Elementary Nuclear Physics Laboratory course

P.K.Joshi¹, Soham.B², Tanvi.Dube³ ¹Homi Bhabha Centre for Science Education ²SIES College, Sion ³RJ College, Ghatkopar 10⁻¹⁴ meters

10 femtometers

10⁻¹⁴ m : radius of nucleus

10⁻¹⁰ m : radius of first

electron orbit

A ball of 10 cm radius:-

Electron :- a ball-bearing at a distance of 100000 cm = 1km of radius 1mm A ball of 1 mm radius:-

Electron :- a spec of dust at a distance of 1000 cm = 10 m of radius .01mm

Odd Z Odd N :- 9 Even Z Odd N :- 57 Odd Z even N :- 52 Even Z Even N :- 167 Total :~ out of about 3300 isotopes

Forces in nature

Gravity ; 1/r ;1 unit
Weak interaction
Electromagnetic ; 1/r ; 10¹⁹ units
Nuclear force ; ~ e^{-µr} / r ; 10³⁸ units ; *Extremely short ranged*

Nuclear Force

- The basis of formation of starts and other heavenly bodies
- Nuclei to touch each other for fusion to trigger, but cross-section?
- Stellar dust →star →white dwarf/neutron star/blackhole
- Supernova explosions leading to heavy elements
- Solar energy sources to several phenomena on earth

$\beta = 3(a-b)/(3a-b)$

How does photon interact with matter

The study of gamma-ray interaction with matter: Leads to a) Nuclear medicine b) imaging techniques c) Food irradiation programmes d) Higher quality agricultural products The radioactive decay studies lead to techniques like carbon dating

Health effects

No	Dosage mSv/year	Dosage mR	Possible health effects
1	15	1,500	Prescribed upper limit for individual in 1 year
2	100	10,000	No detectable effects/ first sign of increased risks of cancer
3	400	40,000	Radiation sickness, immediate med attention is required
4	2,000	.2 mil	Sever poisoning, maybe fatal, skin burns/cataracts (Case in New Delhi last year)
5	4,000	.4 mil	Risk of death sever
6	8,000	.8 mil	fatal
7	10	1000	Fukushima max dose / hour
8	87000	8.7 mil	Fukushima max dose / year

Health effects

- What happens when radiation hits body
- Radiation can ionize atoms inside body by knocking out electrons from atoms
- Gamma and neutrinos pass through the body. Relatively less harmful
- Beta radiation locally more harmful. Short range
- Neutrons 2-11 times more ionizing, but very few natural sources around. Very little neutron radiation from such accidents
- Alpha particles 20 times more ionizing/dangerous.
 Extremely local. Some hazards in this kind of accident.
 Smoking.

 $E = a + b \ge x + c \ge x^2$

Usually c is negative C $\approx 10^{-4}$ to 10^{-6} x b

$E_{\gamma} (keV)$	I_g	α_k	Total Intensity
121.78	28.58	1.155	61.6
1085.8	10.27	0.0026	10.3
344.28	26.5	0.04	27.6

Eg	lg
121.7817 3	28.58 6
244.6975 8	7.583 19
295.9392 17	0.447 5
344.2785 12	26.5 4
367.7887 16	0.861 5
411.1163 11	2.234 4
443.965 3	2.821 19
563.9907	0.489 6
678.623 5	0.471 4
688.670 5	0.857 8
778.9040 18	12.942 19
867.378 4	4.245 19
919.330 3	0.427 6
964.079 18	14.605 21
1085.869 24	10.207 21
1112.074 4	13.644 21
1212.948 11	1.422 6
1299.140 10	1.623 8
1408.006 3	21.005 24

Scintillation Detectors

- But PMT 20 % eff, Photo cathode ~12 % eff :- implying average excitation energy 0.1 keV
- $1 \text{ keV} \sim 40 \text{ photons}$
- 1.1 MeV = 40,000 photons
- Random statistics: error = \sqrt{N} = ~ 3.5% error
- Energy resolution around 7% for NaI(Tl), 13 % for BaF_2 and 16 % for BGO

⁶⁰Co spectrum in a NaI(TI) Detector

Comparision of NaI(Tl) and HpGe detector spectra

Counts

Energy

Analysis

- Calibrate the channel using E=a+bx for ¹⁵²Eu data provided.
- Resolution:Plot data and Gaussian simultaneously. Measure and minimize to find best centroid and FWHM.
- Similarly, find calibration and resolution for Cs(I) detector data collected in lab manually without any readymade softwares .
- Background subtraction.