlights the connection

between area conservation and the “conservation” of the multiplication of the dimensions,

even when the dimensions vary. The task, however, in its current form, could not capture this

completely,  and needs to be extended further to guide students to see the variability and

stability involved in AM and explore the multiplicative reasoning involved in it (Kobiela &

Lehrer, 2019).  Thus, the task in its current form is not sufficient for covering multiplicative

thinking. However, it can be seen as an initial building block for multiplicative thinking. 

This perspective enriched our task design, from developing purely informative tasks to track

students’  understanding  of  a  particular  concept,  to  more  constructive  tasks  that  helped

connect existing concepts with other mathematical areas. The studies also allowed us to look

into  students’  difficulties  with  the  area  concept  in  detail,  as  their  moves  were  explicit,

particularly  the  problems  they  faced  while  integrating  the  area  with  other  mathematical

concepts  and  sub-concepts.  Based  on  this  detailed  understanding,  I  propose  in  the  next

section a new model for learning the concept of area. 
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3.2.6 A Network Model of the Mathematical Concept of Area

As indicated in the methodology section of this chapter, we9 propose a learning model for the concept

of area, by consolidating all the studies reported in this chapter. Based on the insights drawn from the

earlier studies, as well as the literature review in the previous chapter, we imagine and develop a new

learning model for the concept of area. Based on this model, we argue that the concept of area can act

as  an  entry  point  in  exploring  the  deep  connection  between  geometric,  multiplicative  and  even

algebraic structures. 

Learning  about  area  requires  integrating  the  spatial,  numerical  and  algebraic  aspects  of  the  area

concept, which indicates that the learning pathway for the concept can be thought of as a network. We

thus present, and argue for, a “network model” of area learning. The next section outlines the model,

following the two didactical questions below.

DQ 1: What is the network model of learning area-measurement? 

DQ 2: Why does a network model of learning the concept of area need to be adopted?    

The notion of area as an array of units is central to understanding the area concept. Previous works

show that array representations can enhance: 1) learning the spatial structuring of units in the area

concept,  2)  the understanding of the two-dimensional nature of the multiplicative process,  and 3)

abstracting it into a general algebraic form (or formula). Integrating these multiple (spatial, numerical

and, algebraic) roles played by arrays, we structure the area concept as a network, which requires the

student to coagulate spatial, numerical  and algebraic concepts. Based on this theoretical model of a

network  concept,  the  set  of  tasks  in  the  previous  study  can  be  seen  as  a  spiral  of  physical

manipulations, which allow students to experience and tie together different aspects (i.e., the spatial,

numerical, and algebraic aspects) of the area concept in the network. 

3.2.6.1 Area: A Network Model

We view the area concept as a network concept, requiring the coming together, or coagulation, of four

ideas – unit, array, multiplication, and unit of units. In this view, area could be seen as an array of

arrays. We introduce below a broader concept related to this, which we term “extrapolation”. When

the area concept is introduced, students usually do not have a fully developed understanding of the

individual  ideas that constitute the network. Also,  these concepts could be: partially or implicitly

known, partially stable, understood in an intuitive or qualitative fashion, sometimes connected to each

other in unstable ways, and sometimes may not be known. Thus, our first objective is to uncover the

different  elements (ideas/ concepts/ operations) associated with the concept  of  area and make the

9 The network model discussed in this section and the following sections was developed as a joint work with 

my advisors to consolidate the results of the studies in this chapter. Hence the plural “we” is used from here. 
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connection explicit, in order to strengthen them in the pedagogy.

In Figure 3.14, we present a concept map of the network notion of area. The elements (Array, Unit,

Multiplication)  on  the  right  indicate  the  standard   concepts/operations  associated  with  area.  The

elements  (Conservation,  Partition/Fraction)  indicate  intuitive  concepts  used  to  facilitate  the

understanding of area. The  Extrapolation element indicates a concept/operation exemplified in the

“Unit of unit task” in the previous study, which we will elaborate further in the next section. The

“Card task” in the previous study led to the element Build-Up.    

The network in Figure 3.14 roughly represents the cognitive model of these connections within our

mind. The red and blue lines indicate the connections (connecting links) with the qualitative and the

quantitative  components  of  area  respectively.  The  darker  lines  represent  the  explicitly  seen

connections with area, while the dotted lines represent other implicit connections that may become

available  in  appropriate  contexts.  Some  components  are  not  linked  with  area,  because  their

connections are not directly evident, but become apparent with the focused/connected context or the

task. For e.g., the connection of conservation and extrapolation to area is not directly evident, but

emerges in the context of suitably designed tasks. 

3.2.6.2 Extrapolation: A new construct

In relation to the network notion of area, we introduce a new construct/operation – extrapolation,

which we consider a key part of understanding the area concept. Extrapolation refers to the use of the
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multiplication algorithm to calculate the area of rectangular spaces that are very large (or very small,

folded, etc.), where physical arraying is difficult to achieve, but need to be imagined. This operation,

we believe, is one of the key objectives of learning to calculate area, where the action of iteration is

replaced by (or embedded within) a structured multiplication algorithm. Further, the ability to do this

operation  is  an  indication  that  the  learner  has  consolidated  her  understanding  of  the  connection

between area, array and multiplication. We would like to note here how this view is different from the

standard way of testing the area concept,  which usually involves calculating the area of complex

figures made up of standard shapes, such as an L-shaped figure made of two rectangles. This task is a

variant of the partitioning task, requiring the learner to imagine partitioning the given complex figure,

and consider it  as being made up of some shapes whose areas can be easily calculated, and then

applying the multiplication algorithm to each partition (given some values for the sides), and then

adding the results. The extrapolation test, on the other hand, requires the learner to imagine how the

area of a large space (such as the floor of a room) could be measured using a known shape (such as a

square). The multiplication algorithm is then applied twice, first to the known unit, and then to the

larger unit  measured by it.  This operation requires a deeper understanding of the array structure,

where any space is seen as an array of units, and any given unit can be used to build up an array.

Further, it requires understanding the relation between multiplication and arrays, as the unit is used to

measure only the borders of the larger space. It also requires a deeper understanding of the relation

between multiplication, array, and measurement, where the multiplication operation used to calculate

the area of the given unit is extrapolated to a wider space through the use of the given unit as a

measurement unit.

Ideally, learners who understand the area concept should be able to move quickly to this operation,

which provides a good test of whether learners have internalised the whole area concept network, in

an  integrated  way.  We  believe  that  the  extrapolation  operation  should  thus  be  one  of  the  key

objectives of learning the area concept, and this operation needs to be supported by tasks designed to

teach the area concept. The previous study shows how the above network of related concepts involved

in area and multiplicative thinking could be checked, and also built up, through a series of tasks based

on physical manipulations.

3.2.6.3 Reflections on the previous studies, based on the Network Model

We revisited the previous studies, using the lens of the network model. This gave us better clarity in

terms of the rationale and design of the tasks in the study. The four sets of tasks used in the previous

study: Comparison Task, Card Task, Measuring Task, and Unit of unit task can now be understood as

Qualitative  comparison  task,  Build-up  task,  Quantitative  comparison  task  and  Extrapolation  task

respectively. We redefined the Comparison Task as a Qualitative Comparison Task because the task

requires the student to look for the qualitative differences between the two rectangular sheets, rather
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than finding a quantitative measure of it. Thus the first task emphasises the spatial or geometrical

aspect of area measurement, rather than the numerical aspect. The second task can be seen as a Build-

up task, as it seeks to build up a geometrical figure from a set of units (pieces), as opposed to the

partitioning task that expects students to unitise (i.e., produce a covering of units of) a given shape

(Outhred  &  Mitchelmore,  2000).  The  flexibility  provided  by  physical  manipulation  potentially

allowed students to develop rectangular array structures with various dimensions, and thus understand

the relationship between a given number, the resulting rectangle and the multiplicative relationship

between the given number and the dimensions. Since the task requires overt action on the part of

students,  it  also  allowed us  to  infer  their  understanding  of  the  multiplicative  relation  from their

actions. 

After a few trials, for the second phase of the Build-up task, students were given a number, and they

had to verbally respond about the possible rectangle, without physically arranging the cards. They

also had to give the number of cards along the length and breadth of the rectangle. Starting with

simple composite numbers, students were later shown composite or prime numbers in random order.

The aim of this variation was to let students explore the relation between different types of numbers,

and whether they could or could not be decomposed into factors yielding the array structure. We also

asked them about the number of cards along the length and breadth in these cases. This task could

prime  the  multiplicative  relation  between  the  given  number  (of  cards),  and  the  way  its  factors

correspond to the length and breadth of the rectangle.

The third task, the measure task, was again a comparison task like the first one. But this time it was

resourced with unit cards, which provides the students with a physical tool to even do a quantitative

comparison. The aim of the task was to see whether the previous build-up task (array structuring)

helped students in understanding the relation between area and arrays, to the point where they could

think of comparison in a numerical/quantitative fashion. The task also allowed us to see whether the

students used the multiplicative or additive relation to get the measure of the two areas.

The Unit of units or the Extrapolation task sought to explore whether students could extrapolate their

understanding of area-measurement to bigger rectangles, and use an efficient unit for measuring. This

task also creates the need to optimize the number of operations, as it is difficult to measure the table

using the small square unit. This means the students have to think of the nested multiplicative relation.

The most interesting pattern emerging from the results of these tasks are the various levels of stability

in learners' ideas (as in Task 2 in Section 3.2.5.3), as some students were able to arrange those many

number of cards that is a factor of the total number of cards, even though they were not able to

articulate how they thought of that number along a dimension. This is further brought about when

instead of physical cards, students were just shown a number and were asked to guess the number of

cards along one dimension if they have to be arranged in a rectangle. Another pattern that emerged
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here are the inconsistencies in the application of additive and multiplicative thinking to the tasks (see

Task 2, 3 and 4 in Section 3.2.5.3). For example, occasionally students switch between additive and

multiplicative  division  of  the  given  number  in  Task  2.  In  Task  3  and  4  instead  of  seeing  the

multiplicative relation in the resulting array structure or the nested array structure, they carried out the

tedious exercise of physically counting all the units or qualitatively comparing as in Task 1 without

seeing  the  space  covering  quantitatively.  This  pattern  of  unstable  and  partial  connection  among

students is better accounted for by the network model of the area concept (where understanding the

concept of area requires a coagulation of the multiple aspects involved), than accounts that treat the

understanding of the area concept as involving a (linear) shift from a qualitative to a quantitative

notion of space (Piaget et al., 1960; Battista, 2007). 

The  sequencing  of  the  tasks  in  a  spiral  fashion  did  not  entirely  achieve  the  objective  of

interconnecting different aspects of the area concept, but it helped in revealing some of the issues

involved in  coagulating the individual  concepts  involved in  the  understanding of  area.  Table  3.7

presents  a  contrast  between network & trajectory model  of  learning (Sarama & Clements,  2009;

Piaget et al., 1960; Battista, 2007), where the trajectory model is the one proposed in the most recent

curricular work on area-measurement. 

Table 3.7: The table of contrast between network & trajectory models

Network Model Trajectory Model

Spiral structure Linear structure

Different concepts may be partially known
Partial knowledge not supported (considered as 
error or misconception)

Concepts are stable to different degrees Assume sable concepts

Interconnections could be unstable Integration of concepts not addressed

Further, from a methodological perspective, the physical and manipulable nature of the tasks used

above provided us with a  process understanding of students’ thinking and learning involved in the

area concept,  particularly the use of multiplication in creating the array structure. The conceptual

elements like qualitative comparison, array structuring, etc., were exhibited by students at an intuitive

level through physical manipulation, and this also revealed the weak connection with quantitative or

numerical thinking. A network model of learning accounts for this partially stable mode of learning

better  than  the  linear  model  which  proposes  smooth  transition  from  qualitative  to  quantitative

understanding, as seen in the conventional curriculum. 

In conclusion, learning the concept of area as an array of units requires “breaking” a given figure into
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units  (partitioning),  counting the units,  and understanding the notion of conservation – i.e.,  fixed

number of units re-arranged in any spatial pattern would have the same area. At the next level of

complexity, area requires understanding these physical/ spatial operations as numerical operation of

fractions and multiplication, as both these concepts are involved in calculating area (Outhred and

Mitchelmore, 2005). In the other direction, these operations also get strengthened conceptually by an

in-depth understanding of the area concept (Ball, Lubienski & Mewborn, 2001). At the third level, a

rudimentary notion of algebra is required to calculate area, say of a rectangle using the Length ×

Breadth (l × b) formula and generalising it for all such rectangles. Thus, learning the concept of area

requires  bringing  together,  in  an  integrated  fashion,  spatial,  numerical,  and  some  rudimentary

algebraic ideas, as well as shifting between them.  

Figure 3.15 reveals the connection of AM with other topics of math. Here, the study reveals that the

area is  connected to four different  components (i)  as an array of units  (uncovered mainly during

covering or tiling tasks), (ii) as an entry point for the connections between numeric, geometric, and

algebraic  representations,  (iii)  as  a  product  of  two  dimensions  (whereby  it  opens  up  many

multiplicative relations among quantities), and (iv) as a network.

Area can thus be thought of as a network concept that integrates all these elemental concepts. The

area network is very rich and complex, and establishing the interconnections between the disparate

concepts involved is a central difficulty in learning about area. Our studies show that the area concept,
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and its connection to other concepts, tend to be patchy and unstable. We also found that students

tended to follow algorithmic approaches, such as applying the formula l × b, and did not understand

the spatial relation between unit and area. Interview sessions with students also showed that students

have difficulty interpreting  l × b abstraction or understanding its connection with the counting of

units.  The students  also found the distinction  between perimeter  and  area  difficult.  The  network

relation  between  these  constructs  (specific  attributes,  connection  between  unit  and  area,  the

perimeter/area distinction, and the integration of conceptual elements) is the key feature that needs to

be strengthened, in an integrated fashion, by interventions that seek to teach the concept of area.  

The studies discussed in this chapter allowed us to consider a range of tasks to identify the multitude

of aspects connected as a network in the understanding of AM. The tasks and studies in this chapter

were inspired by and evolved from Piagetian studies. The coordination classes and the knowledge in

pieces perspective proposed in A. diSessa’s work have also evolved from Piagetian studies and they

bear close resemblance to the network model (Izsak, 2005). In recent work, AM tasks have been

extended from the discrete tiling or counting tasks to integrate the continuous nature of area with the l

× b abstraction. The dynamic sweeping (or painting) task allows students to visualise generating area

as the product of length measure, by seeing the multiplicative change in area with the multiplicative

change in lengths along the dimensions (Kobiela & Lehrer, 2019, Brady & Lehrer, 2021, Panorkou,

2020, 2021). The distinct nature of the dynamic sweeping task is promising in highlighting the idea of

continuity of area.  This aspect seemed to be missing among students as also reported in the thesis

when students were asked to shade the area of a given shape, they partially shade only the boundary

or just a section of the given shape (Figure 3.11, p.74). 

Such dynamic tasks are of importance in visualizing or experiencing the rate of generation of area and

its  relation with the  l  × b abstraction for rectangular  spaces.  However,  one challenge noticed in

connecting area with the lengths of the sides was that the students miss noticing the unit of area. This

was observed during some tasks reported in the thesis (for e.g., where students tend to compare the

rectangular sheets either along the length or breadth rather than focusing on the area – point 1 on page

80 of the thesis, or when they use a rectangular unit to measure a larger rectangular area, holding the

rectangle lengthwise while measuring both length and breadth,  point 4 on  page 82 of the thesis.).

Thus, to avoid simplified generalisation about the relation between area and sides and also to move

beyond rectangular shapes to triangles or, parallelogram, the need of grid and dissection arises.  In

some studies, these were clearly presented through dynamic media (Kobiela & Lehrer, 2019, Brady &

Lehrer, 2021, Panorkou, 2020). However, considering the unavailability of such digital platforms in

the Indian  classroom, perhaps such richer tasks can be contextualised or localised using concrete

materials  e.g., graph paper, so as to allow all students to experience the different aspects of area-

measurement. 
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4

Study 2: Constructing the concept of area

measurement in a classroom

The previous chapter investigated what students already know about area-measurement (AM) and

went further to investigate students’ individual construction of AM in a task set-up. However, in this

chapter, we move beyond individual construction to social construction happening within a classroom

context. The present chapter consists of a research study to model a classroom pedagogy on AM (or a

teaching-learning process on AM) guided by insights from the previous chapter and the theories of

social construction. The two main processes broadly incorporated in the design of this AM lesson are:

2a) argumentation, and 2b) integrating spatial and numerical representation in the classroom. While

the second process (2b) was identified as a major challenge in the learning of AM, the first process

(2a) is the most practical or visible expression of social constructivism expected in a mathematics

classroom. In order to adopt the social constructivist approach in the classroom, argumentation was

used both as a pedagogical practice and also as an analytical framework to analyse the episodes of

argumentation in the classroom, which were taken to be the sites of social construction.   

This chapter will discuss the motivation for the study, the nature of the intervention, the context or

setting,  and  an  analysis  of  episodes  of  argumentation  among  students  while  engaging  in  social

construction of AM. The episodes of argumentation mainly emerged when students were proposing

their varied and contending solutions for a given problem. As mentioned earlier, the analysis will

elaborate on the process of social construction of the area concept in the classroom by focusing on

two major aspects of the classroom interaction. The first aspect is the nature and structure of students’

argumentation, how they defend their claim and what “warrants” they use. The second aspect of the

analysis explores various facets of the students' conceptual understanding of area and the tension they

face as they move between spatial and numerical representations.

I will elaborate on the motivation and theoretical framework of the study in the introduction section

(4.1),  followed  by  the  conceptual  and  analytical  framework  of  the  present  study,  that  is,  what

constructs we used to analyse our data in Section 4.2. Further, in the next section (4.3), I will talk

about the design of the study including the design of the activities and tasks used for the teaching

design experiment in the classroom. Then I will move on to the analysis and discuss the classroom
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data or the result of the study in Section 4.4. And finally I will conclude the chapter in Section 4.5

with the insights and reflections drawn from the present study. 

4.1 Introduction

The previous chapter focused on student’s conceptions of AM in an individual setting; however this

one specifically focuses on the role played by classroom interaction in shaping students’ conceptions.

That  is,  most  of  the  studies  mentioned  in  the  previous  chapter  were  heavily  influenced  by  the

Piagetian ways of  investigation,  where the  learner  is  considered to  be an individual  constructing

knowledge (or scheme) on their own, independent of their social setting. However, the influence of

society in shaping a child was brought to notice by the Vygotskian tradition (Saxe, 2015). Thus, in the

classroom context, it is important to consider social construction rather than individual construction,

as the student engages in the co-construction of knowledge through social interaction and negotiation

(Ernest, 1998; Restivo, 2017).  

Research in Mathematics Education has shifted its focus from looking at an individual learner to the

social process of learning as a product of social interactions (Voigt,  1994; Ernest,  1998; Restivo,

2017). Researchers have emphasised the role of social constructivist and interactionist approaches in

the learning of mathematics (Cobb & Bauersfeld, 1995; Ernest, 1998; Restivo, 2017). However, this

trend is  not  reflected in studies focusing on particular  conceptual  developments.  For  example,  in

studies  of  the  development  of  the  “concept  of  area”,  the  major  focus  is  on  reporting  individual

students’  conception  or  construction  of  AM  rather  than  what  can  be  conceived  or  constructed

collectively. This may be because most of these studies were inspired by the Piagetian tradition that

underplayed the role of social interaction in contrast to Vygotskian tradition (refer to section 2.1.3.4

of the literature review chapter). Thus, regarding the “area-concept”, there is a need to move beyond

individual student’s conception, to the construction of the concept in a classroom setting guided by a

teaching design experiment. In school, students come across “area” only as a formula or as a part of

some symbolic manipulation in textbook problems. However, the learners need to move away from

rote  symbol  manipulation  to  collective  argumentation  in  order  to  meaningfully  engage  with  a

particular mathematical concept (Forman, Larreamendy-Joerns, Stein, & Brown, 1998; Krummheuer,

2007).  

Argumentation is  considered more effective than proofs in convincing students of the validity of

mathematical  results  (Carrascal,  2015).  In the context  of  proving,  Reid & Knipping (2010),  have

extensively  used  Toulmin’s  argumentation  structure  (refer  Figure  1)  in  analysing  students’

interactions in a classroom, but mainly in the context of proving. In their review, they have indicated

the  need  for  more  empirical  work  in  the  field  of  argumentation  together  with  sound  theoretical

groundwork. They argue for the need to study the “global argument” structure (i.e., a gross structure
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having a complex network or web of several such structures joined together in one whole) emerging

within a classroom, which is taken to be more insightful than the simplistic structure (generally either

a single or a linear chain of argumentation structure) reported in earlier research (Reid & Knipping,

2010, p.191). Lately, in the context of mathematical proof, their work highlights the importance of

structural  aspects  (gross  structures)  of  argumentation  emerging  within  the  classroom  unlike  the

functional  (Krummheuer,  2007),  finer  aspects  (Toulmin,  2003)  of  an  argumentation  structure.

However, considering the potential of Toulmin’s argumentation structure, we need to move beyond

the context of proving and extend such intensive analysis to the context of mathematical definitions

and notations, and concept formation. Again, by focusing on the structural aspect of argumentation

structure emerging within a classroom as a whole, by clubbing or merging different argumentation

structure into one single gross structure (Krummheuer, 2007; Reid & Knipping, 2010), we tend to

overlook the contending views held by each actor or a group of actors in a brief dialogue or an

exchange within a classroom, holding different argumentation structures. Thus, in the present study, I

have used Toulmin's  argumentation structure,  not  just  to  extract  the  structural  aspect  but  to  also

analyse  its  role  in  the  co-construction  of  the  “area-concept”  in  the  classroom.  Again,  since

constructing the “concept of area”  using collective argumentation will bring out a complex process of

negotiation  involving  socio-mathematical  norms  within  the  classroom  (Voigt,  1994;  Yackel  and

Cobb,  1996),  I  have  also  looked  into  some  other  aspects  influencing  the  argumentation  in  the

classroom for e.g., the act of convincing each other, or resolving the conflict in one’s warrant. 

Toulmin’s argument structure has been modeled and re-modeled by several researchers according to

their  requirement  (Krummheuer,  2007;  Reid  &  Knipping,  2010),  I  have  used  an  adapted  and

simplified version of Toulmin's structure of argumentation to analyse the selected episodes from the

classroom (Toulmin, 2003; Toulmin, Rieke, & Janik, 1979), details of which are elaborated in the

next section. 

4.2 Conceptual and Analytical Framework

Toulmin's structure of argumentation consists of three main components (see Figure 4.1): one, claim

whose truth is to be established, two, ground consisting of a set of facts which provides the foundation

for the claim and three, warrant, which provides the basis to arrive at the claim from the ground. The

credential of the warrant comes from the backing. Backing is usually field (or discipline or topic)

dependent and likewise warrant also varies with different fields of argumentation. The basic structure

(or framework) of Toulmin's argumentation layout is shown in Figure 4.1.   

In the present study, I have identified an event and segment in the classroom as an episode when I felt

the presence of the two main components of the above framework, i.e., claim and warrant. In the

context of the classroom, I have recognized an instance as a claim, when there is a statement or a
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solution  presented  to  the  whole  class  or  a  doubt  expressed  by  any  member  in  the  class.  In  the

classroom context, ground is the set of facts that appear in the classroom as a problem statement, a

question, an explanation, or an action, which further creates the basis for the emergence of the claim.

Ground is not usually expressed explicitly in the conversation but can be inferred from the context.

Warrant in our context is the explicit rationale provided by the actors in the classroom either in terms

of verbal justification, or with objects, drawings or symbolic manipulation. Though backing refers to

the established norms,  logic, or  rules of a specific field or discipline, in the present  mathematics

classroom context, some norms will also be co-constructed within the classroom. 

4.3 Methodology: Design of the Study 

Since we needed a classroom context where we also have some freedom in terms of our lesson plan,

we10 conducted a teaching camp with students in the school during the school vacation time (see

Figure 4.20 at the end of the chapter). The research methodology adopted for the present study is a

teaching design experiment, where we designed some activities and tasks to engage with the concept

of area. Teaching experiments have been adopted as a research methodology for various purposes,

one among which is the development of ideas in a classroom environment (Kelly & Lesh, 2000).

Teaching design experiments are based on our knowledge of existing research and theory and seek “to

trace the evolution of learning in complex, messy classrooms and schools, test and build theories of

teaching and learning” (Shavelson, Phillips, Towne & Feuer, 2003, p. 25). Design experiments allow

us to connect the concrete realities of a classroom environment with the theoretical concerns of a

particular discipline (Cobb,  Confrey, diSessa, Lehrer,  and Schauble, 2003).  In our study, tasks or

activities were designed based on the insights gained from research literature and our earlier work

reported in the previous chapter, in particular to highlight the distinct numerical and spatial solution

strategies used by students (Battista, 2007), and to study the interaction between the two. 

The main objective of the study was not to teach a particular concept, but to understand students’

10 Here “we” refers to the team involved in the design and conducting of the teaching camp, and also the team 

members involved in observation and later providing feedback. 
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collective  construction  of  the  concept  of  area.  In  the  classroom,  we  have  adopted  a  naturalistic

approach towards the evolution of the construction of the area-concept. The researcher cum teacher

and her fellow colleague involved in the teaching deliberately avoided using the formal term “area”

throughout the teaching camp to avoid any interference of students’ prior formal knowledge about

area with the tasks in the camp. Instead the word “size” was used whenever there was a need to refer

to area as argued for in the previous chapter (in Section 3.2.3.4).    

We used the principles of variation in our lesson design; variation allows students to act in powerful

and multiple ways while engaging with a problem by seeing the same problem in different ways by

attending to its different aspects (Marton, Tsui, Chik, Ko, & Lo, 2004).  Further, “variation enables

learners  to  experience  the  features  that  are  critical  for  a  particular  learning  as  well  as  for  the

development of certain capabilities” (Marton, et al. 2004). Considering one of the main challenges in

the learning of AM is to connect the spatial and numerical aspects, we designed a variety of area

problems to highlight and strengthen this connection (as elaborated in the next Section 4.3.1). Thus,

while the textbook problems on area-concept are usually of the same nature focussing on “find” and

“solve” type questions, we adopted a variety in the context of area problems that open up multiple

pathways for students to connect the spatial and numerical aspects of AM. We also included elements

in the tasks that allow students to create and construct multiple solutions. Thus instead of the typical

area problems of textbooks that generally expects a single solution, our lessons were designed in a

way to allow students to get varied solutions. The variation served two purposes, first  it  allowed

learners to explore the unseen dynamic features of the area concept and it also created conditions for

multiple  solutions  that  led to  argumentation in  the  classroom.  Inspired by the ideas  of  variation,

several researchers have adopted variation further in their teaching and design of the lesson (Watson,

& Mason, 2006; Holmqvist, Gustavsson, & Wernberg, 2008). Variation allows one to have alternative

learning outcomes, by making small changes, based on the reflections from the classroom, and thus

includes the potential to improvise the learning trajectory. Thus, the approach of variation allowed us

to design conducive conditions for students to come up with alternative solutions and it also provided

us the readiness to be able to handle varied claims emerging in the classroom through collective

argumentation. Before moving into the classroom and the interactions that emerged, I will elaborate

on the tasks that were developed and evolved in the study in the following section.  

4.3.1 Tasks: design and description

The tasks were developed and designed based on the experiences and insights from the previous

studies. As just described, there was an effort to include the principles of variation in the design of the

tasks, that allows different students to have varied solutions, which can further create opportunities for

argumentation  in  the  classroom.  In  all  the  tasks  or  activities,  there  is  an  attempt  to  achieve  an
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integration  of  different  concepts  or  processes  of  mathematics  as  a  network  as  argued for  in  the

previous chapter. This is done through designing conditions that allow for integration by having well

thought materials that are manipulable and by following an open ended approach (that is having an

openness to new responses or outcomes in the classroom).  

The  lesson  plan  or  the  teaching-learning  sequence  can  be  broadly  classified  into  nine  sessions,

designed for collaborative construction of AM (refer Table 4.1). The common principle behind the

design of each session (including the tasks or activities in each session) was to integrate multiple

concepts or processes recognised in the network of AM (as argued for in the previous chapter), for

e.g., identifying the attribute for area, conservation, unitization or the concept of unit, array, iteration,

quantification,  the notion of size or magnitude for a two-dimensional  space or measurement,  etc.

Again, there was an effort to ground the activities with local contexts and goals (refer Table 4.1).

Also, the activities or tasks were given to students in pairs or in groups (except in some occasional

cases to individual students) to encourage collaborative practices and participation, in order to have

conducive conditions for social constructivism.       

Table 4.1: Description of tasks used in the classroom

Sl.

N

o. 

Session 

Name 

Session (or Task) Description Learning 

Objective

Artifacts used 

1 Stamp 

making

activity

Given an A4 sheet and four different 

rectangular photo pieces of different 

sizes or dimensions as stamps, students

were asked how many such photos of 

each type can be printed on (or made 

out of) an A4 sheet by a photo shop 

keeper.

Then given the cost of each photo what

will be the total cost of all such 

pictures made out of an A4 sheet.

To introduce 

different units, 

covering, 

arraying, 

optimized use of 

the space. Again 

connecting space 

to number 

through 

quantification 

using the familiar

context of price. 
2 Tangram 

Activity

Making the seven tangram pieces out 

of a given sheet (an A4 or a colored 

rectangular sheet) by folding and 

cutting, and discussing the shapes and 

geometric properties of the pieces. 

Then students were asked to use all the

seven tangram pieces to make a square,

To introduce 

different units, 

relationship 

between units, 

conservation and 

the sense of 

magnitude. 

Tangram pieces
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or a rectangle, or a triangle. 

Students were asked to assume the 

pieces as barfi (an Indian sweet). Then 

assigning some numerical value (whole

or fractional) to one such piece as the 

price of that piece, students were asked

to determine the price of the other 

pieces and all the pieces together. 

Quantification of 

all the pieces in 

terms of a unit by

assigning whole 

or fractional  

numerical value  

to it. 

Encouraging 

multiplicative 

thinking & 

multiple 

representation. 
3 Graph 

Paper 

Activity-I

Students were given standard graph 

paper (sq cm or cm2) with four 

different geometric figures drawn on 

them. Students were introduced to the 

graph paper; the squares made out of 

the bold lines were highlighted and 

they were introduced as “boxes” in the 

class. Students were asked to 

determine the total number of boxes in 

each of the given closed figures. 

                      

Quantification of 

different shapes, 

moving from 

geometry to 

number (whole 

number 

quantification). 

Engaging with 

unit, exploring 

the relationship 

between the unit 

and the measure 

of the figure. 

Graph paper

4 Graph 

Paper 

Activity-

II

An extension of what is being done in 

the previous activity with Graph paper.

However, in this case students were 

asked how much of the boxes are 

included in each of the given figures, 

since here the figures were 

intentionally designed to give 

fractional value (or measure)

Same as the 

above activity 

with an added 

component of 

fractional 

quantification. 

Graph paper

5 Activity 

on 

different 

Here, a nonstandard graph paper (sq 

cm or cm2 magnified to double its size) 

is used with the same figures drawn on 

Quantification of 

a figure on a non 

standard graph 

(Non-standard) graph 

paper
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units  it as in the previous activity and 

students were asked the same question 

as above. However, in this case, unlike 

the previous tasks, four different units 

were used. Students were shown the 

drawings of the four units, by drawing 

it in on the graph paper (Where the 

first unit consists of 4 boxes, while the 

second unit is half of the first unit, and 

the third unit is a quarter (¼) of the 

first unit that is one box, and the last 

unit is 1/10th of the first unit.)

sheet in terms of 

four different 

units. Seeing the 

multiplicative 

relation between 

units and hence 

the resulting 

relation between 

the measure 

value of each 

figure in terms of

different units. 
6 Number 

to shapes

Students were explained with some 

examples in the classroom that given 

some number, they can represent it into

some geometrical figure, especially a 

rectangle. For example, given a 

number 10, which can be seen as 10 

square units which can be represented 

by a 2×5 rectangle or a 1×10 rectangle 

and also by rearranging the order of the

factors. Also one can move to fraction 

or decimal factors as well. In order to 

highlight the multiplicative relation, we

asked students to draw rectangular 

shapes.

Moving from 

numerical to 

various possible 

geometrical 

representations 

of area on the 

graph paper. To 

also explore the 

inverse 

connection of 

numbers to the 

resulting 

geometrical 

shape. 

Graph paper

7 Extrapola

tion to 

bigger 

measure

Students were given a standard graph 

sheet, an A4 sheet and an A3 sheet. 

Students were asked to use the graph 

sheet and find the size of an A4 and A3

sheet in terms of the units of the graph 

sheet (sq inch or inch2). 

To quantify a 

given physical 

object, e.g., A4, 

A3 sheet using 

graph sheet. 

Graph sheet, A4 and A3 

size sheets

8 Measurin

g objects 

around 

All the students in the classroom were 

divided into 3 groups, with each group 

asked to measure one of these: the 

Door, the blackboard, and the windows

of the classroom. And get the value in 

terms of units of the graph sheet (sq 

inch or inch2). 

To quantify a 

given physical 

space. Following 

the previous 

activity, this one 

expects students 

to extrapolate the

units from a 

Graph sheet, A4 and A3 

size sheets
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graph sheet to 

bigger measures 

like A4 and A3 

and further to 

other physical 

material or space.
9 Scaling 

and 

Irregular 

shapes 

(curved 

boundarie

s)

Given a world map printed on a 

grid/graph paper with the boundary of 

USA & India clearly highlighted. Also 

the scale of the graph to be clearly 

mentioned at the bottom left corner 

e.g., 4 cm=1000 km marked along one 

single square unit. Here, students were 

asked to consider one box as 1000000 

km2 (or sq-km). The task was to 

compare the land covered by the two 

countries, and how large the USA is 

compared to India with regard to land 

area.

Scaling and 

measuring (or 

estimating) the 

area of irregular 

curved shapes. 

Also 

multiplicative 

relation between 

the land areas 

(e.g., India and 

USA). 

As can be seen from Table 4.1, in session 1, the activity requires students to find the total number of

different sized stamps they can create out of an A4 sheet, a local context of stamp printing is used to

provide meaning and motivation for students to engage with this activity. This task allows students to

do this activity by physically covering, iterating the picture pieces on the given A4 sheet, to find out

the maximum number of photos they can extract out of an A4 sheet, further probably abstracting out

the  array  structure,  and  seeing  the  relation  between  the  total  number  of  such  pieces  and  the

multiplicative relation it  holds with number of such pieces along the length or breadth.  Once the

majority of students in the class could determine the total for each of the photos, some of them were

asked to explain how they arrived at their number to the whole class and others were asked to attend,

engage or question, or express their doubts on the explanation. For the later part of this task, if the

price of printing one photo is known, students were asked to determine the total cost in printing an

array of a particular photo on an A4 sheet. This part of the activity allowed students to engage with

the multiplicative relation between the value of one unit and multiple units. 

The second session was on the Tangram activity. The various affordances provided by this activity

have  already  been  described  in  the  literature  review  chapter  (see  Section  2.1.3.1)  including  the

integrating aspect of Tangram that allows students to connect geometrical, numerical and further the

algebraic or symbolic abstraction in terms of the relation between the different Tangram pieces (units)

96



and the whole. Further, the physical manipulation aspect of Tangram allows students to engage and

explain their solution process with accessible physical units.

From Session 3 onward, we used the graph paper extensively in order to develop the graph sheet as a

cultural tool for measuring area or two dimensional plane surfaces in the classroom culture just like

we have the ruler (or linear scale) for measuring length. Thus, session 3 onward, there was an attempt

to introduce, use, and interact in terms of the graph paper, to redefine it within the classroom as a

culturally developed tool for quantifying area without using the term “area” in the class. Session 3

involved introduction of unit in a standard graph sheet and quantification of different shapes drawn on

the graph sheet in terms of the unit. Session 4 also had the same activity, except that in session 4 the

shapes were carefully designed to bring fractional value (or measure), while the shapes in session 3

were designed to give whole number value. Session 5 uses a nonstandard graph where basically the

previous graph sheets were magnified to double their sizes, with four different shaped (fractional)

units  highlighted  on  the  graph  sheets.  Thus,  session  5  allows  students  to  engage  with  different

fractional units and explore the multiplicative relation between different units and the resulting value

(or measure) of the given shapes.  

Unlike in the previous sessions, where students were asked to quantify a given space (or find the

numerical value out of a given geometrical shape) in terms of a unit, in session 6, we took the inverse

route where students were encouraged to  geometrize a given number i.e., generate various possible

geometrical shapes or representations on the graph paper for a given numerical value (or measure). To

streamline this task further, students were shown and asked to make rectangular or triangular shapes.

For e.g., given the number 12, which can be taken as 12 sq units, one can represent this as 2 × 6 or 3 ×

4 or other possible rectangles. Thus, the main learning objectives behind this task are to strengthen the

connection between the geometrical and numerical representation of area by having an inverse task,

and also to allow variations in students’ responses to create the conditions for possible argumentation

within the classroom. The primary idea for this task emerged from the Card Task in Section 3.2.5 of

the previous chapter.

Session 7 and 8 were inspired by the component of “extrapolation” elaborated in the network model

on AM in the previous chapter. Basically, if we go back to the course of tasks followed so far, we can

see that we have defined or picked up a smaller unit to work with. However, in extrapolation, we

redefine another bigger unit by clustering several smaller units in order to measure bigger objects.

Thus, while session 7 required students to get the size of an A4 and an A3 sheet in terms of the units

of the graph sheet (sq inch or inch2), session 8 requires students to measure bigger objects around their

classroom, for e.g., the blackboard, the door, or the window. The idea was to explore whether they

can use their collectively quantified or constructed bigger units (e.g., A4, A3 sheet or part of it) to

measure the bigger objects around them.  
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Session 9 is about zooming out into larger spaces on a world map. The objective was to introduce the

idea of scaling and measuring irregular curved shapes or regions. Students were asked to compare the

land covered by the two countries, and how large the USA is compared to India in terms of land area.

Here again the term area was not used, students were asked to consider one box as 1000000 km2 (or

sq-km) and compare the land covered by the two countries. They were also encouraged to find out

how many times larger the USA is compared to India, bringing in the multiplicative aspect between

the land areas. It was hoped that these tasks would be meaningful and address the integrated and

network understanding of area. 

4.3.2 Nature of the intervention and the setting

The teaching was done by the researcher and her colleague (i.e., 7 days by me and 5 days by my

colleague) for approximately 2 hours every day for over a period of 2 weeks (i.e., 12 days in total).

Each day began with a warm-up mathematical game or activity for about 20-30 minutes followed by

the tasks based on area-measurement. The study consisted of a convenient sampling of students who

voluntarily participated for the study and are different than the one mentioned in the previous chapter.

On average,  30 students  participated11 in  the  study which included both sixth and seventh grade

students. Data collection happened through video recordings of each lesson, and a fellow researcher

writing the lesson log every day with some other researchers and colleagues observing the lesson on

several occasions to provide inputs in the follow-up discussion after each lesson. Each day’s lesson

was followed by a debriefing session with a community of researchers, which focused on the conduct

of the lesson, the insights gained and the planning for the next day’s lesson. The video recordings of

each lesson were transcribed by me and my colleague after the teaching camp was over for further

analysis. The teaching camp ended with an informal meetup program, where we chatted with students

about  their  experiences,  learning  and  obtained  informal  feedback  about  the  teaching  camp.  The

regular teachers and head-mistress of the school also shared their experience about the camp and

invited us for more such collaborations in the future.  

The school where the intervention was carried out is an Urdu-medium school run by the municipal

corporation, located in the city of Mumbai, India, catering to students living in the surrounding slum,

reported to be a productive base for house-hold based economy (Bose, & Subramaniam, 2011). Thus,

the school12 was an interesting and rich site for carrying out the intervention, where students could

bring in their  experiential  learning into the classroom, which could further support  the collective

11 Around fifty students enrolled for the intervention by filling in the consent form (Appendix IV)

12 The school was mainly catering to the working class population living in the closeby densely populated 

slum, the students in the study mainly belong to immigrant muslim communities from the northern states of 

India.   
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construction of the concept in focus. 

The present study focuses on the interaction among students and between the students and the teacher

during episodes of argumentation, which we will elaborate further in the next section. These episodes

were  identified  by  studying  the  transcripts  and  reviewing the  video  recordings  and notes  of  the

sessions.  The  episodes  particularly  bring  forth  the  complexity  involved  in  spatial  and  numerical

aspects of area-measurement. The argumentation framework prompted us to focus on those episodes

where varying claims are put forth, are challenged and justified.

4.4 Episodes of argumentation from the intervention study

As argued earlier, the section is mainly around the episodes of argumentation happening within the

classroom during the teaching camp. For the present study, I have selected four episodes from the

entire  teaching  camp,  where  I  felt  the  presence  of  a  genuine  disruption  in  the  class  due  to  the

differences in the argumentation framework or structure by different actors of the classroom. These

four  episodes  were  selected  because  the  interactions  in  the  episodes  indicated  high  levels  of

engagement  by  the  students  and  suggested  the  collective  process  of  concept  construction  in  the

classroom.  The  intense  engagement  by  students  during  these  episodes  were  also  independently

reported by my colleagues, who observed the class sessions, during the debriefing sessions after each

class. 

In this section, I will discuss each of the four episodes that are extracted from the present intervention

study (or  teaching  design  experiment)  to  understand the  process  of  construction  of  area-concept

happening in a classroom through collective argumentation. The discussion of each episode consists

of an overall identification of the segment of the teaching camp (12 day long intervention study) from

where  the  episode  is  picked-up,  a  description  of  the  context  including  the  task  or  the  activity,

important excerpts of the transcript representing the episode and an analysis of the episode. The two

major  aspects  covered in  the  analysis  of  each  episode are:  (1)  the  structure  of  argumentation  in

students’  discussion  in  the  classroom and (2)  the  conceptual  underpinnings  in  these  discussions.

Pseudonyms are used to protect the identity of the students.

4.4.1 Episode-1

In one of the tasks (task-6, Table 4.1), the students were asked to make different possible rectangles

for a given size on a graph paper and then write the numerical multiplication facts. One of the sizes

given was 15 units. For this size students came up with various facts like 3 × 5 = 15, 2 × 7.5 = 15, 1 ×

15 = 15. Sajaad came up with 30 × ½ = 15. He came to the black board and made a 6 × 5 rectangle

and divided it vertically into two halves to show that there are 15 units in each half. The teacher then

99



asked the students to come up with more ways to divide a 6 × 5 rectangle into two equal parts. Many

students suggested horizontal division and Sajaad suggested diagonal division as well. Most of the

students agreed that the rectangle can be divided vertically, horizontally or diagonally into two halves.

But when Sajaad tried to divide his 6 × 5 rectangle diagonally into two halves, he was just looking at

the  rectangle  and wondering  for  quite  some time (for  the  teacher  he  appeared  to  be  stuck).  He

appeared very engaged and confused (looking at his diagram doubtfully) as he was not able to identify

15 units as contained in each triangular part. So he thought that the diagonal division was not giving

half the area. In an attempt to convince Sajaad that a diagonal division too will produce halves, the

teacher prompted Sajaad to check if the diagonal divisions are congruent. The teacher gave him a pair

of scissors to check whether the two pieces are equal without actually counting the units in each part.

But Sajaad was not convinced that the two pieces are equal, as indicated in the following transcript. 

Teacher: … Ye ek dusre ke barabar ho raha hai? Ho raha hai na? [… Are they becoming equal 

to each other? They are becoming equal, right?]

Sajaad: Nahi. [No.]

After cutting the rectangular piece diagonally into two halves, he was unable to 

superimpose the congruent halves without the teacher’s help. Even after the teacher 

demonstrated that the halves are indeed congruent, he reacted as:

Sajaad: Lekin ye aa kyun nahin raha hain pandrah?  [But why are we not getting 15 for this?]

Using Toulmin’s argument structure, we identify the claim as “When a 6 × 5 rectangle is diagonally

divided into two equal halves, the area of each triangle is 15 units”. The data or ground for this claim

consists in the two halves being congruent to one another. However, the inference from this data to

the claim is mediated by other assertions, which can be categorized as “warrant” following Toulmin’s

scheme. The argument structure for the student shows that even when two parts of a whole seem

spatially or geometrically congruent (equal), there is a doubt about the numerical value of the area

being exactly half that of the whole. We interpret this as a gap between the spatial understanding and

the numerical understanding considering the fact that Sajaad recognizes congruence of the two parts

which is clear in his response to another student as follows.

Merajuddin: Lambayi aur chaurayi mein farq hai, isiliye aadha nahi katega. [Length and breadth 

are different, so it won't get cut into two (equal) halves.]   

Sajaad: Aadha katega lekin ginti mein pura nahi hoga. [It will get cut into two (equal) halves, but 

we will not get the total when we count.]

The teacher  tried to  convince the students  that  even if  we cannot  count  15 units  in  each of  the

triangular halves, since the two triangular halves of the 6×5 rectangle are equal halves it must be half

of 30. After this the teacher moved on to discuss other number fact problems. However, the students
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did  not  appear  to  be  fully  convinced  as  evidenced  by  Raziya’s  subsequent  intervention.  Raziya

intervened to bring the focus back on the area of the triangular half. She said that she could make the

15 units and she showed the teacher how this was possible on her graph paper. The teacher then asked

her to demonstrate this to the class on a bigger graph paper. Thus two different kinds of warrants

emerge  in  the  episode.  The  argument  structure  for  the  teacher  was  different  from the  argument

structure for the student as indicated in Figures 4.2 and 4.3.

Later, Raziya came to the board and pointed out that although the teacher had said that we couldn't 

count the units in the diagonal division of a rectangle, it can actually be counted. She showed her 

work on a bigger graph paper to explain how diagonally dividing a 6×5 rectangle gives 15 units in one

half. As can be seen in Figure 4.4, Raziya is using the strategy of moving parts to complete the units 

along the diagonal in one triangular half. Raziya supported Sajaad's argument by providing the same 

warrant that he and other students were looking for. 
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This episode demonstrates that a few students including Raziya were still engaged with the problem

of finding 15 units in the diagonal division of the rectangle. The students were seeking a warrant to

support  the claim through identifying units  in the  figure,  which was different  from the teacher’s

warrant for the claim.

Recognizing that  the argumentation structures  held by the teacher  and the student  were different

helped us in understanding the reason why the students were not getting convinced.  We note that the

teacher, rather than engaging with the argumentation structure of the student, came up with her own

argumentation  structure  to  convince  the  student.  However,  later  another  student  (Raziya)  came

forward and tried to work with the same argumentation structure that was provided by Sajjad.  

Though  the  argumentation  framework  helped  us  here  in  recognizing  the  different  argumentation

structures held by the teacher and the student, identifying the structure was not enough to engage with

the underlying conceptual understanding that emerges within the interaction. Thus, the argumentation

structure gave us some idea about the process of Sajjad’s construction of the area concept in the

classroom context,  but  engaging  beyond the  structure  allows  us  to  see  that  there  was  a  conflict

between the spatial and numerical understanding of area which led to this process of argumentation.

Again the teacher’s attempt to convince the student brought out the teacher’s argumentation structure

in the interaction. Thus apart from the different argumentation structures, it is also insightful to see

what are factors that led to such argumentations and what information it gives about the conceptual

construction.   

4.4.2 Episode-2

Unlike the previous episode, which evolved from the planned task, this one emerged out of a given

assigned task in  the  classroom.  This  episode is  relatively more complex (because of  the  parallel
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conversations happening at one time). Hence the work on the task was split over two days lasting for

more than an hour each day and was accompanied by a very rich discussion. This episode is taken

from the fourth and fifth day of the teaching sequence. In this episode, students were asked to find the

size of six given shapes outlined on an inch-graph paper in terms of a square-inch unit. One of the

figures is shown in Figure 4.5.

The general solution method was first to find the 3 units on the right of the figure and the remaining

part on the left is shown in Figure 4.6. However, multiple ways were elicited in getting the measure of

the rectangular part on the left. 

Thus, in contrast to the previous episode where the student focused only on seeing and counting the

unit to get their solution, here they had to find out the value of a small part of the unit. Most students

could identify the three complete units, however many of them struggled with the remaining part that

extended to the left of the rectangle. There were several discussions among small groups within the

class about how to represent the remaining part. 
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By the end of the lesson, the teacher asked all the students to share their answers. There were multiple

answers suggested by different students (see figure 4.7), which included “3 quarter, 3.3, 3.6, 3.60, 3.5

half, 3 3/10, 3.30, 3.1”. 

The teacher wrote all the answers on the board by the end of the fourth day, and announced that they

would be discussed the next day. On the fifth day, the teacher asked each student to defend his or her

solution in front of the class. This episode has four different parts where different students were using

different units as a backing to support their solution. 

4.4.2.1 Part-1

Suhana explained the solution 3.3 given by a boy the previous day, (who happened to be absent on

Day 5), as presented in the excerpt below:

Suhana: Teen box hai na chote chote wahi ginke likha usne. [There are these three small boxes, he

has counted them]

Thus, in this solution the student has identified the extended part on the left as consisting of three

rectangular strips calling them as three small boxes. 

4.4.2.2 Part-2

Aliza claimed 3.6 as the value for the given space and justified her claim as below (also refer Figure

4.8 a):   

Aliza: Teacher agar ye, ek box rehta ye wala, isko hum teen asariya paanch mante, aur isme ek 

box wo jo ek chota wala tha na wo ek zyada hai, isiliye teen asariya panch mante na, toh usme ek 

aur box aa gya toh teen cheh manenge na usko. 

[Teacher if there was one box, this one (pointing to the quarter part at the left outlined in 
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bold in figure), then we would have considered it three point five, here there is one more 

small box, so three point five after having one more, so it will be considered three six] 

The teacher drew the same shape on the blackboard in an enlarged version for everyone to see. Aliza

explained her solution to the class by working on the figure made on the blackboard. She erased one-

half of the remaining extended part and moved it to the bottom of the other half (similar to the first

example as shown in the corresponding Figure). While in the previous case Suhana referred to three

strips, in this case Aliza refers to six strips made after moving one half of the remaining part. So in the

previous case, the three rectangular strips were recognized as .3 in 3.3. However, in Aliza’s case she

identified six rectangular strips, which represent to .6 in 3.6. Aliza further said if there were five such

strips, they would have been recognized as .5 in 3.5. But her claim was countered by Raziya as below:

Aliza: Kyu? teen asariya panch, agar ye ek khana nahi rehta toh teen asariya panch bolte na 

[Why? If this one space was not there, then we will call this three point five right.]

Raziya: Nahi bolte. [We won’t call that.]

Aliza: Kyu nahi bolte? [Why not?]

Raziya: Teen asariya panch yani aadha, woh toh adha nahi hai pau hai. [Three decimal/point five

means half, that is not half, its quarter.] 

Thus, Aliza misidentified the quarter part made after moving the smaller  parts  as point five.  But

Raziya’s comment was aimed at making Aliza notice that the part she is referring to is not half but

quarter of the full unit. Thus, here they realise that 3.6 is not correct and came up with a different

claim as elaborated in the next part. 
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4.4.2.3 Part-3

Raziya and Afia came to defend 3 3/10. Raziya referred to the earlier lessons on how to represent

fractions and took the example of Roti (Indian bread). Afia drew a circle on the board to represent a

Roti, and made ten divisions in it.   

Raziya: Dus tukre kiye, aur isme se maine teen hisse kha liye, toh phir kaise likhenge. [Made ten 

divisions, of which I have eaten up three parts, then how will we write that]

Aliza: Teen batte dus. [Three by ten, i.e., 3/10]

Using that context as base, Raziya went back to the main task and justified her claim to the whole 
class as below:

Raziya: Teen batte dus na, toh waise hi ye line mein agar humlog aise aare mein lete hai, toh 

usme teen line thi, aisi teen line thi, dus line hai aur teen line, toh kya hua, dus batte teen hua na, 

toh teen box aur dus batte teen. [Three by ten right, so similarly if we take this line horizontally, 

then there are three lines, ten lines are there, and three lines, then what will be the value, ten by 

three, so three boxes and ten by three.]

Aliza: Dus batte teen nahi cheh batte teen, cheh batte dus hoyega na. [Not ten by three, six by 

three, six by ten will be the value.]

Raziya: Cheh batte tab hoga, tumne khali aari line gini hai. [Six by will be when you have only 

counted the horizontal line.]

Afia: Aisi line aisi, niche nahi hai, aise hi. [This kind of line, it's not going down.]

Raziya: Cheh batte agar bolenge na toh apne ko aari aur khari dono leni padhegi, isme aari bhi 

dus hai, khari bhi dus hai, toh agar hum cheh batte lete hai, toh cheh batte bees lenge, aur agar 

usko katenge toh phir, do daham dus, do tiya cheh, teen batte dus aaya, toh apka answer aayega 

teen sahi teen batte dus. [If we say six by, then we have to take both horizontal and vertical lines, 

here there is ten horizontal and ten vertical, so if we are  taking six by, then we have to take six by

twenty, and then if we cancel them out, two tens are ten, two threes are six, three by ten will 

come, so your answer will come as 3 3/10.]

Thus, Aliza was consistently looking at the extended part as six divisions, So Raziya tried to fit her

reasoning in Aliza's argumentation structure by referring that in the case of taking six divisions also,

there will be twenty divisions in all. So in that case also Aliza’s solution will come out to be the same

as three by ten.  

4.4.2.4 Part-4

Sajaad came to defend 3.30 as the answer for the task as shown in the following excerpt: 

Sajaad: Teen hissa ye bhi hai, teen hissa ye bhi hai, toh ek line main ek khane main ja rha hai
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panch, panch line, idher teen hain na idher se doh lenge, isko ek khana banaenge pau 

kerenge, aur idher ka ek line bach gya, toh ye pau ka pachees hota hai, toh pachees ka ye, 

aur panch ye ek line ko manenge toh panch aur pachees, tees ho gya na, teen point thirty. 

[This has also three parts and this has also three parts, so in one line (or part) there is five, 

five line, here there is three (lines), so we will give two, we will make it one quarter, and here

one line remained, so here quarter will be 25, and if we consider one line as 5 then 5 and 25 

will be 30, 3.30.] 

Sajaad first recognised the extended part as consisting of six rectangular strips as was done by Aliza

in part-2. He then moved two of these strips at the bottom of the remaining three. He identified it as

the quarter  and represented it  as  25 (perhaps using a  money representation of  25 paise)  and the

remaining strip as 5. Sajad often used the context of money to justify his reasoning in other tasks. His

use  of  the  context  of  money  was  familiar  to  most  of  his  classmates.  Thus  he  identified  30  as

accounting for the extended part and 3.30 as the size of the given shape.  Thus, in this episode, even

with the same primary data, students came up with different claims by following different solution (or

argumentation) structures. 

This  episode  brings  variation  in  terms  of  students’  responses  where  they  are  claiming  different

answers  and  presenting  their  respective  warrant.  However,  here  instead  of  the  argumentation

structure, what comes out as the taking point are the different language complexities brought out by

students, for e.g., using box, line, patti (strip), etc. to identify or talk about the part they were finding

the measure of. In part-2, Raziya challenges Aliza’s warrant as not an acceptable warrant.   

We also note the use of analogy by Raziya in part-3 of this episode to justify or more importantly to

convince the class of her claim. Thus, this episode is not about the structure but about the different

aspects acting at the periphery to lead to argumentation in the classroom, which further lead to the

student’s construction of their own conception. Again, it also serves as an example of the classroom

norm where students brought in different answers, most of which also become acceptable because of

the convincing warrant to justify a particular answer. 

4.4.3 Episode-3

This episode is simpler to understand in terms of the argumentation structure that emerged. Students

had to find the size of the shape highlighted in bold in terms of the unit highlighted in red on the

bottom left of the Figure 4.9. The numeral “4” marked at the top left represents the 4th shape of the

task given to students on the 7th day of the camp (Figure 4.10). The graph paper on which the shape

was drawn was not a standard graph paper to enrich students’ experiences with different kinds of

grids, with a fractional unit drawn on it for reference.
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The two contending solutions for this problem were 65 or 60.5 for the same shape as shown in Figure

4.10. Initially, the teacher put up the contending solutions on the board. The students (Aliza and Afia)

with 60.5 units as their solution came to the board to explain their strategy (shown on the right in

Figure 4.10). They initially outlined all the possible big square units in the shape and counted them as

6. Each such big square unit consists of 10 such small rectangular units that the students had to use.

Thus, since one such square consists of 10 of those small units, they got 60 for the 6 full units and

have written .5 for the part that remained, which was half of the big square units at the top of the

shape.  Another  answer  was  65,  claimed  by  Sajaad  as  a  solution,  with  a  similar  technique  of

partitioning the shape and adding the parts. Afia said both 65 and 60.5 are correct answers. Aliza also

said both the values will come (as the answer) since both are same. Aliza and Afia were using the

decimal  point  as  a  separator  between  two  different  results  of  counting  and  not  in  the  accepted

convention of indicating decimal fractions with place value.

Later, Sajaad who had a different result also said that both the values are same. Here, despite getting

two different numerical values, initially the students did not see them as contending values. They

agreed  that  both  values  are  correct  because  they  were  convinced with  each  other’s  warrants  for

arriving at their particular value as answer. 
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Accepting two different numerical values may come from the established classroom norm of having a

variety of answers as acceptable, provided they are substantiated with proper warrant. However, if the

warrants  are  mathematically  not  acceptable  there  is  a  danger  of  presenting  mathematics  as  a

subjective discipline rather  than an objective one.  Thus,  the  acceptable  norm of  having different

answers and giving a suitable warrant is not enough; the warrants must be mathematically acceptable.

Unlike in  part  2  of  episode 2  where  Raziya  challenges  Aliza’s  warrant,  here  60.5  despite  being

mathematically incorrect was initially acceptable to the students as a correct solution. At this point,

the teacher decided to discuss this for some more time rather than directly objecting to the value 60.5,

since  the  teacher  wanted  the  challenge  to  come  from  the  students.  The  teacher  asked  for  an

explanation for different values, for which Aliza and Afia said that their answer is different because

their strategy is different. At this point Sajaad challenged them by saying that the answer cannot be

different, it must be the same. Though Sajaad thought that Aliza and Afia's solution was correct, he

said that the answer should not be different and that they have written the answer in their own way.

Aliza still felt the different answers are acceptable because of their different strategies, especially in

the way they have outlined the last half unit while partitioning the shape.

Aliza: Haan toh tu aise aadha kiya na, aur humlog hai na aare mai aadha kiye hai, toh alag 

aayega na humlog ka jawab tere se. [Yes, so you have halved in this way, and we have 

diagonally halved it, then there will be a different answer for us than yours.]

Sajaad: Alag kaise aayega, wahi hai ho rha hai. [How can a different answer come, the same 

thing (i.e., count) is coming.]

Afia: Wahi hai, bus point hai. [It’s the same, only point is there.]
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Aliza: Sirf humne point laga diye aur tune point nahi lagaya hai. [We have just attached a 

point and you have not.] 

Sajaad: Maine kya kiya hai, pure ko jod-jad ke ek baari main likh diya hai... [What I have 

done is, I have added all of them and written them together.]

Another student Merajuddin started saying that 65 is the correct answer with no decimal, but Aliza

was adamant that 60.5 is the answer. In Sajaad's explanation, one half unit consists of five of the

given smaller units and he had added those 5 units in 60 to have 65 units. However, the other group

have not added the 5 units in 60 and have got 60.5. When the teacher asked whether 60.5 is bigger or

smaller than 65. Merajuddin said chota hai (it’s smaller), but Aliza and Afia said they are the same,

while Sajaad said they are the same answers but in different ways.

Merajuddin: Teacher ye paisath (65) hai, ye saath (60) hai, yeh point hatke hai, ye number 

mein nahi aayega, isliye ye saath (60) chota hai, paisath bada hai. [Teacher this is 65 and 

this is 60, the point(decimal) is separate, it won’t come in the number, so 60 is smaller and 65

is bigger.]

When Aliza asked why 60.5 is less than 65, Merajuddin even said if between 60 and 5 there was '+', it

would still work but since there is a point between them it's less than 65. Merajuddin even tried to

explain that .5 and .5 makes one, so 60.5 is even less than 61, so 60.5 is definitely less than 65. Aliza

& Afia  did not  find any contradiction in writing numbers  in  two forms perhaps because of past

experience  from earlier  lessons  that  the  same  number  can  have  different  fractional  and  decimal

representations.

Aliza later realised that Merajuddin is trying to say that the value changes with point (decimal point)

and among 5 and .5, it's 5 that is bigger, she made the following drawing (see Figure 4.11) on board to

show and understand the difference between 5 and .5 . 
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So  the  initial  justification  for  writing  60.5  was  that  after  counting  the  6  full  square  units,  she

represented the remaining half square unit as .5. Since it was half in terms of the full square unit, but

in terms of the given unit it was 5. The drawing helped her clarify the difference between 5 and .5.

The argumentation structures of Aliza and Merajuddin are shown in Figures 4.12 and Figure 4.13. 
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Figure 4.12: Aliza’s argument structure



Unlike the first episode where the students were actually facing difficulty in integrating the spatial and

numerical understanding (or concluding numerical result from spatial justification) here students were

not distinguishing two different numbers. This shows that in the beginning either the students did not

have a clear understanding of numerical representation or for them expressing the result in terms of

two different units did not seem incorrect for them. But finally this was resolved by reasoning about

the numerical value being the same or different. 

4.4.4 Episode-4 (Day 10, 11, 12)

In this episode, the task (Task 7 in Table 4.1) was to find the size (area-measure) of an A4 and an A3

sheet in terms of the boxes (units) of the given graph paper (having square-inch as the unit). All the

students in the classroom were divided into three groups and were asked to work in their respective

groups by the teacher cum participant researcher13. This episode was extended over three days (Day

10, 11 and 12). The three parts of the episode have been designated as Episode 4.1, Episode 4.2 and

Episode 4.3 respectively. Even though it is spread across three days, I have collated the events into

one episode because of the same common conflict that emerges in the process of co-construction or

resolution of differences. However, each day brings in different warrants or arguments to support the

conflicting claim as a part of the negotiation or co-construction process.   

Broadly speaking, in the first part of the episode, the teacher gave the task and went to each individual

group to discuss their solution strategy. In the second part, the teacher asked the students in each

group to present their solution or their strategy to the whole class. The third part is an extension of the

second part, since no resolution was reached. There were three different groups of students using three

different strategies. We focus mainly on one of the groups, which was challenged by the others and

13 Here I, the author, was the teacher, but in this particular context I have analysed and referred my teaching as a

third person. 
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came up with three different warrants leading to different argumentation structures to defend their

solution. 

4.4.4.1 Episode 4.1 (Day 10)

On Day-10 of the camp, the teacher gave the task and went to each group to understand their strategy

and to speak to them. Group-1 consisting of Merajuddin, Hanif and three other students used counting

of units  as their strategy to get the size of an A4-sheet.  First,  Merajuddin folded the extra space

around the edges of the inch graph paper to get a 10×7.5 square-inch rectangle. He used that folded

graph-sheet as a bigger unit for measuring and placed it over the top of the A4 sheet. Merajuddin and

Hanif then marked its boundary (as shown in Figure 4.14). 

For the blank part, remaining over on the A4 sheet, Merajuddin partitioned it into wholes, halves,

quarters,  2-tenth and 3-tenth units  (approximately in relation to the square inch unit of  the given

graph)  and  made  markings  of  the  same.  They  initially  counted  88  units  in  the  rectangular  part

[(7.5+.5)×(10+1)=8×11=88] on the A4 sheet  and added 8 half  units  to it  to get  92 (=88+8×1/2).

Further, they joined 8 two-tenth units along the breadth (horizontally) with  8 three-tenth unit at the

length (vertically)  to make 8 half  units  (or 16 quarter  units),  and again counted  the  total  as 96

(=92+16×1/4).

Some part was still left along the length, for which Merajuddin said: “teen pau hoyega, toh itna hi

bachega”  [this  will  become  three-quarter,  then  only  this  much  will  remain].  Thus  Merajuddin

computed the last remaining part as  teen-pau (three-quarter) with a negligibly small part remaining
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over,  which  he did not  estimate.  When the  teacher  asked him what  he  would  write  for  the  last

remaining part, that is, the “teen pau” [three-quarter], he initially said “ek mein teen aayega” [three

will come in one] and wrote it as 1/3, but then said “teen batte ek aayega” [three divided by one will

come] and changed it to 3/1. At this point, Merajuddin identified the part as teen pau (three-quarter)

but he was not sure about how to write that part numerically. The teacher initially asked him to write

one quarter and add three such quarters together by drawing or writing. When Merajuddin was asked

to write a quarter, he could write it as ¼, but he was not able to add the quarters (¼’s), but when Hanif

said it is Pauna (quarter less than 1), Merajuddin could write the total as ¾, possibly drawing on his

familiarity with this representation in out-of-school contexts. Even though Merajuddin was initially

not sure how to add the fractions, he finally wrote 96¾ as the value for the size of the A4 sheet.

When asked about the size of the A3 sheet, Hanif said “uska jama ker denge” (we will add it), while

Merajuddin gestured through rotating his hand that it has to be added again. When the teacher asked

them how they knew that it had to be doubled, they placed the A4 sheet on the A3 sheet which was

half-folded, to show that A4 can fit in half of an A3. They got the size of A3 by adding 96 twice to get

192. And added ¾ twice by drawing a rectangle with parts and saying “pauna-pauna milake kitna

hoga” to get dedh 1½” (three-fourths and three-fourths make one-and-a-half), and thus got the total

area of A3 as 193½. Though this group used a clear and logical strategy of unit structuring to get the

size of an A4 sheet, the task took comparatively longer for them to complete, since the process was

cumbersome. They used a more naive or intuitive strategy of counting the units and even if they did

not fully know fraction representation or fraction operations numerically or symbolically, they could

do the same using their local contextual knowledge.  

After engaging with Group-1, the teacher went to Group-2, which had Raziya, Aliza and a few other

students, to understand their solution and strategy.  In contrast to Group-1, Group-2 first measured the

length and breadth of the A4 sheet and used the area formula l×b to get the size of an A4 sheet. When

asked how they knew that it would give them the exact size, they responded saying that their teacher

had taught them this. So they used the teacher’s authority as a warrant to justify their use of the l×b

formula. For measuring the size of the A3 sheet, they doubled both the length and breadth of the A4

sheet, and multiplied them together to get the area of the A3 sheet. Thus, they got the area of an A4

and an A3 sheet as 97.11 and 388.44 inch-sq units respectively. When asked for a reason, Raziya said

both the length and breadth of an A3 is double of that of A4. Since the A3 sheet was folded at the

middle, she showed the folding of the A3 along the length (longer side) as warrant to show that the

length is getting doubled and for the doubling of breadth, she showed one breadth at the edge and

another  parallel  mark  of  the  folding  at  the  middle  as  another  breadth  as  warrant  as  seen  in  the

following excerpt:

Raziya: Toh aapki lambai chaurayi ke baraber hai. [Then its length is equal to its breadth, 
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showing that the length of A4 is same as the breadth of A3. ]

Teacher: Haan. [Yes.]

Raziya: Hai na, toh phir ye do chaurayi ho gayi. [Then, this will be two breadths.]

Teacher: Kaise doh chaurayi hui? [How are there two breadths?]

Raziya: Ek idher ki aur ek idher ki. [One from this side and the other from that side, showing 

one edge of A3 as one breadth and parallel folding mark on the A3 as the other breadth.]

During further discussions, Raziya said that A3 is double of A4. But when she was asked to check the

calculation, despite realizing that the area that she obtained for A3 is four times that of A4, she was

quite convinced with her algorithm and her reasoning that both length and breadth will be doubled for

A3 and that then applying the formula l×b will give the proper area.

4.4.4.2 Episode 4.2 (Day 11)

On Day-11 of the camp, the groups were to present their solution strategy to the whole class.  First

Group-1 came and presented their solution, which was the same as they had explained the previous

day. Then, Raziya from Group-2 challenged Group-1’s method as inefficient as it may leave some

space out of the measurement. Hanif and Merajuddin from Group-1 came up to the board to argue:

Hanif: Teacher yaha itna jagah bacch raha hai na, humne usko fold kiye the. [Teacher here 

this much space is getting left, we have folded that part.]

After this Group-2 also presented their solution. Since Group-2’s method was very different from

Group-1 and since Group-1 were also challenged by Group-2, Group-1 members started focussing on

Group-2’s solution method more carefully. Hanif showed a deeper concern with the method used by

Group-2,  as measuring the length is  like  looking at  one edge leaving out  the whole  space while

Group-1 had taken into account the space while measuring. This points to the complexity in moving

from one dimension to 2-dimensional measurement. For Hanif, just measuring the linear dimension

did not convince him that it could give the area. In his group’s method, they had measured it fully in

terms of an area unit. Even for the blank part left on the A4, they measured it by either folding or

cutting the part and using part of the graph sheet to measure the part. 

Raziya responded to Hanif by saying “wo hum log naap nahi rahe hai” [we are not measuring that

part]. Instead, she showed the length to be 11.7 and breadth as 8.3 and said that to get the area of a

rectangle one has to multiply the length and breadth. She showed doubling of length and breadth of

A4 by multiplying the dimensions by 2 on the board, and then asked the students to multiply the

resulting two numbers to get the area of an A3 sheet. When the teacher asked her to check the length
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and breadth of an A3 sheet, Raziya said, “teacher wahi aayega” [teacher same thing will come]. She

was reluctant to check the dimensions of the A3 sheet and was quite convinced that her algorithm was

correct. So, even on the 2nd day of doing the same activity, Group-2 was still convinced with their

mathematically incorrect warrant for obtaining the dimensions of the A3 sheet.  

4.4.4.3 Episode 4.3 (Day-12)

On Day-12, Raziya and Aliza came to the blackboard and drew rectangles on the board to represent

A3  and A4-sheets.  They  did  the  calculation  shown in  Figure  4.15  on  the  board  to  justify  their

reasoning.     

Previously they had offered a warrant based on the area formula and numerical operations. However,

this time they provided a warrant by drawing pictures on the board and using the model of algebraic

and numerical operation – I will refer to them together as “symbolic manipulation” – to convince

other students that the size of the A3 sheet would be 388.44. Despite the teacher asking them to

explain, they were quite convinced with their procedure and just ran through the operations rather

than explaining  the steps  in  a  mathematically  correct  way.  Hanif  and Merajuddin  from Group-1

pointed to the discrepancy in the calculation as below: 

Hanif: Teacher area area ko jama kia 2A aaya na toh phir wohi jama kisliye kerenge? 

[Teacher, adding two areas will give 2A, then why would one add them again?]

Merajuddin: Haan teacher. [Yes teacher.]    

Aliza: Toh A, A agar iske badle koi number rehta toh? [So A, if instead of A there was 

some number, then?]

Hanif: Haan toh jama kar dete, phir waha bhi jama ker de. [Then we would have added, 

so add there also.]

Aliza: Allah! Wo kai ke liye likha hai tum ye batao usko. [To Raziya: Oh God! Why you 
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have written it, you tell him that.]

Raziya: A, A ko jama kerenge two A aayega. [Adding A,A together will give 2A]

Hanif: Aa gaya. [It came.]

Meena: Haan. [Yes.]

Raziya: Ye iska double hai, A4 ka ye A3 hai na. [A3 is double of A4, A3 has is made up 

of A4]

Aliza: Ye area ka hum logo ko na number pata nahi hai islia hum log A dale iske liye. [For

this area we don't know the value in number, that's why we wrote A for this.]

Raziya: Ye iska double hai na, phir se humne double ke liye 2 likhe, ab ye dono ko hum 

logo ne, A A ko jama kiye the na, yahan pe kuch number nahi tha isliye hum A, A liye 

the, ab A ka value nikla tha 97.11 nikla tha. [A3 is double of A4, so we wrote 2 for 

double, now since we had added these two, we have added A, A together, there was no 

number, so we took A, now A's value is 97.11.]

Hanif: Haan. [Ok.]

Raziya: Four A ka rugba 97.11 nikla tha hum logo ka, tum logo ka jo bhi nikla ho, toh 

phir hum logo ne uske jama kar diye. [Four A's (A4’s) area was 97.11 for us, don't know 

about your value, then we added them.]

Aliza: Dono ko mila dia, ye kiya na jama, idhar. [We added them together, here we have 

added them.]

Raziya: Dekha? [Did you see?]

Discussion about the l × b formula

Raziya and Aliza were convinced with their algorithm and their explanation. A little later  Merajuddin

from Group-1 expressed his doubt about using multiplication to find the area: “jarab kyu ho raha

hai?” (why is multiplication used?). Raziya defended it by saying that it  is a formula for area to

multiply the length and the breadth. Hanif also expressed similar doubts about the length and breadth

being multiplied to get the size. Thus, Merajuddin and Hanif challenged the warrant used by Raziya

and Aliza, that is they challenged the use of the pre-existing mathematical formula for area. At this

point, the teacher asked the students if the results would be the same in both cases, i.e., counting the

total number of squares and using the multiplication strategy. Raziya and Aliza were sure that both the

strategies would give the same result.  Aliza, to provide further backing for their warrant, went to

another room to get a poster with array structuring drawn on it to prove that multiplying the lengths is
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the same as finding the total number of units. We note however that the array drawing with only

whole units is insufficient to abstract the l×b generalization. 

Raziya and Aliza came forward to explain their solution. Raziya said that finding the size of the A4 or

A3 sheets is actually a problem of finding the area (Ragba in Urdu) and claimed l×b to be the formula

for area. Until this point the word “area” was hardly ever used in any discussion in the classroom. At

this point, Raziya and Aliza showed the charts, one with the definition of the area including the l×b

formula and the other with the array structure. Raziya justified the l×b formula by taking an example

with 12 units  along the horizontal  and 4 units  along the  vertical,  with  the  total  units  inside  the

resulting  rectangle  amounting  to  12×4=48 units.  Merajuddin interrupted her  asking why she had

multiplied 11.7 by 2 (while doubling to find the size for the A3 sheet). At that moment, Raziya’s flow

was disrupted and the teacher pitched in to exemplify the area formula using the principle of variation.

She took a few more examples starting with whole units like 3×6=18, 6×7=42, 8×7=56, and then

moved beyond the whole units to include fractional units as well. With the last whole unit example of

8×7=56, the teacher added another 1/2 or .5 at the end of 8 units (making the length 8.5 units) and

asked students the total number of units in that case. Finally, the teacher considered a rectangle with

7.5 units and 8.5 units along the length and breadth respectively. Using these examples, the teacher

tried to make the connection between the two strategies explicit, of which one strategy was additive

involving counting the total number of units, while the other was multiplicative involving multiplying

the units along the length and the breadth.     

In the second half of Day-12, Merajuddin asked how many boxes there were in A4, showing that he

could not understand how l×b could give the number of boxes (squares) on the sheet. He was insistent

on asking: “boxes kaise gina ? Gin ke bata do” (how did you count the boxes? Show the counting.).

This again presents an example of a different argumentation structure possessed by the students from

Group-1, where the field of argumentation is purely unit structuring (or counting the area units in the

given space), while the argumentation structure possessed by Group-2 is of using the multiplication of

dimensions (or numerical calculations) and extending it to A3. 

Raziya then advanced a different and new argument to counter Group-1 by saying that they have left

0.36 units while computing the size. She did the following calculation on the board (Figure 4.16) to

show the same.

At this point, the discussion returned to finding the size of the A3 sheet.

Size of A3 revisited

Merajuddin again asked about A3, saying that A3 should be double (of A4), but Raziya responded

saying not double but four times. Merajuddin came to the blackboard, pointed to A3 and asked “ye

char guna hai?” (is this four times?). The teacher asked Raziya to respond.
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This time, she drew another model on the board as below (Figure 4.17a), 

Merajuddin then jumped in and on the same drawing wrote 4 and 8 for the rectangle on the right as

shown above in Figure 4.17 (b) to reveal Raziya’s strategy for A3 to the whole class. 

Meena (from Group-3) noticed and highlighted the error by asking “4 kaise aayega?” (how 4 will

come?). Thus, with further questions from Meena and the teacher, Merajuddin rather than extending

his argument (that both the dimensions are not getting doubled but only one is getting doubled), he

went back to his seat.  

The teacher then asked Raziya to complete her explanation. Raziya came to the board and started

computing numbers  on her  own on the board where she doubled the longer  side of  the  A4 and

multiplied it with the shorter side of A4. Finally, she got the size of A3 to be double of A4. At this

point, Raziya erased and changed her answer and admitted that the area for A3-sheet was coming out

to be four times that of A4-sheet earlier, because they had doubled both the length and breadth while

finding  the  area  of  A3.  At  this  point,  the  teacher  thought  that  the  situation  got  resolved  in  the

classroom and that finally Group-2 realised their error. But only when we watched the video of the

classroom again did we realise that Raziya had doubled the longer side of A4 rather than the smaller

side  of  A4.  Though  both  the  calculations  give  the  same  value,  spatially/geometrically  Raziya’s

representation would be incorrect, since doubling the longer dimension of the A4 does not give the

shape of A3.  

At the end, there was not much time left, so the teacher asked the third group to come and explain

their way of finding the size of A4 and A3. Rehana from Group-3 came to explain their way of

solving (or their way of reasoning). Rehana said they have got 11.7 along the length and 8.3 along the

breadth (using scale/ruler) and declared the result to be 94.78. 
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Calculation to show the

difference in A4

measurements by two

groups

Figure 4.17: (a) Raziya’s drawing on the board, (b)

Merajuddin representing Raziya’s A3 calculations



When the teacher asked for an explanation, she said that she had counted the smaller boxes in the

remaining part. The sheet of Group-3 on which they had worked also had an array structure drawn on

them (but not very precisely drawn). They had used multiplication while counting for the 11×8 units

and for the remaining part they had approximated it as halves and quarters and had added them. So,

Rehana said that they had got eight halves so 4 full units, making the total as 92(=88+4). Then two

sets of 4 quarters making the total as 94 and at last left with 3 quarters and 3 smaller units(squares),

making 94.78 as the answer. She showed the addition (75+3=78) but when the teacher asked her to

show that part on the graph, she felt that the last remaining part to be 7 and not 3. Then the teacher let

her change and modify the calculation. Thus Group-3 used the strategy similar to Group-1, though

this group used more of multiplication and approximation. 

Raziya from Group-2 subtracted the value obtained by Group-3 from those obtained by Group-1 and

Group-3. She came to the board and showed the following subtraction:

Raziya’s aim was to bring to the notice of the other groups how the strategy used by her group is more

efficient and that there are errors in the area calculated by the other two groups.  
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Figure 4.18: (a) Group-1’s argument, (b) Group-2’s argument

Figure 4.19: (a) Difference in A4’s area between Group-3 and Group-2,

(b) Difference in A4’s area between Group-3 and Group-2



4.4.4.4 Some observations on episode 4

Yackel & Cobb (1996) talked about the mathematical norms that students were exposed to in the

classroom, which is irrespective of the mathematical content (e.g., algebra, fraction, geometry, etc.)

being discussed in the classroom but more about the practice and the way it is being dealt with inside

a classroom context. Again, the argumentation theory of Toulmin is applicable for any logical practice

of  reasoning  irrespective  of  which  discipline  we  are  working  with.  However,  the  mathematical

practice of establishing a mathematical claim is different from the general social discourse context,

where the participants (or actors) try to convince each other through other forms of warrant, which

can be subjective, verbal, have supporting examples, or analogy. The students were becoming aware

of  the  classroom  mathematical  norms  of  justifying  their  reasoning  with  proper  or  acceptable

mathematical explanations different from the general warrants. Group-2 was so convinced with their

strategy of using the l×b formula, that their lead members (Raziya & Aliza) used different kinds of

warrants to convince other students that it is correct. They used examples to show that the formula

gives results that are consistent with unit-structuring, but also used the warrant or the authority of the

mathematical formula and mathematical expression to support their claims for the size (or area) of A4

and A3 sheets. What Group-2 may have abstracted about the classroom mathematical norm of giving

the  warrant  could  be  producing  mere  mathematical  expressions.  Students  draw  out  the  general

practices  happening  inside  the  classroom  as  classroom  norms.  Thus,  what  they  draw  from

mathematical argumentation as a part  of the classroom mathematical norm is that something that

involves a mathematical expression or numerical manipulation, can provide a warrant. That is why

they may have used some mathematical forms or expressions to convince others that they are correct.

Here it appears that the backing for the argumentation structure of students of Group-2, was coming

from the mathematical norms or practices of using mathematical expressions and formulas without

getting into their correctness and thus not engaging with the discursive argumentative practice (of

reasoning and logic) when challenged by other groups. Thus, this form of backing or norm comes

from  the  conventional  classroom  practices  where  mathematical  formulas  hold  an  independent

authority without question. 

Group-1 on the other hand presented a completely different strategy, where they extensively used the

understanding of box/ square units. They raised a doubt about whether the formula can give the total

number of squares units for an A4 or an A3 sheet, which led to the start of a series of argumentation

between Group-1 and Group-2. This also shows that the jump (from concrete drawing of units to

abstract formula) is not so easy to make. Group-2 used the warrant of mathematical formula and

expression to convince Group-1, and they extended the warrant even to explain their result for the size

of an A3 sheet. Raziya's warrant likely stemmed from her previous experience of using mathematical

formulas, despite Merazuddin's tough challenge that A3 cannot be four times the A4 sheet by visually
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or spatially showing that it is only twice.

At one point Raziya from Group-2 admitted that their area for A3-sheet was coming out to be four

times that of A4-sheet, and she said that they had doubled both the length and breadth while finding

the area of A3. Although the teacher thought that the situation was resolved in the classroom, it was

only when we watched the video again did we realize that Raziya doubled the length (longer side of

A4) rather than the breadth (smaller side) of A4. Although both the calculations give the same value,

spatially/ geometrically Raziya’s explanation does not work for the present task. Raziya’s numerical

solution was not anchored in the appropriate spatial reasoning.

4.5 Discussion

I  summarize some of the broad insights that  can be drawn from these episodes below under the

following themes: (i) Disconnect between spatial and numerical understanding (ii) Insights from the

analysis of argumentation in the four episodes (iii)  Reflections on socio-mathematical norms in a

classroom and (iv) Coherence and contribution toward the network model.

4.5.1 Disconnect between the spatial and numerical understanding

In  the  first  episode,  students’  argumentation  was  based  on  unit-structuring  as  they  were  more

comfortable relying on counting the full units rather than accepting that the numerical value of the

area was halved since the halves were congruent  as shown by the teacher.  Even though the two

triangular  halves  were  spatially  or  geometrically  equivalent,  students'  assurance  came  from  the

numerical  value of  15 units.  This  indicates  a  disconnect  between students'  spatial  and numerical

understanding of area-measurement. This also supports Sarama & Clements’ (2009) claim that the

problems in the learning of area-measurement could be due to difficulty in connecting the spatial and

numerical  aspects.  The basis  of  students'  reasoning was more aligned to  the additive thinking of

counting units rather than the multiplicative thinking reflected in the fact that halving an object will

correspond to obtaining half the number of units compared to the original object. In other words,

multiplicative thinking here involves the coordination of equipartitioning and the numerical operation

of division.

Battista (2007) has emphasised that students must be able to extend their reasoning to different forms

of units. The task used in the second episode is based on a fractional unit. In the second episode it was

found that different students can identify and consider different fractional parts as their fractional unit,

but while representing that fractional unit they had difficulty in assigning a numerical value to the

fractional unit in terms of the full unit.   

In the third episode, students were considering two different numerical values as the same, as they

were  derived through the same spatial  structuring.  This  again  points  to  the  difficulty  of  moving
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between spatial and numerical understanding.

In the fourth episode, while Group-1 extensively relied on the spatial structuring and counting of the

units, Group-2 used the numerical formula without fully abstracting it from the spatial structuring.

Again for the A3 sheet, rather than just doubling the area of A4 to get the area of A3, they doubled

both the linear dimensions of A4 to end up getting four times the area of A4 for A3. Thus, Group-2’s

reasoning was completely devoid of spatial reasoning.  

4.5.2 Insights from the analysis of argumentation in the four episodes

The focus on argumentation structures that emerged in the various episodes gives insights into the

students’ struggles to construct the concept of AM. It highlights the key components that underlie this

construction. It also shows the robustness of some of the students’ prior conceptions, especially with

regard  to  unit-structuring,  the  decomposition  and recomposition of  halves  and quarters  and  their

interpretation in terms of numerical representations. It indicates the gaps in what students know and

the potential interventions that are pedagogically important. 

In Episode-1, there was a difference between the argumentation structure of the students and the

teacher. Despite realizing that the two triangular parts found by diagonally dividing a rectangle are

congruent, there was a resistance on the part of the students in accepting that each triangular half has

half the number of units as in the rectangle. From the argumentation point of view, we see that the

basis of warrant for the students and the teacher were different. The students' warrant came from the

unit structuring, specifically with the number of full units that can be made from one triangular part.

However, the teacher gave a different warrant, which is that the two triangular halves are congruent,

which did not convince the students since they were looking for a different warrant. 

The core of this issue is the correspondence between actions done on the rectangle and the operations

with  the  numerical  value  of  area.  For  the  teacher,  the  decomposition  of  the  rectangle  into  two

congruent halves had a correspondence in dividing the numerical value of the area by 2. For the

students  however,  the  correspondence needed to be established by means of  unit  structuring.  By

focusing on the argument structure and the differences in the warrants, we see the gaps in the warrants

that are available to the teacher and to the students. This can guide instruction in designing tasks and

in steering the discussion towards bridging these gaps. For example, the students already use their

knowledge  that  the  joining  of  shapes  to  give  a  larger  shape  corresponds  to  the  addition  of  the

numerical values for area. This is shown in the process by which they accumulate units, or fractional

parts of units in all the episodes. However, this knowledge needs to be coordinated and re-applied in

instances where the shapes being recomposed consist both of triangles and rectangles, as well as in

other  cases  (Chambris,  2022).  This  we  expect  will  lead  to  more  robust  correspondences  being

established between spatial and numerical aspects of AM.
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Further, the argumentation perspective also reveals the complexity of the geometric intuition that the

students are drawing upon. Pressing for further warrants and backing in the students’ argument could

lead to understanding the geometrical basis for Raziya’s demonstration that the two triangular parts

have equal number of units. Establishing the congruence of the small triangular pieces that are moved

into empty slots, which Raziya showed by drawing arrows, requires detailed and, for the students,

sophisticated  geometric  reasoning.  This  might  take  the  path  of  symmetry  and  geometric

transformations  such  as  rotation,  translation,  etc.,  or  might  draw on theorems related  to  triangle

congruence. (A possibility of such argument structures emerging also exists in the manner in which

the congruence of the diagonal halves of the rectangle was established by overlapping. However, this

did not emerge in the classroom although Sajjad and other students struggled to show that the two

halves were congruent.)

In Episode-2, there are two task demands that the students are struggling with. The first is to find a

suitable way of denoting the size in terms of the given unit of the fractional part that is appended to

the rectangular shape. The second demand is to add this to the remaining units to arrive at a numerical

value of the area of the entire shape. In Part-1, the response given by Suhana (3.3 units) is accurate.

However, when pressed to provide a warrant, we see that her reasoning is whole number based, where

she counts 3 whole units and 3 smaller units (which are rectangular strips). She completely ignores the

relation between the smaller strips and the given unit.  Hence, she is using the decimal point as a

separator,  where  the  units  to  the  left  and  to  the  right  are  different,  with  an  unspecified  relation

between  these  units.  This  is  a  well  recognized  difficulty  that  students  face  in  learning  decimal

fractions (Takker & Subramaniam, 2019).

In Part-2, we see that Aliza does a careful recomposition of the smaller strips and tries to establish a

relation to the given unit. However, this attempt is not successful, because she designates three units

and a quarter (which is seen to be a small square) as 3.5, to which she adds the size of a smaller strip

to obtain 3.6. Her reasoning is ambiguous in terms of whether she is using whole number thinking or

thinking of the relation between the smaller units and the given unit. Raziya’s intervention clearly

pulls the focus back to the relation between the smaller part and the given unit, when she says that 3.5

means three and a half, but the smaller part is a quarter and not a half. This only shows that 3.6 is

incorrect, but does not lead to the correct numerical representation of the total area.

In Part-3,  Raziya takes  a different  approach to representing the size of the appended part  of  the

rectangle. She uses a fractional notation, which she is confident about and denotes the size of the

appended part  as  3/10.  She  is  also  then  able  to  easily  represent  the  addition  of  this  part  to  the

rectangular part to write the final area as 3 3/10 units. By looking at the structure of the arguments

that the students put forth, we see both what the students are comfortable with and what they find

difficult. They are quite comfortable with decomposing and recomposing rectangular parts out of a
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larger rectangle and in seeing the relation of the smaller parts to the larger part in terms of such

actions.  However,  not  all  the  students  have  the  resources  to  coordinate  such  robust  spatial

understanding  with  the  numerical  representation  of  fractional  parts.  Moreover,  we  also  see  the

difficulty in making the transition from fractional representation to decimal representation. Again, this

points to the close and deep connections between AM and the topic of fractions and decimals. 

The argument used by Sajaad in Part-4 of Episode-2 is interesting because he draws on a different

knowledge resource to represent fractional parts in terms of decimals. He sees the appended portion of

the shape in terms of the small squares, which he counts as 30. He then identifies a quarter of the

shape in relation to the given units and sees that this contains 25 small squares. He is able to draw on

the analogy of money where he knows that a quarter rupee means 25 paise and is able to represent the

final numerical value of the area as 3.30. This allows him to arrive at the correct representation, not

through a place value based understanding of decimal fractions, but through an analogy with the

representation of money. This suggests both the difficulty of the place value notation for decimal

fractions as well as possible routes by which students may arrive at an understanding of this difficult

concept. 

The task in Episode-3 illustrates the principle of variation that was adopted in designing the tasks.

Here, the given unit is a small strip instead of a larger unit as in the previous episodes. Thus, it gave

rise to a process that was the inverse of the process seen in Episode-2 – here students chunked the

given unit to form a larger unit, which was more convenient to measure the given shape. We see the

students moving back and forth between using the chunked units to count and representing the size in

terms of the given unit. Both the groups, whose arguments are presented, could successfully represent

the size of the given shape in terms of the chunked unit. However, differences arose in moving back

to represent the size in terms of the given unit. Aliza and Afia’s group represented this as 60.5, while

Sajaad’s group correctly represented this as 65 units. The argument structure showed that the warrant

offered by Aliza was that both the representations were of the same value. This was eventually refuted

by Merajuddin comparing 60.5 and 61 and interpreting the former as 60 and a half, and hence less

than 61. This showed that 60.5 was indeed less than 65 and hence could not be equal to 65. In this

episode again, we see the struggles in representing numerical values for area, when the area is an

addition of different kinds of units. We also see the importance of the representations for half, which

are  very  familiar  to  the  students,  and  can  anchor  warrants  for  claims  about  correct  decimal

representations. 

Episode-4 captures extended discussion and complex argumentation among the students. We analyse

this by identifying three different arguments. The first, which emerges as the teacher visits different

groups of students and talks to them about the strategies, is concerned with the use of unit structuring

to arrive at the size of the A4 sheet.  Here, as in the previous episodes, students need to combine
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measures of whole units and fractional units. We see the detailed warrants that students offer to justify

their procedures for identifying and counting different sized units, as well as their justifications for

representing the sums of whole units and fractional units. It is also evident that students are drawing

on their familiarity with fractions such as half, quarter, three-quarters, one-and-a-half, etc. (Urdu and

many other Indian languages have a separate word for one-and-a-half: “deedh”.) Thus, warrants based

on out-of-school  knowledge can play a  crucial  role  in  the  social  construction of  concepts  in  the

classroom.

The second argument centres around finding the size of A3, from the known size of A4. Establishing

that the size of A3 is double the size of A4 was easy by folding and overlapping. Two groups had

found the size of A4 by unit structuring and these groups did not have a difficulty in finding the size

of A3 by doubling or adding. Raziya’s group had used the l × b formula to find the size of A4, and

they arrived at an incorrect result for the size of A3, which was challenged by Merajuddin’s group. It

was clear from the responses from Raziya’s group that they preferred using the formula and ignored

its connection to unit structuring. It was also evident that they had difficulty in coordinating the use of

this formula with the spatial understanding of the task, leading to them doubling both the length and

the breadth in moving from A4 to A3. It was striking that when Razia was asked to show where the

length and breadth had doubled, she showed the doubling of length along one edge, but showed a

parallel image of the breadth to show the doubling of breadth. (Her explanation suggests that she

interpreted the doubling of breadth as the emergence of another breadth through the action of folding

the A3 sheet.) The demand for warrants by Merajuddin’s group created the conditions for further

exploration  of  Raziya’s  AM  conception,  indicating  the  difficulty  of  coordinating  the  algebraic

understanding (i.e., the use of the l × b formula), with spatial understanding. It also shows that unit

structuring  is  closely  tied  to  spatial  understanding  and  hence  is  essential  to  making  a  robust

connection with finding the numerical value for area. Even after Raziya’s group accepted their error,

and arrived at the correct value for the size of A3, the underlying spatial understanding was flawed.

This was evident in the way their geometric representations of the A4 and A3 shapes. Clearly, the

coordination between algebraic and spatial understanding is difficult even for capable students.

The third argument that emerges in Episode-4 is a branching of the discussion into the validity of the l

× b formula. It is interesting that Merajuddin’s group identified the use of the multiplication as one of

the steps in argument by Razia’s group that was open to challenge. Multiplication was used in two

ways by Razia’s group – in the l × b formula, as well as to obtain the length, breadth and area of A3

from those respectively of A4. However, the argument that emerged focused mainly on the use of the

formula,  likely because the teacher steered it  in  that  direction.  We find from the analysis of  the

discussion,  that  three different  kinds of warrants were used to establish the validity of the  l  × b

formula. 
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The  first  kind  of  warrant  is  based  on  authority,  and  is  mentioned  by  Raziya  when  she  is  first

challenged about the use of the formula. She responds by saying the teacher (in the regular school

classroom) had given this as the formula for area. She also explicitly interprets “size” of the rectangle

as the “area” of the rectangle, showing that a part of  the warrant stems from drawing on formal

mathematical  vocabulary.  This  is  backed by  Raziya  and Aliza  bringing  a  poster,  which  had  the

formula, to show to the class. It appeared, however, that this warrant was not acceptable to the other

groups. This is indicated by the additional warrants that the teacher offered, which showed that the

argument was not brought to a closure by drawing on the authority of the poster.

The second kind of warrant for the validity of the  l × b  formula was to show that it gives a result

which is consistent with finding the size using unit structuring. This was the approach taken by the

teacher, where she produced several examples of rectangles with varying length and breadth. We note

that although this may be convincing for the cases where the length and breadth are whole units, a

more detailed argument is needed for the cases where the sides are not whole units of length. The

teacher did extend the warrant by using a couple of examples with half units of length and breadth.

This discussion is important and may need to be taken up again to establish a more robust connection

between unit structuring and the l × b formula. We also note that the teacher appears to have assumed

that students are comfortable with measuring length and breadth in fractional units, which requires the

process of unit  structuring to be applied in one dimension, along the length or along the breadth.

Further discussion and potential challenges may reveal that the unit structuring involved in measuring

length and representing the value of fractional lengths is also an important element in the network

model of the learning of AM.

The third warrant was produced by Raziya and was something that we did not anticipate prior to the

analysis of this episode. This warrant has to do with the accuracy of measuring the size of a rectangle.

Raziya intervenes at two places in the discussion to show that the use of the l × b formula produces a

more accurate value for size as compared to unit structuring. She does this in two ways – by pointing

out that the process of unit structuring may be missing some parts, which are too small. She also finds

the  difference  between  the  values  for  A4  size  produced by  the  use  of  the  formula  and  by  unit

structuring  by  the  operation  of  subtraction,  which  gives  the  value  of  the  “error”  in  using  unit

structuring.  The  warrant  here  that  Raziya is  offering is  that  the  l  × b  formula  produces  a  more

accurate value for size. This brings in the aspect of approximation introduced by unit structuring,

which is an important mathematical construct that is part of the learning of AM, and plays a key role

in making the connection between the algebraic, numerical and spatial understanding of AM.

4.5.3 Reflections on socio-mathematical norms in a classroom

As elaborated in Section 4.2, “backing” is considered to be an important element of an argument
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structure  and  is  defined  to  be  a  set  of  established  norms,  rules,  or  logic  followed  in  a  specific

discipline.  In  the  current  study  done  in  the  classroom  context,  guided  by  the  theory  of  social

construction, the “backing” for the warrants in the arguments discussed stem mainly from the socio-

mathematical norms established in the classroom. Such socio-mathematical norms established in the

classroom act as the key agent in further supporting the warrant provided by the students. This can be

seen across the episodes where students adopt the practices of social negotiation in a classroom by

representing  one’s  thought/argument  through  dialogue,  using  physical  materials,  drawing  on  the

blackboard, and showing symbolic and numerical representations. These practices were collectively

established as socio-mathematical norms in the classroom as a way of substantiating the warrant. 

In  Episode-4,  we  saw  that  Raziya’s  group  associated  area  with   l  ×  b,  where  only  the  linear

dimensions are used; her explanations were mostly based on linear dimensions. Also, Raziya’s group

could not associate it with the 2-dimensional unit of area. However, the other students who did not

come across  the  area  formula  frequently,  mostly reasoned in  terms of  unit-structuring.  What  we

further notice in this episode is that Raziya’s group was repeatedly using the mathematical norms

drawn from their regular conventional classroom as backing for their claim and warrant. However, as

educators, we need to be aware of the unquestioned practices we are transacting through mathematical

forms and expressions to our students, which students are expected to accept as mathematical truth

and logic just because it can be expressed in some particular mathematical form. This in turn results in

mathematical logic and reasoning becoming limited to symbolic representation and manipulation. It is

only when Mirazuddin’s group challenged Raziya’s group for their procedure of measuring A4 and

A3 (the use of l × b formula for A4, and the extension to 2l × 2b for A3) that the gaps in the group’s

understanding of AM were revealed. This also raises the question, what are the factors that lead to the

emergence of argumentation in the classroom as reflected in these episodes. First, it is important that

the  teaching  design  experiment  incorporates  some  flexibility  in  the  pedagogy  to  allow  for  the

instruction to be guided by students’ responses. Second, if we try to see what motivated the students

to challenge the claims of their  peers,  leading thereby to the emergence of argumentation in the

classroom, we can find that it is often a moment of doubt or curiosity that comes with not being able

to comprehend the abstractions that are linked to the concrete modelling of the situations. A third

factor  may be the need for  consistency between different  ways of  solving a  problem,  which we

discuss in the next section.

Thus, this chapter of the thesis shows how actions with concrete representations get paired up with

mathematical  discourses/narratives,  thus  bringing  in  reasoning  as  an  essential  part  of  concept

formation. And overall it contributes to understanding why reasoning is essential to concept formation

and suggests that coherence among representations is essential for the stability of concept.
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4.5.4 Coherence and contribution toward the network model

In numerous instances, the students challenged claims made by their peers or raised a doubt while

striving  to  achieve  consistency  between  different  ways  of  arriving  at  a  result.  In  Episode-1  for

example, after Sajaad was convinced that each of the triangular pieces obtained from the rectangle

was half the rectangle, he was struggling to find a reason for why the size of each piece would be 15

units. Raziya’s response could be seen to be driven by the same motivation as she found a way of

reconciling the size of the triangle arrived at by halving 30 units and by unit structuring. Raziya’s

response stands in contrast to the response by the teacher, whose argument structure is essentially

different  from the  ones  the  students’  and  hence  failed  to  make  a  connection  with  the  students’

argument. Raziya, on the other hand, placed her own warrant within the students’ argument structure.

I  mentioned another  instance where Raziya adjusted her  own warrant  in  order  to  align with her

discussant in section 4.4.2.3, where Aliza was disputing her claim that the size of the appended part of

the rectangle was 3/10. Aliza argued that this must be 6/10. In response, Raziya pointed out that the

fractional unit that Aliza was focusing on was 1/20 and not 1/10 and hence the size would be 6/20.

This could be reduced to 3/10, thereby establishing the consistency of different ways of counting the

fractional units. Recognizing and responding, even implicitly, to the argument structures in play is

important in building coherence between perspectives and approaches. 

The repeated emergence of struggles to achieve coherence points to the importance of the network

model. The concept of area has rich interconnections with fractions, geometry and algebra, and these

need to be repeatedly revisited to allow for a mutual strengthening of the networked concepts. From

the  discussion  of  the  episodes,  we  see  that  students  often  display  a  robust  but  fragmented

understanding of parts of this network. For instance, they show ready facility with decomposing and

recomposing parts, and with identifying and describing halves, quarters or even one-tenths and one-

fifths.  However,  they  are  unsure  about  how  to  represent  these  numerically  and  how  these  are

incorporated into the numerical operation of addition. Thus these parts of the network need to be

revisited repeatedly during instruction to strengthen the interconnections.

The discussion in this chapter shows that the measurement procedure of unit structuring is learned

robustly and must be repeatedly invoked to support reasoning and learning of other aspects. In the

network model for the learning of AM, unit structuring is a key node that is learned robustly and can

potentially support other kinds of reasoning and learning. The network model suggests that learning a

complex concept like area measurement, proceeds in an inter-connected rather than a linear manner.

Critical learning outcomes like coordination between different ways of measurement area, learning

the  correspondence  between  actions  on  a  model  and  numerical  operations,  etc.,  must  be  visited

repeatedly  through  multiple  kinds  of  tasks.  More  importantly,  they  must  be  visited  through

discussion/ argumentation in the classroom. This is captured well by a network model, where students
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need to  traverse  back  and  forth  making  connections  between  elements,  rather  than  establish  the

relevant mathematical facts progressively in a linear fashion.
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5

Analysing the effect of material interaction

on students’ area-concept 

This study emerged as a result of some of the unresolved questions of the previous studies reported in

the thesis. In the study discussed in the previous chapter, the analysis focuses mainly on the aspects of

social  interaction  while  analysing the conceptual  formation  or  construction happening  within  the

classroom. Thus, even though a lot of effort went into integrating the conceptual underpinnings of

area  (as  elaborated in  Chapter  3)  into the  task-design,  the  significance of  the  task-design  or  the

material environment could not be analysed further in the previous study. One reason for not being

able to do so, is because the scope of the previous study was within the social interaction/ social

construction  model.  The  complex  classroom setup  poses  several  other  challenges  that  limit  any

focused investigation, where one can zoom into studying the processes where a learner engages in

manipulation of physical materials. It has been argued that manipulations are significant in bringing

new discoveries  or  pathways  for  solving  new problems  (Chandrasekharan  & Nersessian,  2015).

Manipulations are “material interactions” in contrast to the social interaction discussed in the previous

chapter.  Thus,  in  this  study  the  goal  is  to  investigate  the  significance  of  material  interaction  in

student’s  conception  of  area-measurement.  The  present  study falls  under  the  strand of  enactivist

theories,  which  is  recognized  by  mathematics  educators  as  an  emerging  promising  strand  both

theoretically  and  methodologically  (Reid,  &  Mgombelo,  2015;  Abrahamson,  Dutton,  &  Bakker,

2021). Although several studies have provided results showing the significance of manipulations (or

material interaction) in math education, most studies end up relying on the (i) outcome/test based

results or (ii) discourse (classroom social interaction or social form of explanation) provided by the

learners. Both these ways of studying the significance of material interaction have limitations. The

outcome based studies are open to the general criticism of assessment being separate from meaningful

education or a safe learning environment (Sjøberg, 2018). Throughout this thesis, there is an attempt

to focus on the processes (changes) of learning rather than the outcomes or post tests per se. In this

particular study, our main focus is to understand the processes involved in the material-interaction

rather  than the outcome of  such  manipulation  as  evidenced in  the  students’  assessment.  Further,
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studies based on discourse or social interaction are impacted by the social hierarchy that exists in the

society outside the classroom and gets  reflected within the  classroom,  i.e.,  the  same hierarchical

dynamics  of  knowledge  construction  that  exists  in  the  society  (Restivo,  2017).  Although  while

designing a teaching experiment and establishing the socio-mathematical norms, one intends to design

the classroom as a safe and democratic space for every child to express themselves, it is likely that the

psycho-social  reality  (or  hierarchy)  experienced  by  the  child  comes  in  the  way  of  their  verbal

expression. Thus, even though social interaction plays a primary role in the social construction of a

concept, on most occasions, they tend to be limited to only a subgroup of students who are more vocal

in the classroom, bringing in the need for a more accessible material interaction to students. Material

interaction  through  physical  manipulation  brings  newer  pathways,  concepts,  or  ideas

(Chandrasekharan & Nersessian,  2015).  In this particular thesis,  material  interaction leads to new

arguments, definitions, and strategies that emerge not just through discourse or social interaction but

also require the presence or experiences of matter, or “material interaction.” 

The  advent  of  new  media  tools  has  opened  up  a  new  horizon  in  studying  the  importance  of

manipulations on cognition and learning under the umbrella of 4E-cognition14 (Abrahamson, Nathan,

Williams-Pierce, Walkington, Ottmar, Soto, & Alibali,  2020). However, the field is dominated by

new technologies and digital tools, which the majority of the population in developing countries is

still struggling to get access to (Sacristán, Rahaman, Srinivas, & Rojano, 2021). Thus, while this new

strand of research on cognition focuses mainly on the digital affordances provided by the new media,

it tends to ignore the economic affordability of the new media in the context of developing countries.

Thus, in this chapter we intend to study the effect of affordable physical tools drawing on the insights

of the recent advancements in the domain of cognitive sciences. 

In the previous chapters, we reported studies on students’ conception of area in several settings that

included a naturalistic (e.g., school) setting, a task-based interaction setting and a classroom setting

(intervention  study).  The  main  focus  of  the  first  set  of  studies  described  in  Chapter  3  was  to

understand students’ conception of area in the naturalistic setting and then in a more focused task-

based interaction setting. In the second study, presented in Chapter 4, we moved on to understand how

students  construct  the  concept  of  area  in  a  classroom  setting  through  social  interaction.  In  the

classroom setting,  our  focus was to look at  the  active role  played by a particular  form of  social

interaction in the co-construction of a concept. 

As can be seen in the previous chapters, apart from the social input or interaction, students were also

interacting with and manipulating the materials at hand while solving area problems. In this chapter,

we  seek  to  understand  whether  such  material  interaction  and  manipulation  influences  students’

14 4E-cognition stands for a combination of embodied, embedded, enacted, and extended cognition
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conception of area, and if it does, how material-interaction shapes the learner’s understanding (or

engagement) with the area concept.  For this,  we needed to design a study where students,  before

solving an area problem, interact purely with the material, with minimal to no interference of social

interaction or inputs. In accordance with this need, we have used novel eye-tracking methodologies to

capture the cognitive processes difficult to capture through communication alone. The potential of

such  methodologies  for  mathematics  education  research  (MER)  is  being  increasingly  recognized

(Strohmaier, MacKay, Obersteiner, & Reiss, 2020). 

Thus, unlike the previous study, where the interaction-based data was mainly discursive, the present

study  focuses  on  interaction  that  is  non-discursive  and  action  oriented.  Students  interacted  with

material in our previous studies as well, but we could observe and analyse the interaction only at an

overt  macro  level.  To  understand  how  material-interaction  affects  students’  understanding  or

engagement with area, a more microscopic process analysis was required. For this, in addition to the

video recorder, we used an eye tracker to have more microscopic observations and record of actions

with hands and eyes. However, most of the studies using eye-tracker methodologies do not integrate

different  forms  of  data  recorded  along  with  the  eye-trackers  data  while  making  sense  of  the

observations (Strohmaier, et. al, 2020). Thus the present study also tries to integrate different forms of

data to arrive at a coherent understanding.

The studies mentioned in this chapter are a collaborative work with the LSR 15 (Learning Science

Research) group at HBCSE16, and is thus markedly different17 in scope, style and presentation from

the previous studies (and chapters). 

5.1 Literature Review 

Manipulable instructional  aids play a key role in learning-by-doing and constructivist  educational

approaches in general, particularly in the learning of mathematics at the primary and middle school

levels (Martin, Lukong, & Reaves, 2007; Tchoshanov, 2011; Boggan, Harper, & Whitmire, 2010).

The popularity of manipulatives as teaching tools is supported by studies showing that they scaffold

the  learning  of  both  arithmetic  and geometry  (Uttal,  Scudder,  & DeLoache,  1997;  Olkun,  2003;

15 More about the LSR group can be found here https://lsr.hbcse.tifr.res.in/

16 HBCSE stands for Homi Bhabha Centre for Science Education, it’s the same institute from where I am 

pursuing my PhD. 

17 This work is a collaborative work with the LSR group. Specifically, Sanjay Chandrasekharan provided overall

guidance, Harshit Agrawal helped in data collection and Nisheeth Srivastava carried out the quantitative 

analysis of the eye-coordinate data. My contributions were: the design of the task and the study, data 

collection, qualitative data analysis, integration of this analysis with the quantitative data analysis, and 

interpretation of results.
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Tchoshanov,  2011,  Martin  &  Schwartz,  2005).  However,  the  interactive  process  by  which

manipulatives change the cognitive system is not well understood. As manipulation-based learning of

mathematics is popular and successful, this practice provides a well-structured paradigm instance to

develop a study to look at the way knowledge emerges through interaction with external structures. A

central objective of this chapter is to understand this interaction process by focussing on it at a micro

level.  

Apart  from the interest  in  understanding the way material-interaction or  manipulation affects  the

cognitive system, there is also significant application interest in this problem, as the design of new

computational  media  for  mathematics  and  science  learning  are  aiming  towards  multi-touch  and

embodied manipulation of formal entities (Sarama & Clements, 2009a). Recent applications include

systems  to  learn  numbers  (Sinclair  & De  Freitas,  2014),  algebra  (Ottmar,  Weitnauer,  Landy,  &

Goldstone,  2015;  Weitnauer,  Landy  &  Ottmar,  2016),  vectors  (Karnam,  Agrawal,  Mishra,  &

Chandrasekharan,  2016),  proportions (Shayan,  Abrahamson, Bakker,  Duijzer,   & Van der Schaaf,

2015), volume (Lakshmi et al., 2016), and equations and graphs (Majumdar et al., 2014). The design

of such embodied interaction systems for learning are of interest from a theoretical perspective as well

(Hutto,  Kirchhoff  &  Abrahamson,  2015;  Abrahamson,  &  Sánchez-García,  2016),  because  such

designs work in dual mode -- as educational interventions as well as probes into the cognitive system

-- thus providing insights into the way embodied interactions lead to the change/generation of internal

cognitive structures. A related approach examines the role of gestures (Goldin-Meadow, Cook, &

Mitchell,  2009;  Alibali  & Nathan,  2012) in mathematics learning.  Actions on new computational

media are also considered similar to the process of gesturing and drawing during the mathematical

discovery process (de Frietas and Sinclair, 2014 ). These overt movements are hypothesised to be part

of the mechanism that helps move body-based intuitions (about possible mathematical results) into

externalised symbolic proofs, which are built using known and accepted mathematical structures (also

see Sfard, 1994; Rotman, 2008; Marghetis, & Núnez, 2013).

Many  cognitive  models/explanations  have  been  proposed  to  account  for  the  way  manipulatives

contribute to the learning of early mathematical concepts such as fractions and area. One approach

considers  manipulatives  as  a  specific  instance  of  multiple  representations,  which  help  provide

different  perspectives  (visual,  symbolic,  etc.)  of  the  same  concept,  and  thus  improve  students’

understanding  of  the  underlying  mathematical  principles  (Moreno  &  Mayer,  1999).  A  second

approach is the cognitive off-loading hypothesis,  which suggests that physical  manipulatives help

distribute working memory load to the external  environment, and this allows students to perform

more  sophisticated  mental  calculations  than  what  their  internal  memory  resources  alone  would

support (Cary & Carlson, 1999). Finally, an action priming account suggests that manipulatives work

by analogy, specifically analogous actions: “the best manipulatives are the ones that require physical
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manipulations that are analogous to the abstract mental manipulations required by the problem” (Hall,

1998). This analogous action account does not rule out the first two accounts (multiple perspectives,

working memory offloading), but focuses more on the connection between procedures, which are

embedded in the manipulative and the target concept to be learned. 

However,  the  domain  of  MER is  still  reluctant  to  fully  adapt  or  integrate  an enactive  cognition

paradigm  in  MER  (Schindler  &  Lilienthal,  2019).  Although  MER  has  adopted  eye-tracking

methodologies to some extent,  it mostly interprets eye-tracking data as markers of attention. This

revolves around the dilemma of the eye-mind hypothesis that assumes eye-movement as a marker of

mind, which further assumes the mind as existing independent of the body (Strohmaier et al., 2020).

Thus, there is a need for MER to revisit manipulation or material interaction by drawing upon the

advancement  in  the  theories  of  enactive  cognition,  and  adopting  the  same  in  eye-tracking

methodologies. 

5.1.1 Research Questions and Study Design

The above section presents various studies beyond MER to highlight the significance of material

interaction both from the educational and cognitive perspective. It also highlights the importance of

drawing from the advancements in enactive cognition paradigm. As elaborated in the previous section

the three major approaches (or cognitive accounts) to describe how manipulatives contribute to the

learning of  early  mathematical  concepts  drawn from the  enactive cognition  paradigm are:  (i)  by

providing multiple representations, (ii) by allowing cognitive off-loading, and (iii) by action priming

(where, concrete manipulation primes the learner to do abstract mental manipulation). In contrast to

the descriptive account mentioned in these three approaches, we are also interested in understanding

the mechanism by which manipulatives support the learning of mathematical concepts, and seek to

develop an account of this interaction process. Thus, the study attempts to move beyond the existing

realm of MER from capturing student’s strategies to also capture the change in cognitive processes

through manipulation. In this chapter, we seek to address the following questions:

1. What process change happens as a result of manipulation? 

2. How does manipulation transform the process of solving an area-problem?

To  address  these  two  questions,  we  develop  a  new  process-oriented  study  method,  combining

qualitative approaches (from education and problem-solving research) with an eye-tracking analysis

based on transition matrices (an analysis method from neuroscience). The main components of this

approach are not new, as both qualitative studies and eye tracking have been used for more than forty

years to study children's problem-solving, starting with studies of “centered” and “decentered” eye

fixations  during  the  volume  conservation  task  (O'Bryan  &  Boersma,  1971).  We  extend  these
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approaches,  to  develop  a  novel  analysis  method  that  seeks  to  characterise  task-oriented  eye

movements, where the eye is systematically moved to different locations in the task space during

problem-solving. In this approach, the eye is treated as an actuator, and its movements are analysed,

similar to the way the task-oriented movements of the hand are tracked during problem solving tasks

such as Tower of Hanoi. Eye fixations during such problem-solving are considered to mark shifts in

executive attention (Smith & Kosslyn, 2007), which allow the problem solver to track and integrate

micro-level moves, sequences, and task switching during the solving of the problem. 

In the present chapter, we have collected data from two studies based on this method. Analysis of this

data provides insights into the way manipulatives change the problem-solving process. The design or

outline of the studies (as shown in Figure 5.1) contributes towards addressing the problem of complex

process analysis based on student actions and eye movements. To address Question 1 above (what

process change happens as a result of manipulation), we outline a way to study how the actions done

on external manipulatives transform the internal processes as in Study 5.1 (a cognitive account for the

same is elaborated in section 5.4.1).  For addressing Question 2 (how manipulation transforms the

process of solving an area problem), we developed Study 5.2, to understand and uncover the essential

factors involved in the design of the manipulatives or the nature of the material interaction.  

5.1.2 Area problem and material interaction

The use of manipulatives in learning,  while popular with teachers and supported by results  from

individual research studies, is not fully supported by converging evidence. Meta-analyses and reviews

of studies comparing groups and classrooms that use and do not use manipulatives show no overall
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advantage for manipulative use (Sowell, 1989; McNeil, & Jarvin, 2007; also see Bosse et al., 2016).

One way to start the process of reconciling this divergence between classroom practice and overall

research findings is to characterise in detail: 

1. The specific cognitive changes, if any, induced by manipulatives in the cognitive process of

solving particular mathematics problems. 

2. The  ways  in  which  these  specific  shifts  in  the  cognitive  process  contribute  to  the

understanding of mathematics concepts. 

Based on such studies of the cognitive process, the specific contributions of manipulatives, in helping

the student  understand or  generate  mathematics  procedures  and concepts,  could be characterised.

Educational interventions could then be designed to exploit these specific cognitive elements. This

type of cognitive analysis, seeking to characterise in detail the micro-level interactions involved in the

problem-solving process, is the broad research approach followed here. The type of studies focused in

MER  so  far  have  still  not  captured,  inferred  or  integrated  the  various  actions  and  interactions

happening while solving problems (Schindler & Lilienthal, 2019; Strohmaier et al., 2020). Thus the

current study attempts to integrate various interaction data, to develop a cognitive process account.

The specific education domain examined in the analysis here is the problem of calculating area (or

measuring  area).  We  characterise  how  the  cognitive  process  involved  in  solving  area  problems

changes after working with manipulatives. This process account is developed through the tracking of

hand and eye movements.

In the studies reported in the present chapter, the eye tracker is used as a micro-level observation

device (similar to a microscope), to generate a highly detailed qualitative picture of the task-oriented

eye movements during the problem-solving process. To develop an understanding of how the task-

oriented eye movements change with the problem-solving context, we used a two condition (baseline,

study) intervention approach. This study approach is similar to qualitative field studies in ethology

and anthropology, as well as classroom studies in education, where controlled interventions are often

used  in  combination  with  qualitative  observation,  to  generate  and  characterise  problem-solving

behavior. The characterisation involved is similar to qualitative studies of problem-solving, which

tracks  the  task-oriented  actions  and  moves  in  the  problem-space.  Extending  this  method  to  eye

tracking, we focus on task-oriented eye movements, and thus the actuator role of the eye, rather than

the perceptor role. In the analysis approach we use, the fixation data is treated as an indicator of shifts

in executive attention, which helps control and track the task-oriented movements of the eye (visits,

returns, sequences, switching, etc.) while solving the problem. 

Manipulation of physical dissection models, such as assembling of unit figures, tiling and covering

using units, etc., are standard teaching approaches to make the area concept easier to learn (Outhred
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and Mitchelmore, 2000). Intuitively, this appears to be an effective (and required) approach to teach

area,  as  area  is  a  property  of  physical  entities.  However,  it  is  not  clear  how  these  physical

manipulations help in understanding the formal notion of area, particularly in bringing together the

different mathematical constructs involved in the area concept. To understand this process, the studies

we report here use an intervention similar to the use of manipulatives in classrooms, to examine how

working with manipulatives just before doing two area tasks changes the process of solving the area

problems. The results suggest that students who worked with the manipulative intervention chunk the

test figure differently from the baseline group, and calculate area using a real-time approach to change

the  composition  using  smaller  figures.  However,  this  strategy  does  not  lead  to  significant

improvement in accuracy. This nuanced set of results demonstrate how learning by doing could be

seen as failing (as indicated by the meta-analysis result discussed above), even when the manipulative

intervention changes the problem-solving process in the right direction -- a case of partial transfer

(Bransford & Schwartz, 1999). This dissociation between process and final solution could partially

account  for  the  conflict  between  teaching  intuitions/practice  and  the  meta-analysis  result.  A

contributing factor might also be seeing only the final test result, which might even change due to

very minor errors, rather than looking at the process of solution. 

To systematically  develop research designs that  address  this  dissociation,  particularly new media

designs, a general cognitive account of how interaction with manipulatives changes the process of

solving problems is needed. Here we develop such a general cognitive account, outlining possible

mechanisms  that  underlie  the  changes  in  problem-solving  processes  generated  by  manipulatives.

Thus, in this chapter we try to develop and design an enactive cognition approach to understand the

way manipulatives change the problem-solving process. 

Although, in this chapter we draw inspiration and guidance from the pedagogical use of manipulatives

in solving mathematical problems, particularly related to area, our broader and general objective here

is to understand the cognitive mechanisms underlying manipulative-based learning. So the focus is on

how manipulatives change the problem-solving process, and which cognitive mechanisms support this

change. We do not seek to provide an account of the way manipulatives (over a period of time) help

solve  the  complex  integration  problem  involved  in  learning  area  as  a  network  of  concepts.

Understanding  this  integration  problem  requires  a  wider  set  of  studies,  which  could  use  the

implications we propose here as a starting point.

5.2 Study: Geometrical Manipulation 

The first study (which we designate as “Study 5.1” in Figure 5.1) examined the following question:

what change in the cognitive process, if any, is induced by a physical manipulation task when students

are trying to solve area problems? To answer this question, two area calculation tasks were given to
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participants. Before starting the two area tasks, participants completed one of two pre-tasks – either

manipulating and solving a single tangram-like puzzle (study group), or answering general knowledge

questions (baseline group). Participants were randomly assigned to this pre-task condition. 

Tangram is  an  old  Chinese  puzzle,  where  seven geometrical  pieces  are  manipulated  to  generate

various figures. Our manipulation task only had four pieces, as participants in the pilot testing phase

found the  seven-piece  tangram too  difficult  to  solve.  Olkun (2003)  reports  that  experience  with

solving  tangrams,  both  concrete  and  computer-based,  has  a  positive  effect  on  students'  two-

dimensional geometric reasoning. Tangrams can also play an important role in the development of

spatial  ability,  competency of  rotation  and space,  geometrical  knowledge,  reasoning,  geometrical

imagination and conservation of area (Brincková, Haviar, & Dzúriková, 2007; Baran, Dogusoy, &

Cagiltay, 2007; Lin, Shao, Wong, Li, & Niramitranon, 2011). Tangrams can also be used to bring

together  different  domains  of  mathematics,  such  as   number  sense,  algebra,  geometry,  and

measurement (Tchoshanov, 2011).

5.2.1 Participants

Twenty two Grade 6 students (11-13 years; 12 female, 10 male) from two Mumbai schools (11 from

an English medium school, 11 from a Marathi medium school) participated in the study. Participants

were assigned to baseline and study groups randomly, giving us 11 participants in each group (See

Table 5.1 for students’ profile). The students and their parents provided consent before participation. 

Table 5.1: Student’s profile 

School Students’ Profile Total

School 1 

(English 

medium)

Tangram Group Boys 1 5

Girls 4

Baseline Group Boys 2 6

Girls 4

School 2 

(Semi-

English18, 

Marathi 

medium)

Tangram Group Boys 3 6

Girls 3

Baseline Group Boys 3 5

Girls 2

18 Semi-english schools stands for schools which have the local vernacular language as the medium of 

instruction (marathi in this case), but it will have some subjects offered in english 
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Area is introduced in Grade 5 in India (though some informal contexts are included in earlier grades).

The students thus had one year of formal exposure to area as a mathematical concept. The teaching

focus in schools is on learning the l × b formula, based on example pictures in the textbook, which are

also  drawn  on  the  blackboard  by  the  teacher.  Manipulatives  are  not  used  in  the  classrooms,

particularly in the schools we studied, which are in a middle to low income neighbourhood (refer

Chapter 3 for other details).

5.2.2 Task

The primary task in our study was to calculate the area of two non-standard figures (see Figure 5.2)

drawn on graph paper. The second figure (B) was given after the first one (A) was solved. A unit was

shown in one corner of the graph paper, and students were asked the following area-problem question:

A full cake is shown in the figure. A piece of this cake is shown at the right corner of the graph paper.

This piece costs Rupees 1/-. What will be the cost of the entire cake?  The question was rephrased or

translated if needed. No time limit was set for completing the task. Most students completed the task

and the following interview in 45 minutes. 

Each student performed the task individually on a table, sitting in a height-adjustable chair. Before

starting the area task, the study group was required to make a square out of four cardboard pieces of

different shapes (see bottom left part of Figure 5.2 for the actual pieces). The baseline group was

asked some general knowledge questions before they started the area task. The general knowledge

questions were given so that both groups got a pre-task, and both completed them successfully. The

students were settled in by a friendly researcher, who emphasised that all the tasks were exploratory

and did not involve any kind of assessment. 
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5.2.3 Data sources

Multiple data sources were used that included eye-coordinates using eye-tracker and a webcam, then

video data of the overall actions using video recorder, also the video data of the students’ interviews

conducted at the end.     

5.2.3.1 Eye movements

A video camera (Logitech C 525, HD 720p Autofocus) was aligned vertically above the work surface.

The video from this camera was synchronized with a Tobii static eye-tracker (Tobii Technology,

Stockholm,  Sweden),  which  was  mounted  on  the  work  surface  (see  picture  in  Figure  1  for

positioning). This non-standard configuration of the static eye tracker (which is usually used to track

eye movements on a laptop screen) was developed in collaboration with Tobii technical personnel,

who provided onsite help to calibrate the system. This setup allowed tracking of participants’ task-

oriented eye movements on the graph paper as they worked on the area calculation tasks. This setup

was needed because we could not do the task on a computer, for three reasons. One, we needed to

track  pencil  movements  and  marks  on  the  graph paper.  Second,  many of  the  students  we  were

working  with  came  from  a  low-income  neighbourhood,  and  were  not  familiar  with  computers.

Finally, the task is more intuitive on paper than on a computer. 

141

Figure 5.2: The experimental setup



5.2.3.2 Video data

A separate camera was set up on a tripod in a corner of the room, and it captured video data for the

pre-task, the area tasks and the post-task interviews.  

5.2.3.3 Pencil marks and movements

Participants were given a pencil, and told that they could make markings on the graph paper. They

were instructed to write the final answer for each problem on the graph paper sheet. 

5.2.3.4 Interviews

Each participant was interviewed post-test, and was asked how they approached the problem and how

they solved it. Some students changed their answer to the cake problem during the interview. They

were asked about the strategy they used during the task, and why they changed their answer. There is

also a possibility that during the interview the presence of the interviewer can act as providing the

conditions of social interaction (Chapter 4) and hence students might have reconstructed their problem

solving process or understanding rather than retracing or going back to what they did earlier.  

These data sources gave us multiple windows into the problem-solving process. Apart from these

process  data,  final  answer  values  and  time  taken  for  the  solutions  were  also  collected  for  each

participant. 

The  primary  focus  of  our  analysis  was  eye  movements.  The  accuracy  data  and hand movement

process data were analysed first, to develop a qualitative approach to characterise the task-oriented

movements of the eye during problem solving.

5.2.4 Data analysis

Here we outline the methods used for analysing the video data and eye tracking data.

5.2.4.1 Video data

To tease out possible differences in the strategies used by students, we did a qualitative analysis of the

video recordings and participant interviews. The different calculation strategies used by participants

were  coded  systematically,  in  two  phases:  one,  using  their  pencil  movements  and  paper-based

markings and calculations recorded on video, and second, the strategies they reported in the post-task

interviews.  The coding scheme for videos was developed using the videos and interviews of two

students. This scheme, after discussions in the research group, was then fixed for all the other videos.

These codes were also validated against self-reported strategies in post-task interviews. Table 5.2

shows the coding scheme that was used for the qualitative analysis of the video data.
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Table 5.2: Strategies Used by Students

Strategy name Description
1. Pointing Just pointing at a unit or part, without marks 
2. Marking Making marks on unit or part
3. Numbering Putting numbers (1, 2, 3) to units or parts, or adding them 

using numbers
4. Closer shifting Shifting parts to immediate neighbours or adjacent positions 
5. Distant shifting Shifting parts to places other than immediate neighbourhood, 

and also moving parts from within units. 
6. Making outlines 

(Explicit partitioning)

Making marks or outline for parts/ partitions 

7. Assigning numerical 

values to parts

Explicit mention of the values for the parts, giving fractional 

or decimal values to parts. 
8. Estimating Estimating values of different units. Could be 4 quarters 

making 1 unit or any two halves making 1 unit. 
9. Approximating

(not numerical or 

geometrical)

Values where it is not clear how a particular value is 

assigned by the student. Also values reported by students 

without justification for why that value was assigned.
10. Totaling Final adding together of units or parts

5.2.4.2 Eye movement data

Based on the above qualitative  analysis,  we moved to a  characterization of  the  patterns  of  task-

oriented eye movements corresponding to the spatial chunking and counting strategies (indicated by

the qualitative analysis of videos and interviews). The qualitative analysis roughly indicates that the

tangram (or study) group made large shifts within the task figures, and some participants used a style

of partitioning that combined elements in different ways (see results of the qualitative analysis in the

next section). This implied that they approached the area task in a global, whole diagram fashion,

dividing the whole diagram up into manageable, possibly non-contiguous components, and adding

each of these components separately.

In terms of task-oriented eye movements, this approach would be indicated by:

1. the eye movement pattern staying stable within the subtasks (sub-components) of the given

problem space, and 

2. when the eye movement pattern changes, it  changes to a greater extent  in physical  space

within the given problem space. 

On the other hand,  for participants who use a primarily numerical strategy, just  counting squares

locally, the task-oriented eye movement patterns will change more often, but also more incrementally.
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It was these two specific patterns that we sought to identify in the eye tracking data. 

Note that the area problems here cannot be solved by depending on some direct numerical strategy but

it requires one to do visual (or physical) operation of the partial elements with respect to the square

unit. That is either one needs to see and find the value of the partial element with respect to the whole

unit  or combine the partial  elements to make the whole. So the two task-oriented eye movement

strategies discussed above would be used by everyone, but possibly at different levels. Our analysis

sought to identify whether systematic patterns existed in the use of these strategies, relative to the

intervention conditions. 

One standard approach towards characterizing eye movement data is based on an assumed bijective

relation between fixations and visual attention. The focus there is on the role of the eye as a perceptor,

where the information distribution in the given figures guides the eye to fixate on specific areas. In

such analysis, fixations and saccades19 track visual attention and the way it shifts, and patterns in this

data  provide  an  indication of  the  way the eye gathers  information.  Following this  approach,  the

pattern of behaviour  we are looking for  could,  intuitively,  correspond to the expectation that  the

Tangram group would show:

(P) Longer fixations on average, since stable gaze within subtasks is likely to be construed as long

fixations by velocity-sensitive fixation classification algorithms, and 

(Q)  Greater  kurtosis  in  the  distribution of  saccade  lengths,  since the  saccades  within  and across

subtask components would be heterogeneous in size, reflecting the hierarchical nature of the eye’s

engagement with the task. 

Figure 5.3 outlines the results of this analysis: while participants in the Tangram/experiment group

did seem to have longer fixations on average,  the difference is not statistically significant  (0.2<p

<0.25 in both tasks). Whereas we expected the kurtosis of the Tangram/experiment group’s saccade

length distribution to be larger, these were approximately equal in both samples for both tasks (Task

A: {5.26, 5.07}, Task B: {6.06, 5.03} for the control and tangram groups respectively). 

The inconclusive nature of this analysis stems considerably from its generality. By treating fixations

and saccades as the basic unit of analysis, we ignored the task-relevant spatial locations of the actual

area  subunits  that  our  participants  are  manipulating  internally  to  solve  the  problems.  Remaining

agnostic about the task-relevant spatial contents of the scene is a useful strategy for a general analysis

of eye movement patterns, particularly to understand the way information is clustered in figures and

texts, and how this clustering directs visual attention and perception. But this approach is suboptimal

in tracking the differences in task-oriented actions and moves in a problem-solving space. The task-

19 Fixations refers to the duration the eye gets fixated or focused in the given space, while Saccades refers to the 

distance covered during rapid eye transitions.
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oriented  movements  of  the  eye  engages  executive  attention,  which  is  involved  in  monitoring,

sequencing, and task switching during problem solving (Smith & Kosslyn, 2007; Botvinick, Braver,

Barch,  Carter  & Cohen,  2001;  Fernandez-Duque,  Baird & Posner,  2000).  Our  analysis  sought to

identify fixations  that  embed these executive  attention  processes,  which  are  closely  tied  to  task-

relevant  transitions.  An  analysis  based  on  all  fixations  and  saccades  would  not  focus  on  these

executive attention elements, and thus not allow the characterization of the differences in the task-

oriented actions and moves related to problem-solving.

To characterise the task-oriented eye movements in our tasks, and to analyse and identify possible

patterns across the two conditions, the following steps were done: 

a. each area image was divided into sets of states

b. transition probabilities between these states were calculated

c. task-relevant transitions by frequency were identified within fixed time windows

d. large changes in the set of relevant transitions between contiguous time windows were

identified (as a marker of shift in gaze patterns). 

First, we divided each of the area test diagrams into a set of states S, and identified their coordinate

locations for each eye-tracking study setting. Fixation data for each participant then became a finite

string of state occurrences s ε S. Then, we calculated pair-wise transition probabilities for each state
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Figure 5.3: Fixation duration and saccade length statistics for eye movement for the baseline and

tangram group



sa with respect to all other states, such that

,

to obtain transition matrices T, s.t. T ab=p(a→ b) for each participant.

We further obtained a matrix enumerating salient transitions, by selecting transition probabilities that

were not too low ( p<1/(|S|−1)), ignoring self-transitions, and transitions between states outside the

diagram.  Thus,  we  obtained  a  binary  matrix  containing  salient  transitions  per  participant  M,  s.t.

M ab=1 ⇔T ab ≥1/ (|S|−1),  and 0 otherwise.  While binarizing the transition matrix throws away

information about the absolute value of the transition frequencies, these depend heavily on the size of

the time window chosen, which is a free parameter in our account. Binarizing the transition matrix

provides us information more resilient to the value of this parameter. As a quantitative measure of this

resilience,  comparing  the  entries  of  this  binarized  matrix  obtained  using  all  time  window sizes

between 1 and 10 seconds, we obtain a median mismatch rate = 0.053 ± 0.031 averaged across all

participants, and all pairwise state comparisons, which was acceptably low. 

We divided every student’s overall gaze sequence up into equal-sized time segments (t=5 secs for all

our results below). In this way, we obtained an incremental view of which patterns emerge and which

fall away as the participant progresses through the task. Videos showing the evolution of new gaze

patterns for each student while completing the first task were made. In each video, faint blue lines

marked salient existing gaze patterns and dark blue segments indicated the emergence of a new gaze

pattern. 

The changes in these videos were too dense and rapid, so it was not possible to make qualitative

judgements of the micro-level changes captured by these videos. To gain insight into the micro-level

changes, we summarized this information quantitatively, by measuring the extent of change in pattern

as the quantitative difference between two transition matrices via the Frobenius norm,

We tested both our postulates (mentioned in the beginning of this section) using this metric (of the

extent of change of the gaze pattern) defined above. Specifically, postulate (1) was operationalized as

follows: the average change for the baseline group (no tangram) will be larger than that for the study
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group (tangram). Postulate (2) was operationalized as – the maximal change in the study group will be

larger than the maximal change in the baseline group. 

5.2.5 Study to validate the analysis method

Since the measurement of transition probabilities in this analysis is contingent on the time window

size  we  have  used,  we  also  conducted  a  post  hoc  validation  study to  verify  that,  in  its  current

calibration, this analysis is indeed sensitive to differences in transition patterns when one group uses a

counting strategy, and another uses a spatial recombination strategy. 

To do this, we randomly assigned a follow-up group of 10 adults (Age: 17-37, 6 Male, 4 Female) to

one of two cohorts, both solving the same area tasks as in our main study design. One cohort was

instructed to solve the problems using the counting strategy; the other was asked to solve them using

the “chunking” strategy. The instructions were: “Use counting of the units as your dominant strategy

to calculate the given area. Trace your actions using the pencil” (counting strategy), and “ Use shifting

of parts to make whole units as your dominant strategy to calculate the given area. Trace your actions

using the pencil” (chunking strategy).  Both cohorts were asked to make pencil  movements while

solving the area problem, so that we could make sure that they were following the instructions. 

If our  measurements are indeed sensitive to difference in strategy, then an observer blind to the𝜹

identity  of  the  cohort  assignments  should  be  able  to  identify  the  strategies  using  the   values

themselves, using the criteria that participants using a chunking strategy should have a lower mean

( ) and a higher max ( ). To see whether this was possible, the data from the 10 participants were𝜹 𝜹

first anonymized and named using numbers in a random fashion. This dataset was then sent to the

research group member then based in the United States. He was blind to the cohort identities, but was

aware  that  both  cohorts  had  five  participants.  He  processed  the  eye-tracking  data  for  all  10

participants, and operationalized the criteria above to assign cohort labels to them. For both criteria,

we simply summed the scores obtained across both tasks, and then ranked them to split our sample

into 5/5 cohorts, with the mean criterion assigning the lowest ranks to the chunking cohort and the

max criterion doing so for the highest ranks.

The mean criterion correctly predicted 8 out of 10 labels; the max criterion correctly predicted 10 out

of 10 labels (Table 5.3).  This performance is clearly better than chance for the max criterion (95%

confidence interval for best fit binomial distribution excludes p = 0.5) and almost certainly so for the

mean criterion (95% confidence interval for best fit binomial distribution p = {0.02, 0.55}). Thus,

while our measurement of changes in the transition pattern does depend on parameters contingent to

the time-scales of our particular study, the results from the validation study suggest that it is well-

calibrated to pick out the changes we set out to identify.
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5.2.6 Results

Different results of the analysis are presented here: 

5.2.6.1 Area estimation accuracy was not different across the two groups 

The first element of our analysis was designing a measure of competence in area calculation. Simply

counting how many students got the problem right showed that more students got the right answer in

the tangram group for both diagrams, but  there is very little difference between the tangram and

baseline group (see Figure 5.4 A). Since counting the number of correct responses penalizes answers

that  are  quite  close  to  the  correct  value  and  wild  guesses  equally,  an  alternative  measure,  the

percentage error off the true value, was calculated. Even by this measure though, the error percentages

of the two groups were not significantly different (Figure 5.4 B). These findings are in line with

earlier observations in related work. In a similar study, Olkun (2003) found that the post-test scores

for a mathematical problem set were statistically indistinguishable between the test group primed with

physical manipulatives and a control group. 

Table 5.3: Validation Study Results

Mean Prediction Max Prediction True label
Subject Task 1 Task 2 Task 1 Task 2
1 17.7 13.3 Chunk 27 17 Chunk Chunk
2   18  17.3 Count 25 13 Count Count
3  24.3  19.7 Count 23 9 Count Count
4  14.7  6.3 Chunk 31 20 Chunk Chunk
5  28.7 10.0 Count 18 18 Count Count
6  15 15.0 Chunk 39 12 Chunk Chunk
7  17.3 5.0 Chunk 21 10 Count Count
8  25 8.0 Count 41 16 Chunk Chunk
9  25 10.3 Count 25 17 Count Count
10  15 12.3 Chunk 44 16 Chunk Chunk
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5.2.6.2 Video data and interviews suggest differential strategy use in the tangram 

group

Both baseline and study populations showed a relatively balanced proportion of strategy use across

both tasks, with significant positive correlation in inter-task strategy use within participants (average ρ

= 0.53).  This correlation was computed by binarizing instances  of strategy use in both tasks  per

participant, computing correlations between these two binary vectors, and then averaging correlations

across participants. There were, though, potentially interesting deviations in strategy use, particularly

in instances of large shifts within the diagram (as measured by finger or pencil movements), explicit

partitioning of portions of the diagram with pencil marks, and approximations (coded based only on

self-reports) (see Figure 5.5). 

Intuitively, the former two strategies would be expected to be more prevalent in participants who were

chunking the space within diagrams and adding the chunks; the latter would be more prevalent in

participants who were using simpler counting-based strategies. The general trend of the deviations we

observed  supports  this  intuition  -  the  tangram group  showed  more  occurrences  of  the  first  two

strategies, and considerably fewer of the third. While these deviations were not statistically significant

149

Figure 5.4: The Tangram intervention does not improve area calculation outcomes. (A)

Number of students who solved either area calculation and got the correct answer precisely.

(B) Average error percentage in area calculations. Error bar represents 1 SEM.



on an individual basis, as is evident from the p-values shown in Figure 5.5, they provided insight into

what patterns to look for in the eye movement analysis.

5.2.6.3 Analysis of task-oriented eye movements revealed patterns consistent with 

spatial chunking

As discussed in the data analysis section, the qualitative analysis suggested that the tangram group

made large shifts  within the  task  figures,  and  some participants  used a  style  of  partitioning that

combined elements in different ways. This implied that they approached the area task in a global,

whole diagram fashion,  dividing the whole diagram up into manageable, possibly non-contiguous

components,  and  adding  each  of  these  components  separately.  In  terms  of  task-oriented  eye

movements, this approach would be indicated by:

(1) the eye movement pattern staying stable within the subtasks (components), and 

(2) when the eye movement pattern changes, it changes to a greater extent in physical space. 
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Figure 5.5: Qualitative coding (out of video data) of various strategies used by students in the

experiment. The behavioural strategies were plotted on the x-axis. Occurrence counted only the

use or non-use of a particular strategy rather than the number used by students. Number above

bar pairs represent p-values for corresponding two sample t tests.



Postulate (1) was operationalized as – the average change for the baseline group (no tangram) will be

larger  than  that  for  the  study group (tangram).  Postulate  (2)  was  operationalized  as  follows:  the

maximal change in the study group will be larger than the maximal change in the baseline group.

Figure 5.6 shows the results of the task-specific analysis of eye movements. As can be seen, it is

much less noisy than the conventional fixation-saccade analysis provided in Figure 5.3. Although

postulate 2 is  only marginally borne out  in task A (t20 = 1.63,  p = 0.14 for difference between

baseline and tangram outcomes), postulate 1 is supported strongly (t20 = 2.88, p = 0.0094) at the

p<0.01 level. For task B, both postulate 1 (t20 = 3.33, p = 0.0033) and postulate 2 (t20 = 2.95, p =

0.0078) are strongly supported at the p<0.01 level. These results together indicate that participants in

the tangram cohort made less frequent, but larger jumps in eye gaze patterns, which is the expected

gaze  signature  of  the  use  of  the  flexible  (i.e.  many  different  combinations)  spatial  partitioning

strategies indicated by the qualitative analysis of video data. 
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Figure 5.6: Matrices for measuring spatial chunking behaviour show statistically significant

differences between the baseline and tangram group. Subjects in the tangram group showed

smaller changes in gaze patterns (top panel) but the changes that did occur were more drastic in

magnitude (bottom panels) across both area calculation tasks. Error bars represent +/- SEM

within populations.



5.2.7 Discussion

The  results  from the  analysis  of  task-oriented  eye  movements  indicate  that  there  are  significant

process  differences  between the two groups.  Particularly,  the  tangram group appears  to  follow a

recombining approach, partitioning the figure in a highly changing fashion, starting with components

bigger than the given unit. The baseline group, on the other hand, appears to follow a less flexible

counting process, starting with the given standard unit and smaller components.  

This result only indicates that the use of the manipulative leads to a strategy change. It does not show

that manipulation can lead to a better understanding of area. However, if the recombining strategy

supports  learning  the  key  concepts  involved  in  area  (Chapter  3),  and  also  helps  integrate  these

concepts, then manipulation could possibly improve the understanding of area. 

As our focus here is characterizing the changes in the cognitive process induced by the manipulative,

our next study examined further the nature of the process change induced by the manipulative.

5.3 Study: Clay Manipulation 

This is the second study done under this chapter and is referred to as Study 5.2 (see figure 5.1). The

first study illustrated two points. One, the general direction of the change in cognitive process induced

by the manipulative task is indicated at the macro-level by the qualitative analysis of hand and pencil

movements and self-reports of strategies used. Two, this process change indicated by the macro-level

analysis can be more clearly captured by a micro-level analysis of task-oriented eye movements, as

the nature of the change (in actions and moves in the problem space) can be characterised in more

detail  using the eye movement  analysis  method we have developed.  In  this  follow-up study,  we

sought to characterise the connection between the manipulation and the problem-solving process in

more detail. Specifically, this study asked the question: Which aspect of the manipulation task, actions

or structure, is leading to the shift in the problem-solving process?  

In  particular,  we  were  interested  in  finding  out  whether  manipulation  alone  could  lead  to  the

difference we observed in study 1, or whether the geometric structure of the tangram is also needed. If

the  geometric  structure  is  needed,  the  manipulation  task  is  working  in  a  coagulative  fashion,

combining  both  structure  and  actions  from  the  manipulation  task,  and  mapping  this  coagulated

structure to the area task. If just physical manipulation is enough, then the shift in process could come

just from actions. Particularly, there is something about the process of executing actions that leads to a

shift  in  the  cognitive  process.  One  possibility  here  is  the  integration/binding  ability  of  actions

(Kothiyal et al, 2014; Majumdar et al, 2014). Since actions require constant and real-time integration

of both motor elements and sensory elements, actions have an in-built integration capability, which

would be activated by the manipulation task. This activation could then transfer to the area task,
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leading to a shift in cognitive process, particularly to a strategy where integration is a key feature.

Note that support for the former coagulative possibility, which is what we found, does not rule out the

integrating role of actions.

5.3.1 Procedure

Ten new sixth-grade participants with similar age profiles as the previous study were recruited (all

from  a  Semi-English,  Marathi  medium  school).  They  did  the  area  study  with  a  new  pre-task:

manipulating clay dough into any figure they wanted. All other design elements were kept the same as

the first study. The figures students chose to make were either animals, birds or flowers (see fig. 5.7).

There  was  no  baseline  group  in  this  case,  as  the  results  from the  first  baseline  group  could  be

compared with the clay group. The conversation happened in Hindi as most students were well versed

with Hindi language.  

5.3.2 Results

Here we report results comparing data from both studies. The clay group’s accuracy performance was

similar  to  that  of  the  other  two groups.  Given the way the task-oriented eye movement  analysis

supported the qualitative analysis in the earlier study, only the eye data was analysed to understand

the problem-solving process in this condition. Comparing the results from both studies, interesting

and nuanced differences (see Figure 5.8) emerged across the groups. Building the clay model shifted

the average change in gaze pattern in much the same way as the tangram manipulation, such that

mean(δ) is statistically indistinguishable between the clay and tangram conditions (Task A: t19 =

1.26, p = 0.23, Task B: t19 = 1.15, p = 0.26). 

However, in the tangram condition, this drop in average gaze transition frequency was accompanied

by  the  occurrence  of  large  transitions  (across  chunked  sub-units  of  the  diagrams).  In  the  clay
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Figure 5.7: Clay models made by students



condition, the opposite pattern is seen -- the size of the largest transition is quite significantly lower in

this condition than the baseline case (Task A: t19 = 2.48, p = 0.02 , Task B: t19 = 1.5, p = 0.15 ), and

clearly lower than in the tangram case (p < 0.001, for both problem tasks). 

These results show that building the clay model reduces the average transition occurrence to the same

degree as the tangram manipulation, but does not change the size of the largest transitions. The task-

oriented eye movement patterns of these participants thus indicates lesser visual exploration of the

diagrams.  Overall,  these  results  suggest  that  participants  primed  using  clay-modelling  did  use

chunking (as they solved the problem using less moves than the baseline group), but to a much lesser

extent than the tangram group, and using a less global (whole figure) and changing process (as they

did not chunk far away elements). 

Figure  5.9 shows the results  from the standard saccade analysis  (results  from both studies).  The

results are in the same direction as the task-oriented eye movement analysis above. As in the case of

the standard analysis in the tangram case, there are no significant differences in this analysis as well.
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Figure 5.8: Combined result from both studies. The clay condition leads to less transitions, similar

to the Tangram condition (top panel). However, the movements are not as spread in space.



One possible concern with these results  --  particularly when reflecting on these studies  from the

perspective of our finding that geometrical structure is needed for the Tangram effect -- is that the

tangram task has geometry,  while  this element  is  missing in  the  clay and knowledge tasks.  This

difference may have worked as a possible confound, as the effect we are reporting could derive from

the presence/absence of geometry.

However,  this  “only  geometry”  interpretation  requires  concluding  that  action  is  not  required  for

learning  mathematical  concepts  such  as  area  and  fraction,  and  the  actions  on  manipulatives  are

superfluous. Since the consensus in the literature is that actions are central to the learning effects

based on manipulatives, the geometry interpretation is not very persuasive.

Secondly,  note that the “geometry-less” groups (clay and knowledge test) in study 1 and 2 show

different eye movement patterns. This suggests manipulation does have an effect, as the clay study

has manipulation, while the knowledge test does not. Since manipulation has an effect in the non-

geometry clay case, it is likely that the effect in the Tangram case (the geometry case) also comes

partially from the manipulation. Since this partial effect is all we are claiming, the possible confound

based on geometry does not undermine our results.
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Figure 5.9: Combined results from the two studies. Fixation duration and saccade length statistics

for the baseline, Tangram, and clay groups. Bars show standard deviations for the specific statistic.

None of the differences reach statistical significance.



5.3.2.1 Study discussion

The eye tracking analysis method we use is a simpler variation of the one used by Anderson (2012) to

track the second-by-second thinking while students solved algebra problems. This type of process

analysis  is  mostly done with neural  response datasets  (King & Dehaene,  2014).  The method we

present  here  extends  this  analysis  to  eye  tracking  data,  particularly  task-oriented  eye  movements

during problem solving, where the focus is on the role of the eye as an actuator. 

A significant chunk of eye tracking studies, particularly in user research, focus on where someone is

looking in a given figure or text during task performance, and this data is usually used to understand

the way information is distributed in the given figure or area, and how this distribution grabs visual

attention. In such studies, the strong relationship between eye position and visual attention is used as a

bijective map between eye movement and cognition. But this is not the only possible way to link eye

movements  to  cognition.  Eye  tracking  studies  examining  problem solving,  as  well  as  studies  in

education,  also  consider  eye  movements  as  driven  by  the  requirements  of  the  task  (Schneider,

Maruyama,  Dehaene  &  Sigman,  2012;  Inglis  &  Alcock,  2012;  Smith,  Mestre,  &  Ross,  2010.;

Epelboim & Suppes, 2001; Susac, Bubic, Kaponja, Planinic, & Palmovic, 2014). The analysis we

report here follows this approach, considering eye movements as task-oriented actions, changing in

relation to the moves in the given task (similar to hand movements). The saccadic analysis we report

for both studies, on the other hand, treats eye movements as context free, and as indicating shifts in

just visual attention, which is considered as directed by information in the given figure. Our task-

oriented analysis does not  deny this role  of attention,  which focuses  on the role  of the eye as a

perceptor.  The  task-oriented approach we take  just  shifts  the  focus to  the  role  of  the  eye  as  an

actuator,  and the role played by executive attention in controlling the eye in this role.  The task-

oriented  movements  of  the  eye  provide  detailed  process  information  about  the  way  the  task  is

performed (such as which point was visited, the sequence of visits, integration of visited points, etc.),

thus capturing the most significant actions while solving the area problem. 

In summary,  using eye movement  data to  understand changes in the  process  of  problem solving

requires associating task-oriented eye movements with cognitive markers (such as strategies), which

can be isolated using qualitative studies of problem solving. The characterization approach we report

here combines such qualitative studies with eye tracking, and this could be a very productive way to

gain insight into the micro-level changes involved in problem-solving.

5.3.3 Summary

The above two studies guide us in addressing the two questions raised above, by showing that:

1) Manipulating or interacting with material effects/influences the process of solving an area problem.
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(Both tangram & clay groups have reduced mean pattern change as illustrated in Figure 5.8 indicating

more strategic and focused eye movements.) 

2) The geometry-specific manipulations have an advantage over generic manipulations, in terms of

generating a chunking strategy in the problem solving process. (Maximum pattern change is better

mainly in the tangram group as illustrated in Figure 5.8)

5.4 Discussion: Cognitive account Vs Math Education 

account

The discussion of the results reported in the present study is divided into two parts. In the first part,

we have developed a cognitive explanation to ground the results of the present study while the second

part adopts a math education perspective, by taking into account the new developments in technology

and media. Thus, the first part provides a cognitive explanation for the results of the study, while the

second part is about revisiting math education from a more interdisciplinary perspective, where, apart

from elaborating what the present study means for math education, I will also explain how such study

or the results contribute to broaden the field of math education. 

5.4.1 Cognitive account

From a theoretical account the two studies revealed nuanced task-oriented eye movement patterns

linked to strategy use across the three intervention conditions (baseline, tangram, clay), and the results

suggest the following:

1) Systematic manipulation of any material before the area task can prime an action level shift in the

problem-solving process, just through the actions involved in the manipulation (as seen in the lower

transitions in both the clay and tangram case).

2)  However,  a  more  strategy-level  shift  is  primed  when  there  is  structure  embedded  in  the

manipulation task.  The embedded structure leads to a systematic pattern of manipulation actions,

which, in turn, lead to systematic shifts in the problem-solving process (larger transitions across the

figure seen in the tangram task).

In the following section, we develop a two-step model that accounts for both these results. Note that

this  model  is  presented  as  a  general  model  of  how manipulatives  change  problem-solving,  even

though the data used to derive it comes from a single representative study. The last section of the

chapter covers a discussion on the rationale for proposing such a general model, and the limitations of

this proposal. 
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5.4.1.1 Recombinant enaction: how manipulatives generate strategy shifts 

In the general  cognitive model  we propose below, the mechanism underlying manipulative-based

learning, and learning-by-doing in general, is an augmentation of the “mutability” (Kahneman and

Miller, 1986) or the “slippability” (Hoftstadter, 1982) of the problem-solving trajectory. This change

in mutability is brought about  by latent actions from the manipulation, which are carried over to

imagination,  particularly to executive attention operations in working memory.  In this model,  the

actions during manipulation first primes the action system, and this process then expands the “action

space”, i.e., the space of actions available while doing the problem task. 

Next,  when the problem task is  encountered (in our case,  the solving of the area problem), task-

oriented eye movements  (exploring the  task  space)  and imagined actions  (to  restructure  the  task

space) are generated. Note that this shift of actions to imagination occurs because the task elements in

the given figure are not manipulable physically. During this exploration-and-imagination process, the

primed  actions  (latent  from  the  manipulation  task)  introduce  branch  points  into  the  stream  of

imagined actions.  This  recombination process  (recombining stored actions  and imagined actions)

creates new trajectories in the problem-solving space, which eventually leads to a problem solution. 

This model suggests that the shift in the problem solving process does not come from a direct one-to-

one mapping between the actions in the manipulative and the actions in the problem-solving process,

as proposed by Hall (1998). Instead, the shift comes from a recombination process, where actions

executed  on  the  manipulative  are  combined  with  imagined  actions.  This  recombination  process

extends  the  “action  space”  of  imagined  actions  (see  Chandrasekharan,  2009;  2014  for  related

discussions).

In this proposal, all latent actions carried over from the manipulation task will generate branch points

in the imagination process. This accounts for the first result from the clay condition, which indicates

that actions have an effect by themselves. However, because the long-distance movements seen in the

tangram condition were not seen in the clay condition, all actions in the manipulation task (which

translates to many generated branch points in the imagined action process) does not lead to the actual

shift in the problem-solving process seen in the tangram case. This suggests the shift in the problem-

solving process seen in the tangram case is dependent on an action-structure coagulation, combining

the primed actions  and the  structure  embedded in  the  actions.  That  is,  only actions  with certain

embedded features (geometric features in the tangram case), particularly features that fit the action-

possibilities provided by the task space (area in our case), lead to the problem-solving process shifting

to a new pattern. The next section discusses neural mechanisms that could support this effect.

In sum, all manipulatives prime the action system, and these latent actions generate branch points in

the imagined task space. Manipulatives thus work, in general, as systems that generate actions that
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could be recombined to generate new imagined procedures. They thus expand the action space, the

space of actions possible in the imagined task environment (Step 1 in figure 5.10). However, which

branch points in the action space are actually chosen for problem-solving depends on the saliency of

the branch points. This saliency is driven by a matching between the action possibilities provided by

structures in the task space (affordances, Gibson, 1977; 1979) and the latent actions carried over from

the  manipulation  task  (Step  2  in  figure  5.10).  Thus  manipulatives  that  extend  the  action-space

productively, i.e., in such a way that the generated imagined actions match the action-possibilities

provided by  the task  space,  are  more  likely to  generate  interesting shifts  in  strategy.  Given this

mapping (between the task space structure and the structure embedded in action traces) the shifts in

strategy generated by the manipulative may turn out to be moves in the task environment that could

lead to possible solutions.

The recombinant action model consolidates all the results from this study, and thus offers a general

process account of how manipulatives generate changes in thinking. We have elaborated this process

model of learning-by-doing further in the Cognitive Science paper reporting this study20. This account

extends three mechanisms proposed by recent  work in cognitive neuroscience.  We also discuss a

range of theoretical implications of this general model of how actions change thinking. Please see the

paper for details. 

20 Rahaman, J., Agrawal, H., Srivastava, N., Chandrasekharan, S. (2018). Recombinant enaction: manipulatives 

generate new procedures in the imagination, by extending and recombining action spaces. Cognitive Science, 

42(2), 370–415.
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Figure 5.10: (a) The cognitive model of manipulatives priming the action system, (b)

The recombinant action model



5.4.2 Mathematics education account

To summarize the discussion so far, the thesis starts with understanding students’ conceptions of and

students’  struggles  to  make  sense  of  AM.  The  studies  in  Chapters  3  and  4  of  the  thesis  use

constructivism  and  social-constructivism  respectively  to  unravel  the  roots  of  these  struggles  or

difficulties in order to find ways in which students can be supported to grapple with AM abstraction

better. The present chapter, in contrast, uses the embodied cognition perspective, to understand the

role of material and manipulation in providing cognitive advantage in understanding AM. 

For the current study students were randomly assigned to three groups: Baseline, Tangram and Clay.

The  baseline  group  received  a  general  questionnaire,  the  Tangram  group  received  a  simplified

Tangram to manipulate and the clay group received a clay to mold it into different objects before

receiving the area problem. The Tangram group’s engagement with the Tangram type task was video

recorded. The video data indicates students’ broad actions while engaging with the Tangram type

manipulation. All of them moved the pieces, tried various combinations, checking the sides of the

pieces to join and finally all of them could successfully solve the task (i.e. arrange all the given pieces

into a square). To reduce the complexity and the time taken, students were given a reduced version of

Tangram type  task  (having  four  pieces)  as  the  actual  Tangram task  (having  seven  pieces)  took

students (in a pilot study) more than 30-40 minutes to get to the solution. However, the simpler four

piece Tangram took 2 to 16 minutes for students to get to the solution.   

The  area  problems given  to  students  were  not  conventional  regular  shapes  but  non-conventional

shapes; one was a convex polygon with 10 sides of different lengths while the other one was a 28

sided concave polygon having unit side length, with 16 right angles and 12 reflex angles (see Figure

5.11). Thus, using the formal abstraction or direct application of the l×b formula will not lead to the

solution. As we saw, students face difficulty in abstracting or applying their formal understanding of

area to different  shapes other than the conventional  shapes,  such as L-shaped figures (Cavanagh,

2007; Zacharos, 2006). Moreover, presentation of the unit and contextualizing the question to find the

value of units in the given shapes or figure will not mislead students to mindlessly use formulas, but

identify the units in the given figure. One way to solve the task is by directly identifying and counting

each of the units or part of units in the given shape and sum them up at the end. The other strategy

could be to chunk the whole problem space into different sections efficiently, whereby the units can

be easily located and counted on and then some remaining parts at the edges that can be shifted to

other corners to chunk them into units. The chunking strategy is a relatively more efficient strategy to

solve this area problem. 
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The  studies  mentioned  in  this  chapter  show significant  difference  in  the  eye  movement  pattern

between the baseline and the Tangram group with the Tangram group showing significantly less mean

pattern  change  and  significantly  higher  maximum  pattern  change  (Figures  5.6  and  5.8).  We

interpreted the large mean pattern change to be aligned more with the counting strategy, where one

focuses on parts or smaller sections while the large maximum pattern change was interpreted to be

aligned with looking at the task space more holistically and at the corners, also joining and shifting

parts from different edges or sections, and thus more aligned with the chunking strategy. This result is

further validated by the validation group, where participants, who were asked to follow the chunking

strategy, showed their eye movement pattern aligned with the Tangram group in terms of having large

maximum pattern change and lower mean pattern change,  while the group that  was instructed to

follow counting strategy had eye movement pattern similar to the baseline group. The eye movement

pattern of the clay group was different from both the Tangram and the baseline groups. The maximum

pattern change was less  than the Tangram group but  the  mean pattern change was less  than the

baseline group but comparable to the Tangram group. This indicates that the clay group was following

a different eye-pattern compared to both Tangram and the baseline group. Thus the clay group was

following a strategy different from the baseline and Tangram groups. The reduced minimum pattern

movement indicated they were not as much aligned to focusing on smaller parts as the baseline group,

but the reduced maximum pattern movement indicates that they were also not aligned to chunking or

longer shifting that might characterise the Tangram group (Figure 5.8). A possible interpretation is

that their strategies were different from that of the baseline group in not getting stuck to counting but

not  as  efficient  as  the  Tangram  group,  which  appeared  to  use  the  longer  shifting  or  chunking

strategies. However, it is challenging to infer anything conclusive about the strategies used by the clay
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group, as we could gather and analyse the eye movement data of the clay group and not their video or

interview data. Thus, the present study, while strengthening our assumptions related to the importance

of  material  interaction  in  engaging  with  AM,  provides  concrete  evidence  to  infer  what  kind  of

material manipulation gives more cognitive advantage to the learner while dealing with AM (e.g.,

Tangram manipulation is better than Clay manipulation). In the literature review chapter we argued

for  the  role  of  tool  use,  that  involves  material  manipulation,  from  the  perspective  of  how

mathematically rich they are. The current study also reveals the significance of material manipulation

from the cognitive perspective in providing one with efficient or flexible strategies. While material

interaction was prominent across the previous studies, the current study adds another dimension to our

understanding  of  area  conception  and  learning  in  terms  of  its  significance  from  the  embodied

cognition perspective.

Although  the  number  of  students  in  the  Tangram  group  attaining  the  correct  answer  was  more

compared to the baseline group, the difference is not significant indicating the failure of the outcome

based studies in capturing the role of interventions in general. Outcome based studies generally focus

on the end result rather than capturing the processes involved in solving a problem. Thus the present

study also highlights the importance of focusing on the correct processes while solving math problems

rather than just the correct answer. As the study design focuses on the cognitive processes, both in the

intervention  (in  Tangram group)  and  also  in  the  given  area-task,  here  we  highlight  the  role  of

cognitive  processes  in  education  (unlike  most  outcome based  studies),  and the need to  focus on

correct processes and not correct answers, in pedagogy, and also in testing and assessment. The study

also highlights the need to move away from just emphasizing symbolic manipulation as the main

mathematical process. We need to be cognizant of other non-symbolic (visual, spatial or material)

processes  involved  in  AM.  In  particular,  geometry  in  general,  and  perhaps  other  mathematical

concepts  such  as  multiplication,  fraction,  decimal,  probability,  calculus,  etc.  We  have  discussed

earlier how the area-model is an important pedagogical tool to learn these other concepts. 

As  argued  in  the  beginning  of  the  chapter,  the  field  of  math  education  needs  to  consider  the

advancements in other disciplines and technologies in order to further grow as a discipline. Thus, even

though manipulations are found to be effective, their role is still considered in some limited form to

only help the transition to the abstract (Sarama, & Clements, 2016). Perhaps this is because the field is

still  heavily influenced by Piagetian theories of constructivism and also the idea of stages which

indicates that a child moves from concrete manipulation to abstraction (Uttal, Scudder, & DeLoache,

1997). Thus, concrete manipulation is identified as a lower level thinking which has to be eventually

given up after reaching abstraction and higher stages. This, in turn, has created a divide or hierarchy

between the concrete and abstract, perhaps making it further difficult for students to access or engage

with abstractions. Uttal, Scudder, & DeLoache, (1997) have argued for concrete manipulatives to be
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treated equivalent to symbols, implying manipulations to be treated as symbolic operations, which

presently occupy most part of the school syllabus. Again, the Vygotskian and social constructivism

strands have highlighted the primacy of material  or  concrete  manipulatives as  a tool  in  learning.

Though most studies under the social-constructivist strand brought in a rich resource of studies of

tools and artifacts developed and used in various cultural historical contexts and practices, they tend

to  be  limited  to  specific  contexts  and  communities,  and  tend  to  overlook  the  new  tools  and

technologies  produced  in  the  modern  age.  Thus,  there  is  a  need  to  include  studies  which  can

investigate the emerging, dominant and specially the efficient, accessible and affordable practices of

the  advancing  modern  techno-social  world.  In  other  words,  with  the  advent  of  new  tools  and

technologies, we need to redefine the older methodologies and designs to rethink and accommodate

and extrapolate our understanding of learning beyond the conventional classroom to a more accessible

environment. However, rather than becoming a blind advocate of new media, we need to revisit the

potential of our existing resources and tweak them to maximise their mental affordances. 

Further, there is a need to integrate and update the social theories by incorporating the advancements

in psychological theories (Restivo, 2017). This study presents a case, where multiple data sources

were used to address some of the complex realities of the learning context. Again there are several

other studies that use manipulatives but tend to focus on other important aspects of the learning rather

than the manipulation itself or looking at the nature of the interaction itself. The studies focusing

purely on manipulation mostly end up having a conventional way of judging the performance, or rely

on the verbal or written (symbolic) explanation as a marker for effect or change, i.e., the transfer from

manipulation  to  abstraction  and then  to  reproducing  it  into  conventional  math  problems  (mostly

symbolic  in  form) is  considered to  be  the  norm in  such  evaluations  of  manipulation  in  learning

(Olkun, 2003; Tchoshanov, 2011). However, the present study brings a case where the process data

was analysed i.e., the learning setup itself rather than studying the effect in an evaluation setup. The

present study provides empirical support for the positive effect of manipulative-based teaching and

learning using newer units of analysis and novel methods. Thus, from this perspective as well, the The

study provides a model for math education research to design and construct new meanings and ways

to study the role of manipulation and also to revisit  and rethink what  we mean by mathematical

ability. Also, such studies can lead to newer discoveries about the nature of learning, and eventually

an account of knowledge as dynamically changing through actions. 

5.5 Limitations and future work 

In the cognitive perspective, we present a new account of how doing becomes thinking, bringing

together: 1) education and cognition questions, 2) a novel task-oriented combination of eye tracking,

neural data analysis methodology and qualitative methods from education and problem solving, and
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3) a cognitive theoretical explanation. The empirical and theoretical approaches we illustrate in this

chapter offer a starting point to understand the very complex process by which formal knowledge

emerges from procedural knowledge, and the way these two knowledge systems interact in learning

and  discovery  situations,  particularly  through  the  generation  of  epistemic  actions  and  structures

(Chandrasekharan & Nersessian,  2015).  The study offers  a  very preliminary  account  of  the  way

manipulatives change the problem-solving process, and offers a way to further develop cognitive and

motor neuroscience approaches to problems in education (Howard-Jones, 2014; Varma, McCandliss,

& Schwartz,  2008).  In the following discussion,  we outline some of the major limitations of the

model, and indicate some ongoing and future work to address these issues. 

5.5.1 Grounding

Our narrative is constrained and grounded by data from a single illustrative study. However, given the

role of manipulatives in connecting different areas of cognition such as distributed and embodied

cognition  and  transfer,  and  their  current  application  significance,  we  have  proposed  not  just  an

account  of  our  results,  but  a  general  account  of  how manipulatives  change  the  problem-solving

process. Since this model generalises from the results of a specific study, it is very likely that the

model would not account for other cases, such as situations where there are no separate manipulation

and problem-solving phases, as in the case of Abrahamson, Shayan, Bakker, & van der Schaaf (2016).

However, since the study follows a study design that serves a general purpose of connecting action to

imagination, it could account for data from other studies as well. Given this possibility, our general

study design is only illustrative, seeking to meet two pragmatic objectives: 

1) Function as a seed design, working either as a convergence case (when other study designs are in

line with the one presented here), or as a contrast case (when other designs differ drastically from the

one presented here).

2) Help develop theoretical guidelines for designing embodied media for learning mathematics and

science (Abrahamson & Sánchez-García, 2016).

The study design is thus just a starting point, and it will be revised or improvised significantly, based

on future studies.

5.5.2 Data

The findings emerged from a focus on examining process data, which is very difficult to gather and 

analyse. This has limited the scope of the study we report, which is too small to make definitive 

claims about the validity of the findings. Going forward, what kind of data could provide ways to 

validate or reject the model? The critical component of the model is the way the manipulative extends 

the action space of the learner. One way to validate or reject the model would be to examine whether 
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working with the manipulative actually leads to the extension of the body schema, as in the tool use 

case (Maravita & Iriki, 2004). Recent work in cognitive neuroscience provides some experimental 

paradigms to examine this hypothesis (see Chandrasekharan 2014 for a review), and we are currently 

developing studies based on these empirical approaches.

5.5.3 Domain

Manipulatives are used in many contexts other than mathematics, such as learning chemical 

structures, anatomy, engineering design, etc. The role they play in such contexts would be quite 

different from the mathematics case, particularly because the operations in imagination are more 

concrete in these areas. Similarly, the role played by manipulatives in laboratories, and the way they 

change imagination in this context, would be very different from the above cases. The study design 

we propose is thus limited to cases where manipulatives embed abstract procedures, and the way they 

change the process of solving procedural problems. However, we hope that the current version 

provides a starting point to better understand the two-way interaction between actions and formal 

conceptual knowledge, and the way manipulatives mediate this interaction.  
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6

Conclusion 

In this chapter, I provide a brief recap of the whole thesis, from where it all started, to why particular

routes were chosen, to what emerged from the pathways, to finally ponder upon the learning and to

contemplate  the  journey  ahead.  Although  the  thesis  mainly  focuses  on  the  conception  of  area-

measurement, in a broad sense, it also highlights some emerging trends within mathematics education

research.  

6.1 Introduction

The thesis starts with how measurement was a prevalent practice of human society historically, and

could be the primary source for the emergence of geometry as we know it today. The significance of

measurement as a root topic in mathematics education, in contrast to beginning with numbers, has

been argued in the work of Davydov (1975), who argues for learning mathematics meaningfully as

comparison of quantities, which comes naturally to children. However, contemporary mathematics

curricula give less importance to measurement, and separate it from the topic of geometry, despite

their deep connections. School mathematics gives more importance to geometry, which occupies a

significantly large portion in the curriculum compared to measurement. School geometry is mainly

dominated by Euclidean geometry, which is based on an abstract metaphysical viewpoint, away from

real objects, making it difficult for a learner to meaningfully understand geometry. And as geometry

carries a large weightage in mathematics curricula, not being able to deal with geometry has an impact

on students’ overall mathematical performance. This eventually can be a reason for many students to

give up or hate mathematics. On the contrary, measurement, specifically geometric-measurement, has

a more practical and realistic aspect to it, which can assist students’ transition to geometry and other

abstract forms of mathematics (Smith, Males, & Gonulates, 2016). Thus, geometric-measurement can

bridge the gap between real-life roots of geometry and its abstractions, thus making geometry and

eventually mathematics more meaningful for students to engage with. 

In  the  school  curriculum,  the  topics  covered  under  geometric-measurement  start  with  length

measurement, and then move on to area and volume measurement. The poor performance of young
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students on length measurement tasks, which is widely reported in the literature, gets further reduced

with area-measurement (AM) tasks (Battista, 2007). Length measurement tasks are resourced with

physical tools like scales or rulers, which were developed as cultural tools but also support learners to

build their own mental tool (or mental ruler) for length measurement (Clements, 1999). No such tool

is readily available for measuring area. The lack of any tool or instrument for AM partly explains the

greater challenges in accessing AM, besides the abstraction involved in the l×b formula, resulting in

students’  poorer  performance  in  AM  compared  to  length  measurement.  Apart  from  the  non-

availability  of  any measuring tool  for  AM,  it  is  also the first  quantity  a  student  encounters  that

introduces multiplication of two extensive quantities (Smith, Males, & Gonulates, 2016). Thus, AM

turns out to be the first concept where students learn to arrive at a new quantity by multiplying two

other quantities. This has further application, for understanding higher advanced topics, such as force,

volume, weight, momentum, etc. The area model also has applications in several math topics, for e.g.,

multiplication,  fractions,  algebra,  functions,  probability,  calculus,  measure  theory  (Dreyfus  &

Hershkowitz, 2017; de Freitas & Sinclair, 2020; Sisman & Aksu, 2016; Sarama & Clements, 2009;

Outhred & Mitchelmore, 2000). Thus, AM can act as a foundation to broaden students’ learning, to

move  to  an  integrated  and  interdisciplinary  understanding  of  mathematics.  Considering  the

significance of the topic of AM, the thesis tries to uncover students’ conception of AM, primarily

through the three main studies covered in Chapters 3, 4 and 5 respectively. 

6.2 Research Objectives

The thesis broadly tries to investigate why, what, and how questions around students’ AM conception.

The thesis starts with the ‘why’ question of why this topic is worth pursuing. Secondly, what are

students’ conceptions of area measurement (AM) or more broadly what leads to their conceptions and

how we can transform them into richer conceptions. While the introduction chapter mainly covers the

why question (the need to focus on this topic), the literature review chapter presents studies around

this  topic,  which  are  broadly  categorised  into  four  themes:  conceptual,  curricular,  tool  use,  and

multiplicative thinking. 

Chapter  3  follows  the  literature  review chapter  and  presents  the  first  study of  the  thesis,  which

explores students’ conception of AM by adapting Piagetian constructivist theories. Since students’

conceptions are a product of their environment, we adopted the naturalistic paradigm to understand

students’ conceptions in their existing set up through observational studies. Thus, Chapter 3 consists

of a set of studies, broadly grouped under three categories: first, those that were done in the students’

existing  school  setting,  since  schooling  plays  a  significant  role  in  students’  conception;  second,

analysis of the textbooks, and third, studies conducted in a research set-up with individual students,

through task based interviews. Table 6.1 lists the research questions that were addressed by these
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studies.

Table 6.1: Initial research questions explored in Chapter 3

Guiding Questions

1.1 What are students’ conceptions of “area”?

1.2 What is the conception of “area” reflected in classroom practices?

1.3 How does the curriculum (or textbook) handle the “area” conception?

1.4 (a) What are students’ conceptions of “conservation” of area and perimeter ?

(b) What are students’ representations for area and perimeter?

(c) How do students interpret area and perimeter for unfamiliar figures?

(d) What are students’ conceptions of unit structuring in area-measurement ?

1.5 What is the connection between area-measurement and multiplicative thinking?

1.6 (a) What is a good model of learning area-measurement?

(b) Why should the proposed network model of learning the concept of area be 

adopted?

The  first  part  of  the  study  was  conducted  in  the  regular  school  setting,  starting  with  classroom

observations to explore question 1.2 (in table 6.1) followed by students’ interviews (within the school

premises) to explore question 1.1. For question 1.3, I analysed mathematics textbooks used in two

different school board systems for classes 5, 6, and 7. The findings and observations done under these

broad questions led to some new insights. Informed by the literature review, the new findings led to

the formulation of some new guiding questions,  1.4 (a)  -  (d)  in Table 6.1).  This time they were

investigated in a research setup, inspired mainly by Piagetian methodology. This new set of studies

were structured (or planned) cognitive studies, done through task-based semi-structured interviews

with students, adopting constructivist paradigms. The fourth theme of the literature review chapter led

to the emergence of another study guided by question 1.5. The results of the above studies were

consolidated into a coherent whole, by arguing for area as a “network” concept, requiring integration

of the spatial, numerical and algebraic aspects. This argument is also investigated through the two

didactical questions 1.6 (a) and (b). 

Chapter 4 covers the second major study of the thesis. It is an intervention study, to investigate “how

do students construct the concept of AM in a classroom?” using teaching design experiment as the

methodology.  Unlike  the  previous  chapter,  which  was  about  investigating  students’  individual
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constructions of AM, this chapter moves beyond the individual construction, to social construction

happening within a classroom context.  As part  of this  study,  different lessons and activities were

designed, to investigate the use of different tools and tasks in engaging with AM. I also wanted to

investigate whether certain tools can act as culturally developed tools within the classroom micro

culture,  and  how  such  tools  might  aid  in  bridging  the  gap  between  geometrical  &  numerical

understandings of AM. Since classroom culture or context is a much more complex setting, with the

component of social interaction, the framework of argumentation and socio-mathematical norm was

adapted, to conceptualise and analyse different argumentation structures in students’ constructions

(Toulmin, 2003; Yackel, & Cobb, 1996). Thus, the methods of analysis of the second study of the

thesis are social interaction and social constructivism. 

Chapter 5 outlines the third study of the thesis. It extends the use of tools and materials to develop a

focused study on the role of material interaction and manipulation in students’ approaches to solving

area problems, particularly the strategies and process changes during this problem-solving process.

Two main research questions investigated here are: 

5.1. What process change happens as a result of manipulation? 

5.2. How does manipulation transform the process of solving an area-problem?

This study was done in an experimental setup, using a video recorder and eye tracking methodologies,

to identify the cognitive processes and strategies involved in students’ problem-solving actions. 

In the next section, I discuss the different results and findings of the three studies mentioned above,

followed by some broad implications of the thesis.

6.3 Results and findings

Since the thesis consists of three broad studies, investigating different sets of questions, some of the

broad results and insights of the studies are summarized here, in the order followed in the thesis.

1. In study 1, some worries were raised by our observations during the initial interviews with

students from 4th-6th grade. It was noticed that when asked about “what is an area?” Most of

the students uttered some formulas involving dimension, for example, l × b or 2×(l + b) etc.

When some students were further asked to elaborate or explain the definition of  area by

writing or drawing, they mostly drew some conventional shapes like squares or rectangles.

When they were shown irregular or curved closed figures and asked about their area, a few of

them said they didn't have an area. These observations brought forth concerns about the gap

in the formal and the physical or material sense of area and AM. 

2. Further, when some students were asked to shade the area of given closed shapes, different
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parts were shaded by different students. For example, they darkened the boundary, or made

some squares inside the given shape, shading only one small square among them. This clearly

indicates that the students were not understanding which attribute is measured through area.

These observations were further validated from the observations of pedagogy and curriculum,

which mostly focus on computational activities, and have hardly any tasks or activities that

allow students to represent (or shade) the area of given shapes. Such an activity, apart from

highlighting the attribute for area, also highlights the continuous character of area, instead of

the discrete counting of the units (Kobiela, & Lehrer, 2019). Thus, there is a need for practical

tasks like painting/ shading for area and highlighting boundaries for perimeter, to distinguish

between the two measures. This was done in the tasks discussed in Chapter 3, thus clarifying

the covering and continuous aspects of area better than physical tiling. 

3. Students were asked to compute the area of a non-conventional shape like an L-shaped figure.

Again, a few students computed the area of an L-shaped figure by multiplying all the given

dimensions rather than by partitioning it into rectangular pieces to compute it accurately. This

indicated the disconnect between area and its numerical operations or calculations.   

4. The pedagogy and the curriculum was studied through classroom observations and textbook

analysis.  There  were  parallels  between  students’  conceptions  of  AM  emerging  in  the

interviews,  and  the  way  the  curriculum  and  the  pedagogy  handles  AM,  suggesting  that

students’  conceptions were a direct  product  of  the pedagogy and the curriculum. That  is,

students draw the meaning of area from what they come across in the context of AM in their

school, and thus associate only the computational notion, and limited shapes like rectangles

and squares, with the conception of area. This pointed to a network approach to understanding

of area, where students draw the meaning of AM by linking different bits and pieces they

come across in the context of AM. The curriculum misses several other important conceptual

components  as  well,  like  recognising  the  attribute  for  area,  unit,  array,  conservation,

dimensions, multiplicative operation, etc. 

5. We eschewed the much-used covering task in order to avoid the risk of pre-structuring the

task. Covering tasks with physical tiles may tend to become a mechanical task (Outhred &

Mitchelmore, 2000) performed without understanding. Thus, asking students to shade the area

of a region instead of mechanically covering it with tiles can make spatial understanding of

area more explicit.  To explore or uncover the numerical understanding of area, instead of

using covering or tiling task with unit blocks, we designed some new tasks using unit cards

(made of card paper),  as a reference for students to compare the area of different shaped

sheets  and to  further  explore  and unpack the connection between AM and multiplicative

thinking.  

6. Textbook analysis also revealed the nature of curricular tasks on area and AM. The tasks were
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mainly “solve” or “find” type questions, rather than tasks involving construction or creation

of shapes. Most area problems or area calculation in textbooks require students to measure the

linear dimensions (length, breadth) for a rectangle and (base, height) for a triangle. Thus the

idea of area gets associated with linear dimensions, rather than the 2-dimensional surface.

This can be an important factor causing students to associate only computational meaning for

area, without any association with the space or the attribute for area.  

a. The topic of length measurement in the textbook includes tasks that require students

to  measure  a  given  line  segment  using  a  ruler  and  also  the  reverse  task,  of

constructing or drawing line segments having a given length measurement (e.g. 5cm).

Having both of these tasks not only exposes students to varied practical exercises but

also ensures understanding the reverse or inverse operation. That is, it allows students

to  move  from  spatial  to  numerical  representations  and  the  reverse  for  length

measurement. This appears to be missing for AM-specific tasks in the textbook or

curriculum, where students are asked to find the area of a given shape, but they are

not asked to draw a shape with a given area.

b. Most area tasks are of the form where the shape is fixed (for a given area measure).

However there are hardly any occasions in the curricula that allows students to see

that for the same area (magnitude or measure), different shapes are possible. Thus,

such  exercises  are  missing.  Tasks  around  this  could  strengthen  students’

understanding of the conservation of area concept. 

c. The idea of inverse operation or inverse relation is very important and it can be found

in  most  mathematical  operations,  such  as  addition-subtraction,  multiplication-

division, unit-measure (unit size and measure value), differentiation-integration, etc.

Thus the idea and exposure of inverse operation is central to mathematics in general,

and any mathematical operation in particular. However the curriculum presents only

uni-directional area tasks (as reported in our textbook analysis), where the task takes

the form of finding the area (number) when given a shape.

d. In general, geometric measurement is the process of moving from space to number by

quantifying the space into number. In the context of area or AM the shift is also from

additive counting (in the context of length or discrete units) to multiplication. Moving

to  a  multiplication  operation  on  the  other  hand  is  built  on  the  understanding  of

multiplicative thinking.  Thus the connection of area measurement with the domain of

multiplicative thinking – a very widely researched area in math education research –

needs to be established. 

7. The set of studies reported in Chapter 3 of the thesis were consolidated through the “network

model” of area (see Figure 3.13 and 3.14, Chapter 3). The need for the network model was
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also inferred through the task-based interviews and observations. These indicated that the

understanding of area is  intricately associated with a network of related concepts.  This is

contrasted with length measurement,  where hidden conceptual  elements such as  attribute,

conservation, transitivity, equal partitioning, iteration of unit, accumulation of distance, origin

and the relation to number (Sarama & Clements, 2009) are packed within a ruler or scale.

Thus, a ruler acts as a compact tool, holding together all the connected conceptual elements

involved in length measurement, forming an ‘enactable’ network. 

8. The network model supports a spiral curriculum instead of a linear curriculum. In the former,

students experience the content initially in an intuitive authentic form before revisiting it in

the formal sense (Bruner, 1996). This allows students to experience the concept in the original

form before rediscovering it in the formal sense.  

The spiral curriculum is aligned with the network model, as such a curriculum can strengthen

the connections between different concepts.  It  contrasts  with the linear curriculum, which

deals  with  different  concepts  separately  in  isolated  forms.  The  spiral  curriculum  is  also

aligned with the way concepts are present in nature, where concepts don’t stand out separately

but are present in an integrated fashion. Thus, the curriculum needs to integrate the network

of concepts that are deemed to be essentially involved in the understanding of area. 

9. As we argued in the introduction chapter, students mainly draw meanings of various concepts

from their school exposure. In the context of area-measurement, students tend to associate

what they come across in their school curriculum as the meaning for area. Thus, most students

tend to associate specific limited shapes like rectangles and squares with area, and tend to

assume only these shapes have area and not others. Understanding area as a network will help

students understand the concept better. For example, associating “area” with things (words or

objects)  they have come across  in  other  contexts,  even  out-of-school  contexts  is  needed,

rather than just associating area with some conventional shapes and its associated formula. 

10. I highlighted the significance of tools. For length measurement, the ruler acts as a tool or

instrument that has all the conceptual elements involved in the process of length measurement

packed within it  in a compact fashion. The hidden conceptual processes can be unpacked

either by separating out each component and dealing with it separately or by handling all

components together as an enacted network. The network model calls attention to the need for

an instrument or tool to strengthen the connection between different concepts involved in area

and AM. One way of doing it could be to have a diverse and wide use of this instrument for

different purposes. This would allow learners to appreciate its wide application, similar to the

way a scale or other instrument can be explored or unpacked through multiple forms of use,

where  the  purpose  served  by  the  instrument  can  be  made  more  explicit.  The  theoretical
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motivation for the construction or usability of such an instrument comes from the “Network

model” or the network understanding of a concept, which is elaborated in Chapter 3 of the

thesis. 

These results and findings from the first set of studies of the thesis, discussed in Chapter 3, concern

the current status of AM conception, pedagogy and curriculum without intervention. The second study

(chapter 4), in contrast, involves designing tasks based on the insights gained from the literature and

the studies in Chapter 3.  

The  study  reported  in  Chapter  4  focussed  on  social  interaction  as  an  important  component  in

conceptualising AM. It draws from the social interaction and social constructivism paradigm, based

on tasks and interactions. Thus, the unit of analysis is not just actions and gestures, but also the verbal

reasoning in the characterization of stages. Piaget et al.  (1960) did not write about how a child’s

intuitive understanding keeps changing not just through the material interactions but even when the

child socially interacts with the researcher/teacher and other children. In our study, apart from the

social interaction, careful attention was also paid to the tasks and the materiality of the interaction in

students' construction of a particular concept. This builds on the idea of a culturally developed tool,

for measuring area in a compact, accessible and handy form:

i. Through multiple use

ii. Including aspects physical access and graspability 

This was attempted in Chapter 4, using the graph or grid paper as a culturally developed tool within

the classroom microculture, and multiple forms of tasks based on shapes drawn on graph paper. The

utility of graph paper as a local culturally developed tool evolved in the classroom context. Students

reasoned with graphs and grids extensively, specially for engaging with both the spatial and numerical

aspect of area, through several kinds of tasks based on shapes drawn on graph sheets. 

Several insights can be drawn from chapter 4. Methodologically, paying attention to the argument

structure and the nuanced differences in the warrants revealed the gaps in the warrants that were

available to the students and the teacher. Students seemed quite fluent in their actions on decomposing

and recomposing different parts of a rectangular piece and seeing the relation between the parts to

some extent, however they still struggled to coordinate the spatial and numerical representation of the

fractional parts. This indicates, on the one hand, the deep connection between AM and the topics of

fraction  and decimals,  and  on  the  other,  the  challenges  in  seeing  the  connection.  Moreover,  the

struggle of students in tasks requiring seeing or representing the area as addition of different kinds of

unit, is important in building their understanding of fraction and decimal numeral representation. The

students are familiar with the various representations of half, which can support them in building such

an understanding. The use of money analogy, as seen in a student’s response further concretises the

174



decimal representation and sets up an example of a warrant coming from a widely available  out-of-

school  context  supporting the social  construction in a classroom.  The repeated error  by Raziya’s

group  in  finding  the  area  of  A3,  despite  providing  strong  warrants  for  using  the  algebraic

generalisation  l  ×  b for  A4,  indicated  the  complexity  in  coordinating  algebraic  and  spatial

understanding  among  students.  Further,  analysis  of  the  arguments  advanced  by  this  group  turn

highlights the significance of approximation emerging from unit structuring, which is an important

mathematical  construct  that  is  part  of  the  learning  of  AM,  and plays  a  key  role  in  making  the

connection  between  the  algebraic,  numerical  and  spatial  understanding  of  AM.  The  episodes  of

argumentation discussed in Chapter 4 also raise the question, what are the factors that lead to the

emergence of argumentation in the classroom as reflected in these episodes. The students’ curiosity to

understand their peers’ methods or solutions, and the drive to achieve consistency and coherence

between contrasting  solutions  and approaches  are  important  among  such  factors.  Chapter  4  also

presents  how  actions  with  concrete  representations  get  paired  up  with  mathematical

discourses/narratives in argumentation, and how this process contributes to concept formation. The

back and forth arguments between students using multiple representations also affirmed the network

understanding of area.  

Another rich activity that emerged through these tasks was the Tangram activity, which has some core

common pedagogical  characteristics  of  a good activity:  it  is  accessible,  hands-on,  low floor  high

ceiling, allows multiple arrangements and possibilities and hence solutions. Thus, it allows learners to

explore different facets of AM, including the network of concepts connected and extended with AM.

It  also  provides  scope  for  an  integrated  approach to  learning  a  particular  concept,  including  the

extended verbal support/ prompt to facilitate students’ reasoning. Considering this potential of the

Tangram activity, a version of it was used in Chapter 5 to study the cognitive processes involved in

learning with a material interaction, such as a Tangram type activity. Chapter 5 thus explored the role

of  material  interaction in  a  focused way,  reducing  the complexities  of  social  interaction using  a

controlled lab set-up.

The study in Chapter 5 showed prevalence of the chunking strategy among students who did the

tangram type manipulation, while the baseline group’s eye movement indicated the counting strategy.

Thus  students  having  the  same  profile  showed  differences  in  their  eye-movement  based  on  the

experiences they had immediately had before doing the area task. The group that did tangram type

manipulation showed the presence of an efficient chunking strategy while the baseline group indicated

the presence of an inefficient counting strategy. The clay manipulation group indicated less of the

counting  strategy but  showed significantly  less  presence  of  large shiftings  indicating the  lack of

chunking strategy among them. Thus the study helps us to recognise the specific kinds of activities or

manipulation that can be provided to learners to lead them to efficient strategies.   
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Apart from providing a general process account of how doing leads to changes in thinking, this study

showed that as math educators, we need to re-imagine new methods to capture all forms of dynamic

processes  and  not  just  discourse,  and  there  is  a  need  to  engage  closely  with  multiple  forms  of

interaction.  This  study  contributed  to  developing  new methodologies  to  address  math  education

problems, by using newly developed tools to capture different forms of process data. 

6.4 Implications: Contributions to theory or knowledge 

One of the contributions of the first study is to add new components to Piagetian studies, by bringing

in the importance of other major factors that play a significant role in students’ conceptions. Thus, the

first study shows how students’ conceptions are closely related to the school curriculum and teaching.

This highlights the significance of adopting a holistic and ongoing approach towards material design

and teacher training, addressing the gaps or difficulties associated with students’ conceptions. This,

along with the network model  proposed at the end of Chapter 3, challenges the deficit  model  of

research that  ascribes  misconceptions  or  wrong conceptions  to  students,  rather  than the  complex

network  of  other  factors  affecting  or  moulding  students’  conceptions.  The  study  highlights  the

parallels between the elements of students’ conceptions and the corresponding limiting factors present

in the curriculum. For example, the range of typical  geometric objects or representations used in

textbooks can act as a source for gaps in students’ conceptions. The observations are in congruence

with  the  interpretation  that  the  existing  school  curriculum focuses  only  on  a  limited  number  of

elements  of  the  network  of  area,  and  does  so  in  a  disconnected  manner.  One  of  the  general

implications of the thesis is thus the possible use of the network of concepts involved in AM to

develop better curricular material and pedagogy, which provide ways to strengthen the connections

between various elements of the network.  

The implications of the thesis are discussed below under four sections drawing from four kinds of

contribution made by the thesis: (i) Curricular, (ii) Pedagogical, (iii) Research (including method) and

(iv) Future implications. 

6.4.1 Curricular Implications 

A major curricular implication of the thesis is that it points out specific gaps in the curriculum, and

thus provides specific suggestions/revisions to address these gaps in the AM curriculum, as elaborated

below:

I. Students’ interviews in Chapter 3 indicate that lack of association with experiences outside

the school or connected with real life, leads to a very limited understanding of the term or the

concept of area or AM. Thus, the thesis clearly highlights the importance of using local and

non-formal terms for area to extend students’ understandings with respect to area. Throughout
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the studies done in the thesis, the generic word “size” is used to refer to area, but the specific

aspects of area are brought in through the context of the questions such as which field is

larger?, which sheet can hold a greater number of the given square cards? So the focus moves

from knowing the term to using it in practice, to construct or associate its meaning from the

contexts experienced.  

II. The thesis highlights the need to move beyond typical  shapes,  and connect  with real  life

examples. One of the observations was that some of the students considered area or AM to be

associated only with the typical shapes that they see in textbooks like squares, rectangles, and

triangles. Since visual information impacts the concept image deeper than the definitions, it is

important to also provide examples of non-typical shapes like irregular curved shapes, so that

students' conceptions get extended and generalised to any closed shape (Srinivas, Rahaman,

Kumar, & Bose, 2019).  

III. The textbook review identifies the need to go beyond the “find” or “solve” type problems, to

draw and design type tasks for learning AM. As elaborated in the 6th point of Section 6.3, the

textbook exercise questions on AM are mainly of the form of find/  solve type questions,

where some information is given in the form of dimensions such as length or breath and the

expected solution is to numerically calculate the AM using the information provided in the

question. Thus, the find/solve type questions generally have a single common solution and a

fixed path. The thesis recommends new tasks for AM of the form where students are asked to

make different shapes on a graph paper when they are given a particular numerical value for

area.  In particular, tasks that work in two directions – one where students are given a shape

and are asked to calculate the area and the other where students are given a numerical value

and are asked to draw a shape with such an area – could further strengthen the spatial and

numerical connection for AM. Such kinds of tasks are relevant for learning AM because they

allow  students  to  create  and  explore  multiple  spatial  possibilities.  They  also  provide

opportunities for learners to practically explore the principle of conservation of area.

IV. The thesis provides examples of tasks requiring a richer and more meaningful use of grids

/graph paper. Graph paper can function as a culturally developed tool for studying area within

the classroom microculture,  similar  to using rulers for length measurement.  The textbook

analysis,  classroom observation and students’ interviews showed a very procedural use or

understanding of  grids.  Grid/graph paper  was extensively used in  the  classroom study in

Chapter 4. 

V. The thesis highlights the importance of physical tasks, especially Tangram type tasks, making

the  important  aspects  of  such  tasks  explicit.  As  argued  in  Chapter  2,  the  literature  has

provided us with several important and relevant tasks for AM. Although many such tasks are

used for assessing learning, some of them hold a lot of potential for learning itself. Instead of
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using  tasks  as  an  assessment  for  capturing  students’  errors  and  mistakes,  those  tasks  or

situations can be improvised to make them resourceful and challenging learning situations.

Thus, rather than acknowledging the strength of students’ reasoning processes, the focus turns

into what (formal) aspects of measurement students know with less focus on understanding

their intuitive (non-formal) reasoning or spatial reasoning. The end result of this use is just to

label  students’  reasoning as  inadequate,  rather than using it  as a learning tool  to address

students’ reasoning. In the literature on AM, one of the important tasks used is the covering

task with physical tiles. The challenge with physical tiles is that it may pre-structure the task

(Outhred & Mitchelmore, 2000). However, the extension tasks to find the actual measurement

without physical tiles turned out to be too abstract for students to make the precise marking

without  a  tool.  Physical  materials  or  tools  like  Geoboard,  provide  a  useful  resource  to

introduce area or AM as a countable measurement, where different polygons can be measured

in terms of a unit, by partitioning a given shape into different segments, thus making AM

more apparent/visible/graspable and countable as they are unitized through the equi-spaced

nails. However, given such a structure of nails in a geoboard can raise the risk of students

tending to count the nails instead of noticing the space (Cavanagh, 2007). Further, confusing

area with linear dimensions is also prevalent among students. Thus it is not enough to just

ground  the  task  with  physically  graspable  materials.  There  is  a  need  to  focus  on  more

meaningful  and  conceptual  tasks  that  have  the  potential  to  highlight  relevant  aspects  or

attributes  of  AM over  other  features.  The choice of  Tangram type tasks  over  other  such

physical  tasks  is  favoured because tangram tasks  do not  have this  prestructured counting

ingrained  in  them.  They  also  potentially  integrate  the  foundational  components  of

mathematics: spatial, numerical and even algebraic aspects. Considering this rich potential of

Tangram type tasks, they were also used in Chapter 5 to test for their impact on cognitive

processes. The study in Chapter 5 provides evidence for the way Tangram type tasks prime

students to tend to use chunking strategies for solving AM tasks.    

VI. The strands of literature following a linear curriculum highlight significant gaps with respect

to AM curriculum, and provide developmental models of learning, which in turn streamline

our curriculum into a linear progressive model. However, my curricular review and textbook

analysis revealed that  the  topics appear  disconnected and isolated from each other  in  the

context  of  AM.  The  thesis  reveals  that  the  concept  or  context  of  AM  relies  on  several

mathematical  concepts and topics in a network form. Thus,  the thesis argues for a spiral

integrated curriculum in contrast to the existing disconnected linear curriculum. The thesis

proposes and provides an exemplar for the spiral curriculum in the context of AM, which can

be further applied and extended to other math concepts and topics. 

VII. Finally, one of the significant implications of the thesis is that it highlights the foundational
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role  of  AM. Davydov’s  curriculum is  based  on  measurement.  He  argued that  it  is  more

coherent,  logical  and  hence  psychologically  meaningful  for  students.  Drawing  from

Davydov’s  argument,  the  thesis  argues  for  a  coherent  curriculum  based  on  meaningful

grounding of the foundational math topics. The thesis uncovers the potential of AM to act as a

foundational topic to open up avenues for other advanced mathematical topics like fractions,

calculus, multiplication, geometry, functions and statistical ideas. 

As argued earlier, area-measurement acts as the first physical quantity where students come

across multiplication in the form of a product of two other quantities. And this opens up the

horizon to explore all such quantities defined as a product of two other quantities, as found in

the  discipline  of  Physics  (Smith,  Males,  Gamlates,  2016).  Thus  the  thesis  provides  an

integrated and interdisciplinary model for mathematics education. 

6.4.2 Pedagogical Contribution: 

In addition to  the  curricular  contribution,  the thesis  also has  some pedagogical  implications.  The

thesis reiterates the importance of social constructivism as a pedagogical approach in the classroom. It

presents  exemplars  of  the  application  of  social  constructivism in  a  classroom through  collective

construction  using  the  framework  of  argumentation.  It  also  adds  to  the  significance  of  socio-

mathematical norms to achieve social construction in the classroom. The thesis also cautions about

exercising or practising the norms in a mechanical manner, as a tool for argumentation rather than

engaging in depth to rationalise for collective construction. Overall, the thesis exemplifies classroom

practices that encourage social constructivism through argumentation and collective construction. 

6.4.3 Research Contribution: 

Apart from the curricular and pedagogical contribution, the thesis provides some specific research and

theory contributions to the discipline of mathematics education and cognition. The thesis exemplifies

a case for adapting three broad paradigms: constructivist, social constructivist and enactivist theories

in MER, and contributes in terms of the design and development of new tasks that  would allow

moving in this direction. Drawing from the literature, which provides many relevant tasks to support

AM learning, the analysis of such tasks builds on their  strengths and addresses the gaps. For instance,

I highlight the significance of the multiplicative composition of units rather than additive counting, in

addition to addressing the continuous nature of AM. Thus, the thesis provided new ways to imagine

the creation of tasks for AM in particular, and math education research (MER) in general. The thesis

also strengthens the network model. The use of Tangam as one of the key tasks in Chapter 4 (Study 2)

builds  the  potential  of  using  the  Tangram to  integrate  several  foundational  mathematical  topics,

concepts and subconcepts through social interaction (Chapter 4). The potential/role of Tangram are

further explored from the perspective of enactivist  theories as key mathematical  manipulatives in
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Chapter 5 (Study 3), as an instance of learning concepts through material interaction. I draw on, and

also  extend,  enactivist  theories,  recognized  as  an  emerging  promising  research  direction,  both

theoretically and methodologically (Reid, & Mgombelo, 2015; de Freitas and Sinclair, 2014). While

MER is  mostly  dominated  by  the  hierarchy between the  concrete  and abstract,  researchers  have

argued for the relevance of concrete manipulatives as equivalent to symbolic ones (Uttal, Scudder, &

DeLoache, 1997). Thus the thesis further highlights the importance of non-symbolic (visual, spatial or

material) processes in MER.  

The thesis adds to the research literature of enactivist theories by providing a theory of cognitive

mechanisms occurring in manipulations. This adds to the literature on studying cognitive mechanisms

and provides experimental evidence for the same. Similarly, Chapter 5 provided us with a new study

design, and a novel experimental set-up was developed to capture the process data. Unlike the usual

scenario of installing a static eye-tracker on a computer, here a static eye-tracker was used to capture

students’ hand and eye movement. A new analytical method was developed to capture, analyse and

interpret the process data. The constructs of action strategy: chunking and counting, were defined to

interpret the process data, which were further validated by the validation group. Using this analysis

method, the role of tangram type manipulation was studied over a baseline and a clay group. Thus, the

thesis adds to theories of enactivism, however also highlighting the significance of specific material

interaction  happening  in  Tangram  type  manipulation  over  clay  manipulation.  Chapter  5  also

highlights the failure or limitation of outcome-based studies, and brings our attention back to the

significance of processes over answers. Tasks were designed and developed to require students to

engage with the process of AM, rather than direct application of formula or additive counting. 

The branch of enactivism in recent times mainly focuses on digital interactives or digital manipulation

over concrete or physical manipulation. However, considering the challenges of accessing new-media

or digital interactive media in developing countries, the thesis highlights the importance of integrating

and developing perspectives for physical  manipulatives (Sacristán,  Rahaman, Srinivas,  & Rojano,

2021). 

Overall, the thesis provides an imagination of learning beyond the conventional classroom to more

accessible environments for learners. 

6.5 Limitations and challenges

This  section  reports  the  limitations  and challenges  encountered  in  the  thesis  project.  One  of  the

common challenges faced across all of the three major studies in the thesis, was to avoid the formal

word “area” when interacting with students, as it tends to limit students to think only about the formal

or school based notion or practice associated with the term. That is, students tended to directly look
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for  some  numbers  or  dimensions  to  apply  to  some  formula  or  do  numerical  operations  without

engaging more deeply and meaningfully with the given task. Thus I wanted to use an alternative term

for area that would be closer to students’ real life or practical context. However, one of the major

limitations of the thesis in this regard is the challenges in accessing students’ local languages or local

contexts for AM. Since the study setup was limited to the school or institute context, the studies could

not reveal or access other local terms or contexts of AM used at students’ homes or native places. 

The interactions with students in the studies reported in the thesis were mediated in three languages

English,  Hindi  and Urdu.  However,  India  is  a multicultural  and multilingual  country,  and as  the

setting of study is in an urban hub, it was a major challenge to explore or extract the understanding of

AM from all such multiple contexts familiar to the students. As a researcher, I was not aware of many

spoken languages used by students at their native places. Thus, after extended deliberation, I resolved

to use the word “size” as an alternative to  the  term “area” considering it  was being used in the

contexts I was aware of. Though the term “size” carried ambiguity in the sense of not indicating the

exact attribute of interest, it was enriched with the context of AM to make this explicit.   

Another related limitation of the study is the location of the study, which is an urban city. Some of the

native contexts of the students, like farming or grazing on a land or field, were thus missed. Thus,

though the initial studies of the thesis tried to explore student’s intuitive conceptions and reasoning, it

is likely that a lack of exposure to students’ life experiences and language sub-cultures came in the

way of bringing out students’ conception of AM. 

6.6 Further implications and recommendations

Most of the implications are already reported in the previous sections, however, this section covers

insights worth improvising or extending further to future work. The thesis exemplifies the network

model of learning in the context of AM. However the same can be applied and explored in the context

of  other  mathematical  topics  and  concepts.  Thus,  one  of  the  future  extensions  of  this  thesis  is

widening the scope of the network model to encompass other topics. 

The thesis exemplifies the design and development of proper materials and tasks to address the gaps

in AM learning, the same can be extended to other topics and concepts to further address the gaps in

MER. 

Building on the ideas of the use of cultural tools, the thesis proposes the use of a grid as a cultural tool

within the classroom microculture. The thesis presents a very rich use of the grid by providing a wide

range of  tasks  based  on it  (in  Chapter  4),  unlike  the  procedural  use  of  a  grid  found in existing

curricula (textbooks and pedagogy). As one of the concrete recommendations of the thesis, just like a

transparent ruler, I would like to recommend the use of a transparent grid (see figure 6.1) as a tool to
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measure AM. This could be designed and made widely available to school students. 

       
Figure 6.1: Transparent grid

Thus, just like all the conceptual properties of length measurement are held in a compact form within

a ruler, similarly a transparent grid could hold all conceptual characteristics of AM within it. The

thesis also recommends moving beyond typical shapes of geometry in general and AM in particular.

Thus, apart from using a transparent grid, students should also be provided with tasks that encourage

them  to  measure  irregular  and  curved  shapes  and  even  country  maps,  to  provide  students  with

multiple tools to visualise the planar measure of any shape or surface through the lens of a grid. This

will also integrate the spatial and numerical aspects of AM, which is found to be disconnected in the

existing curriculum and challenging to students to connect them. 
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Appendix

Appendix I

Consent Form

HOMI BHABHA CENTRE FOR SCIENCE EDUCATION

TATA INSTITUTE OF FUNDAMENTAL RESEARCH

V. N. Purav Marg, Mankhurd , Mumbai 400088. 

A study will be conducted at Homi Bhabha Centre for Science Education on 29 February, 2012. 

This study will consist of informal interaction with the student for about 20-30 minutes. The aim

of the study is to explore students' strategies when they deal with some specific mathematical 

concepts.

Interested students may participate in the study by filling the details in the form below. 

Student Name : ______________________________________________________

Std :________________________________________________________________

Address :____________________________________________________________

____________________________________________________________________

Contact Number of Parents : _____________________________________________

Details of  the Study

Date :  29th February, 2012
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Duration: 20-30 minutes

Time : between 1.30 pm to 7.30 pm

Place : Homi Bhabha Centre for Science Education, Room no. 119

Participant's parents are kindly requested to bring their child on 29 February, 2012 and take 

them back from the Homi Bhabha Centre For Science Education. Kindly give your consent for 

video recording the interview session for further research and analysis. I assure you that we will

abide by the research ethics and confidentiality. We appreciate your cooperation.

Parent Name :_____________________________

Signature and Date :  __________________________________
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Appendix II

MSB 5 MSB 6 MSB 7

1. Numbers

2. Operations on 

Numbers: Addition 

and Subtraction

3. Operation on 

Numbers: 

Multiplication and 

DIvision

4. Unitary Method

5. Divisibility

6. Profit and Loss

7. Measurement of 

Time

8. Equivalent Fractions

9. Addition and 

Subtraction of 

Fractions

10. Multiplication and 

Division of 

Fractions

11. Geometry: Basic 

Concepts

12. Angle and Triangle

13. Roman Numerals 

14. Decimal Fractions: 

Introduction

15. Decimal Fractions: 

Addition, 

Subtraction, 

Multiplication

16. Measurement

1. Divisibility

2. Order of Operations 

and the Use of 

Brackets

3. The Use of Letters 

in Place of Numbers

4. Point, Line, Plane

5. Angle

6. Pair of Angles

7. Natural Numbers 

and Whole Numbers

8. Indices

9. Square and Square 

Roots

10. Decimal Fractions - 

Divisions 

11. Ratio and Proportion

12. Profit and Loss

13. Perimeter 

PartII. 

14. Integers

15. Algebraic 

Expressions

16. Addition and 

Subtraction of 

Algebraic 

Expressions

17. Equations with one 

Variable

18. Percentage

19. Simple Interest

PART ONE

Properties of Triangles

Squares and Square Roots 

Indices

Averages

Variation

Theorem of Pythagoras

Product of Algebraic 

Expressions Construction of 

Triangles

Quadrilaterals

Equations in One Variable

Simple Interest

Rational Numbers

Miscellaneous Problems: Set

1

PART TWO

Operations on Rational 

Numbers

Profit and Loss Congruence

Types of Quadrilaterals

Area

Identity

Factors of Algebraic 

Expressions

Joint Bar Graphs

Volume and Surface Area

Circle

Construction of 

Quadrilaterals
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17. Segment: 

Measurement and 

Construction

18. Properties and 

Rectangles and 

Squares

19. Circle

20. Perimeter

21. Area

22. Statistical Data 

20. Triangles and Types

of Triangles

21. Properties of 

Triangles

22. Geometric 

Constructions

23. Bar Graphs

24. Area

25. Volume

26. Circle.

Miscellaneous Problems: Set

2

Answers

NCERT 5 NCERT 6 NCERT 7

NCERT 5

MATH-MAGIC

What is inside this book?

The Fish Tale

Shapes and Angles

How Many Squares?

Parts and Wholes

Does it Look the Same?

Be My Multiple, I'll be Your

Factor

Can You See the Pattern?

Mapping Your Way

Boxes and Sketches

Tenths and Hundredths

Area and its Boundary

Smart Charts

Ways to Multiply and 

Divide

How Big? How Heavy?

NCERT 6

Knowing our Numbers

Whole Numbers

Playing with Numbers 

Basic Geometrical Ideas

Understanding Elementary 

Shapes 

Integers

Fractions

Decimals

Data Handling

Mensuration

Algebra

Ratio and Proportion

Symmetry

Practical Geometry

Answers

Brain-Teasers

NCERT 7

Foreword

Preface

Integers

Fractions and Decimals

Data Handling

Simple Equations

Lines and Angles

The Triangle and its 

Properties

Congruence of Triangles

Comparing Quantities

Rational Numbers

Practical Geometry

Perimeter and Area

Algebraic Expressions

Exponents and Powers

Symmetry

Visualising Solid Shapes

Answers

Brain-Teasers
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Appendix III

Questions to be discussed with student                                                     
                                                                                                             

Name:  .......................................................................................

Age:  ...............

Class: …..........

Paper sheets and pencil will be given to the student to write whenever required and a voice

recorder will be used for recording.

Ask the student to draw a rectangle and a square of any dimension and in case the student is not able

to draw those figures, explain to the student what are rectangles and squares by drawing and verbally

defining.

 

1(i). A school playground is rectangular in shape with length 200m and breadth 100m. 

Can you draw the playground on this sheet, is it fine? Are you sure?

 

A square help desk of side 10m in which all first aids are kept is to be placed within the playground.

The head mistress feels that the desk should be located in one corner of the playground. 

(Ask them to draw the square help desk in the rectangular field, in case s/he is confused about which

corner, tell her that any corner is fine).

The games teacher feels that the square desk should be along the edge of the playground because the

games teacher thinks then there will be more space for the children to play. Is your games teacher

right, what is your opinion ? 

(Ask them to draw another rectangular field with the help desk in the new location).

1(ii). A company that makes a lawn by cultivating grass in the field wishes to make lawn for the

playground by growing grass. It charges according to how much space it covers by grass. Which lawn

will cost more to the school?

Repeat the question if required and ask them to use the given sheets for justifying their response.

In case they are not  able  to  draw the arrangements,  show them the figures given below using a
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different sheet in which these figures were drawn in advance. 

1(iii). A jogging path is made along the boundary of the playground for the first case in the previous

situation and Kajal runs along that path. Can you trace her path? 

Ask them to darken that path either in their own figure or in the figure provided to the student.

A jogging path is made along the boundary of the playground in the second situation and Kajal runs

along that path. Can you trace her path? 

Ask them to darken that path for the second situation.

Does she cover the same or different distances in the two situations? 

Tell the student to justify their response. 

2(i). Show them the figures drawn in the sheet 2(i) [separate sheets provided].

Can you show me the area here?

Can you colour the area of the first two figures with pencil?

(See whether they are able to show the spread for area)

2(i).

2(ii). Show them the figures drawn in the sheet 2(ii) [separate sheets provided].

Can you show the perimeter of the two figures with pencil?

Can you darken the perimeter ?

(See whether they are able to trace the perimeter)
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2(ii).

3. Student is given a sheet with the diagram as below and is asked to find the perimeter and area of the

following figure without using scale.

          

4. Draw a shape having an area 16 square cm. Can you draw some other shapes both rectangular and

non-rectangular having the same area. (Give graph paper for drawing the shapes.)

5. A room has a rectangular floor of length 20m and breadth 10m. A pillar is made in the middle of

the room with a square base of side 2m. 

What is the area and perimeter(optional) of the remaining floor area ? 

In case they are not  able  to  draw the arrangements,  show them the figures given below using a

different sheet in which these figures were drawn in advance.

Ask them to write in the sheet provided to them.

6. A triangular piece of paper of perimeter 80cm from which a square of perimeter of 20cm is cut off

as shown.

Show the student the figure shown below using a different sheet of paper.
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What is the perimeter of the remaining piece?

Ask them to write in the sheet provided to them.

7. The student is given a rectangular sheet of sides 21cm and 12cm, and three different paper tiles of

dimensions 2 2, 3 4, and 6 2, given one at a time. ⨯ ⨯ ⨯

Can this tile, if pasted repeatedly, cover the sheet? If Yes, ask the student: If the same tile is pasted

repeatedly, how many of such tiles will be required to cover the sheet.

Ask the student to write it on the sheet provided.

8. You want to cover a rectangular floor with a length of 19m and a breadth of 6m using tiles. Can

you cover the floor with a rectangular tile having sides of 3m and 2m? What other tiles can you use to

cover this floor?

9. You want to cover a rectangular floor with a length of 15m and a breadth of 8m using tiles. Can

you cover the floor with tiles that are right triangles of height 2m and base 5m? 

Optional question: What other tiles can you use to cover this floor?
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Appendix IV

Consent form used in Chapter 4 in Hindi and English

 Consent form used in ** School 

     होमी भाभा वि�ज्ञान शि�क्षा केन्द्र

    टाटा मूलभूत अनुसन्धान संस्थान

वि�. न.  पुर� मार्ग ,  मुम्बई 400088

सहमतित  -    पत्र इक़रार नामा  

     होमी भाभा वि�ज्ञान शि�क्षा केन्द्र (एच. बी. सी. एस.ई), '    टाटा मूलभूत अनुसन्धान संस्थान' (विट. आय. एफ. आर)   मुम्बई का
                   एक राष्ट्र ीय केन्द्र ह।ै इसका खास मक्सद प्राथविमक स्कूलों से लेकर गे्रजुए�न तक वि�ज्ञान और र्गशि9त की पढ़ाई में

   काबलिलयत को बढ़ा�ा देना,            दे� में वि�ज्ञान शि�क्षा की तरक्की और समाजी तरक्की को बढ़ा�ा देना,   और खोज (तहकीकी) 
           और सामग्री वि�कास करना �ाविमल ह।ै विपछले ढाई सालों से हम **           उदू और अंग्रेजी स्कूल में बच्चों के स्कूल के बाहरी

जिजन्दर्गी'    से र्गशि9त के अलर्ग-                 अलर्ग पहलू सीखने के तरीकों को समझने की कोशि�� कर रहे हैं। इसी जिसलजिसले में उदू 
                 स्कूल के छठी और सात�ीं क्लास के बच्चों के लिलए दो हफ़्तों का रिरयाजी पर स्पे�ल क्लास ( छुट्टी-  कैम्प )     रखा र्गया है जो 12 

  अप्रैल से 27  अप्रैल 2013              तक चला। इन स्पे�ल क्लासों का वि�तिLयो रकेॉर्डिंLर्ग विकया र्गया जिजनका इस्तेमाल जिसर्फ़ 
  अनुसन्धान काय (तहकीकी)                  और भवि�ष्य के कैम्पों का खाका तयैार करने में विकया जाएर्गा। साथ ही साथ इससे बच्चों की

      हुनर और जरूरतों का भी पता चलेर्गा।

     इस काय क्रम में आपकी सहमतित ( रजामन्दी)        जरुरी ह।ै आपकी दी र्गई जानकारी र्गुप्त (खवुिर्फ़या)  रखी जाएर्गी।

   तालीब इल्म का नाम: 

 क्लास :  

पता:

   �ालिलदेन का दस्तख़त :    

 फोन नम्बर: 

 तारीख : 
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Homi Bhabha Centre for Science Education

Tata Institute of Fundamental Research

V. N Purav Marg, Mumbai 400088

Letter of Consent

Homi Bhabha Centre for Science Education (HBCSE), a national center in 'Tata Institute of 

Fundamental Research' (TIFR), Mumbai. Its specific objectives include promoting competence in 

science and mathematics studies from primary schools to graduation, promoting the advancement of 

science education and social progress in the country, and research and content development. For the 

last two and a half years, we have been trying to understand the different aspects of mathematics 

learning in ** Urdu and English School. In this regard, a special class (holiday-camp) has been 

organized for the students of class VI and VII of Urdu school for two weeks which ran from 12th 

April to 27th April 2013. These special classes were video-recorded and will be used only for research

purposes and to prepare blueprints for future camps. At the same time, it will reveal the skills and 

needs of the children.

Your consent is required in this program. The information you provide will be kept confidential.

Name of the Student: 

Class : 

Address: 

Parent's signature:

Phone Number: 

Date: 
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Appendix V

Worksheet

Name: _________________________

School: ________________________

1. Match the following :

1. MS Dhoni                                                               Badminton

2. Black Pepper Charles                                             Darwin

3. Alladin Isaac                                                          Newton

4. The laws of gravitation                                          Magic Lamp

5. Cardiologist                                                            Tennis

6. The theory of evolution                                         .in

7. The theory of relativity                                          A spice

8. The domain name for India                                   Heart Disease

9. Saina Nehwal                                                        Cricketer

10. Sania Mirza                                                           Einstein

2. Tick the correct response :

1. The control centre of the human body is __________

(a) heart (b) brain (c) liver (d) kidney
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2. Which of the following is a flightless bird?

(a) Pigeon (b) Flamingo (c) Owl (d) Ostrich

3. Which pair is different from the rest

(a) 2, 8 (b) 4, 16 (c) 5, 25 (d) 8, 64

4. Which of the following countries have the largest population?

(a) India (b) China (c) Japan (d) USA

5. Who is Pranab Mukherjee?

(a) Prime Minister (b) Cabinet Minister (c) President (d) Army Chief
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